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In the study of human cognitive activity using electroencephalogram (EEG), the brain
dynamics parameters and characteristics play a crucial role. They allow to investigate
the changes in functionality depending on the environment and task performance
process, and also to access the intensity of the brain activity in various locations of
the cortex and its dependencies. Usually, the dynamics of activation of different brain
areas during the cognitive tasks are being studied by spectral analysis based on power
spectral density (PSD) estimation, and coherence analysis, which are de facto standard
tools in quantitative characterization of brain activity. PSD and coherence reflect the
strength of oscillations and similarity of the emergence of these oscillations in the brain,
respectively, while the concept of stability of brain activity over time is not well defined
and less formalized. We propose to employ the detrended fluctuation analysis (DFA)
as a measure of the EEG persistence over time, and use the DFA scaling exponent
as its quantitative characteristics. We applied DFA to the study of the changes in
activation in brain dynamics during mental calculations and united it with PSD and
coherence estimation. In the experiment, EEGs during resting state and mental serial
subtraction from 36 subjects were recorded and analyzed in four frequency ranges:
θ1 (4.1–5.8 Hz), θ2 (5.9–7.4 Hz), β1 (13–19.9 Hz), and β2 (20–25 Hz). PSD maps to
access the intensity of cortex activation and coherence to quantify the connections
between different brain areas were calculated, the distribution of DFA scaling exponent
over the head surface was exploited to measure the time characteristics of the dynamics
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of brain activity. Obtained arrangements of DFA scaling exponent suggest that normal
functioning of the brain is characterized by long-term temporal correlations in the cortex.
Topographical distribution of the DFA scaling exponent was comparable for θ and β

frequency bands, demonstrating the largest values of DFA scaling exponent during
cognitive activation. The study shows that the long-term temporal correlations evaluated
by DFA can be of great interest for diagnosis of the variety of brain dysfunctions of
different etiology in the future.

Keywords: electroencephalogram, detrended fluctuation analysis, cognitive workload, brain dynamics,
coherence, power spectral density

INTRODUCTION

The study of the human cognitive activity is an active field of
theoretical and practical investigations (Sarter et al., 1996; Baars,
2005; Eysenck and Brysbaert, 2018; Illeris, 2018). Among other
topics, the study of the brain dynamics during the cognition
process has attracted a lot of attention from the researchers
(Bressler and Kelso, 2001; Beaty et al., 2016). The dynamics
of activation of different brain areas during the cognitive tasks
has been mainly studied by the spectral analysis based on Fast
Fourier Transform, and coherence analysis (Kropotov, 2010).
These two well-established methods provide a powerful tool
which complimentary access the brain activation dynamics and
allowed to reveal important patterns of brain activity during
various experimental settings.

Traditionally, a significant part of electroencephalogram
(EEG) studies use Power Spectral Density (PSD) to find the
key discriminative emotional features related to the arousal and
valence in response to videos (Soleymani et al., 2012), while
listening to the music (Lin et al., 2010), to detect features
that are associated with induced pleasant emotion (Kortelainen
et al., 2015), to create the informative classification of emotions
based on the changes in the gamma band, and to find the
most informative EEG channels for emotion recognition (Li
and Lu, 2009). In Kortelainen and Seppänen (2013), the evoked
response synchronization/desynchronization during emotions in
different frequency bands by using the Fourier spectral analysis
was examined.

On the other hand, coherence reflects the distant
synchronization of the neural oscillations in different brain
regions related to functional connectivity, which is also possible
to access in every frequency range of interest. It allows studying
the connections between functional and morphological brain
areas during different tasks realization, such as language (Weiss
and Mueller, 2003) and numerical magnitude processing
(González-Garrido et al., 2018) etc.

Cognitive activation is a complex time-space process in the
brain, for which PSD and coherence jointly reflect the strength of
oscillations and similarity of the emergence of these oscillations
in the brain. But, to our knowledge, one important feature of
the oscillations is not very well defined and used yet, which is
stability of the oscillatory process on the brain over time. We
suppose that it would be beneficial to quantify the persistence
and stability of the oscillatory activity over time in each region of

the brain, to highlight the duration of the brain electrical activity
periods with stable characteristics and study the dynamics of
the rearrangement of the activations for different regions. In
this work, we propose to consider the Detrended Fluctuation
Analysis (DFA) as a tool to define such stability. DFA is the
method of studying the non-linear characteristics of signal which
quantifies the presence of long- and short-term correlations in
time series.

DFA was rarely used before as a complementary to the
standard techniques in the analysis of cognitive processes. DFA
was applied to quantify the complexity of alpha and theta
EEG rhythms during listening to meditation music (Maity
et al., 2015). It was revealed that the complexity of alpha
and theta rhythms in the form of multifractal spectral width
increases in seven frontal locations (F3, F4, F7, F8, Fp1, Fp2,
and Fz) under the effect of musical stimuli. DFA was used
to analyze EEG characteristics during three emotional states
induced by music listening (fear, happiness, sadness) and
under the rest condition with eyes-closed (Gao et al., 2007).
Two scaling regions were identified in a log-log plots, with
empirically estimates bending point corresponding to the alpha
frequency range (8–12 Hz). ANOVA results showed that the
DFA scaling exponents in two scaling regions provide a simple
summary of the complex dynamics in EEG during listening to
emotional music.

In the study of the emotional characteristics of EEG by
using DFA and Power Spectral Intensity (Sanyal et al., 2015),
the correlation was studied between the variation in scaling
exponent and the changes in spectral power in the alpha
and delta ranges while listening to the contrasting music
(eliciting two contrasting emotions, happiness and sorrow)
vs. the resting state. The most prominent result was the fact
that alpha power decreased during stimuli, while complexity
either increases or decreases depending on the music type. In
Banerjee et al. (2016), the Fast Fourier Transform and DFA
is used to analyze the EEG (frontal areas, F3–F4) recorded
while listening to music at three experimental conditions (rest
state, listening to the music and without music). Frequency
analysis was performed for the alpha, theta and gamma brain
rhythms. In the same time, DFA of the alpha rhythm shows
a retention of the emotion even after the withdrawal of both
happy and sad music. Also, this work observed the residual
arousals reflected in both alpha rhythm and DFA exponent
after the musical stimulus were removed, which is similar to
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the conventional ‘‘Hysteresis’’ loop. This finding evokes the
new potential field of study of time dynamics of response to
emotional stimuli.

To our knowledge, none of the previous works was focused
on the systematic study of DFA and its comparison to
well-established techniques, especially coherence. Therefore,
DFA needs to be studied more with respect to its potential
application to the research in cognitive neuroscience. In this
work, we aim to study the DFA characteristics of the neuronal
dynamics and emotional and cognitive characteristics of the
brain during cognitive workload in comparison to standard
techniques of PSD and coherence. Our hypothesis is that DFA
can provide complementary information about the stability of
the neuronal oscillations in the time domain, in addition to the
strength of such oscillations (from PSD) and synchronization of
activity in different regions (from coherence).

To demonstrate this approach, we have chosen mental
arithmetic task performance (serial subtraction) as a model
of activation mechanism during the execution of external
cognitive task. The mental calculation is a traditionally used
method of inducing the cognitive load and there are different
versions of proposed count schemes: the serial calculation
(subtraction, addition, multiplication, division) and the selection
the correct sum on the screen (Burbaud et al., 1995; Stam
et al., 1996; Dehaene et al., 1999; Menon et al., 2000; Pinheiro-
Chagas et al., 2019). The use of classical neurophysiological
methods, electroencephalography, magnetoencephalography
(MEG), functional magnetic resonance imaging (fMRI) revealed
the neuronal organization, the brain structures involved in
this type of cognitive activity. The tripartite organization of
calculation was revealed in Dehaene et al. (2003): the horizontal
segment of the intraparietal sulcus is the specific domain for the
semantic representation of numbers. The activation of the left
angular gyrus area in connection with other left-hemispheric
perisylvian areas indicates that the manipulation of numbers
happens in verbal form. In Dehaene et al. (2004) and Kong et al.
(2005), the activation of the intraparietal sulcus in arithmetic
tasks realization such as the subtraction has been shown. The
activation of the two main components of the calculation
circuits (the left inferior frontal area for exact calculation
and the bilateral intraparietal area for approximation) was
detected approximately at 230 and 280 ms poststimulus
(Dehaene et al., 1999).

During mental calculation, the activation in the dorsolateral
prefrontal cortex (the cortical surface or in the anterior bank
of the left gyrus frontalis medius—Brodmann’s area 46), in
the left insula and the cingulate or temporal cortex (rarely)
was observed (Burbaud et al., 1995). Authors of Menon
et al. (2000) found the effect of arithmetic complexity on
the recruitment of the left and right angular gyrus. The
dissociation in prefrontal and parietal cortex function happened
during arithmetic processing. The studies (Asada et al., 1999;
Enriquez-Geppert et al., 2014) have demonstrated that the
dorsal part of the anterior cingulate cortex and the adjacent
medial the prefrontal cortex are responsible for the cognitive
functions connected with mental arithmetic. In these areas,
θ-rhythm generators of frontal midline are localized. A

significant increase in the power of the Frontal Midline θ is
detected with the complexity, difficulty of the task. Also, frontal
brain areas (Fθ) are leaders in the relationship with parieto-
occipital (POα2) brain regions under cognitive load and these
causal interactions are enhanced with absolute accuracy. The
failure of mental arithmetic is reflected in the zero time-lag
between bilateral frontal θ and α2 in the right parieto-occipital
area (Dimitriadis et al., 2016).

The analysis of the aforementioned up-to-date state in studies
of emotional activation allows making several conclusions:

- All studies demonstrate strong quantitative variations of
response for the emotional stimuli or cognitive load in terms
of oscillatory power while mostly frontal areas are studied,

- Standard EEG frequency ranges are mostly used without the
specification for the frequency subbands which are more
relevant to the specific state/function,

- Absence of studying the persistence of neuronal oscillations
during mental cognitive tasks performance, which we
hypothesize the DFA application can provide.

Considering all of the above, the aims of the present study
includes revealing whether the application of DFA allows to
investigate the formation of neural networks’ stable states
during intensive mental activity, assessing the effectiveness
of DFA in comparison with existing methods of functional
connectivity and oscillatory power mapping, as well as
highlighting specific emotional and cognitive features of the
activation-related neurodynamics during mental arithmetic
task performance.

MATERIALS AND METHODS

Data Collection
The detailed description of the data used in the present study,
experiment design, participants can be found in Zyma et al.
(2019). Here, we briefly outline the main points.

Participants
In total, 66 healthy right-handed volunteers (47 women and
19 men), 1st–3rd year students of the Taras Shevchenko
National University of Kyiv (Educational and Scientific Centre
‘‘Institute of Biology and Medicine’’ and Faculty of Psychology)
aged 18–26 years (Mage = 18.6, SD = 0.87 years) participated
in this study. The participants were eligible to enroll in
the study if they had normal or corrected-to-normal visual
acuity, normal color vision, had no clinical manifestations of
mental or cognitive impairment, verbal or non-verbal learning
disabilities. Exclusion criteria were: the use of psychoactive
medication, drug or alcohol addiction and psychiatric or
neurological complaints.

The study was approved by the Bioethics Commission of
Educational and Scientific Centre ‘‘Institute of Biology and
Medicine,’’ Taras Shevchenko National University of Kyiv and
written informed consent was obtained from each subject
in accordance with the World Medical Association (WMA)
Declaration of Helsinki—ethical principles for the medical
research involving human subjects (Helsinki, Finland, June
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1964), the Declaration of Principles on Tolerance (28th session of
the General Conference of UNESCO, Paris, November 16, 1995),
the Convention for the protection of Human Rights and Dignity
of the Human Being with regard to the Application of Biology
and Medicine: Convention on Human Rights and Biomedicine
(Oviedo, April 04, 1997).

EEG Recordings and Preprocessing
The EEGs were recorded monopolarly using Neurocom EEG
23-channel system (XAI-MEDICA, Ukraine). The electrodes
(silver/silver chloride) were placed on the scalp at symmetrical
anterior frontal (Fp1, Fp2), frontal (F3, F4, Fz, F7, F8), central
(C3, C4, Cz) parietal (P3, P4, Pz), occipital (O1, O2) and
temporal (T3, T4, T5, T6) recording sites according to the
International 10-20 scheme. All electrodes were referenced to
the interconnected ear reference electrodes. The inter-electrode
impedance levels were below 5 k�. The sample rate of all
channels was 500 Hz. Thirty of the 66 participants were rejected
due to poor task performance or due to poor EEG quality
(excessive amount of artifacts), so the final sample size was
36 subjects.

The Python 3.6 programming language was used to
implement all data analysis and visualization in this work.

Experiment Design
In present experiments, we have studied EEG correlates of
mental activity—using the intensive cognitive task (mental
arithmetic task—serial subtraction). Arithmetic tasks in
present study involved the serial subtraction of two numbers.
Each trial started with the communication orally 4-digit
(minuend) and 2-digit (subtrahend) numbers (e.g., 4,753 and
17, 3,141 and 42 etc.). Mental arithmetic performance is
considered as standardized stress-inducing experimental
protocol (Jatoi et al., 2014; Finlay et al., 2016). Serial
subtraction during 15-min is considered as a psychosocial
stress (Noto et al., 2005). In this way, our study design
required from the subjects the intensive cognitive activity.
Intensive mental load is accompanied by a change in the
emotional background when the subject takes additional efforts
to resolve tasks, so one can talk about evoked emotions in
this case.

During EEG recording, the participants were sitting in a
soundproof dark chamber, in a cosy armchair in a comfortable
reclining position. Prior to the experiment participants were
instructed to try to relax during the rest state and informed about
the arithmetic task—participants were asked to count mentally
without speaking and using finger movements, accurately,
and quickly in the rhythm they had reached. After 3 min of
adaptation to experimental conditions and registration of the
EEG of the rest state with closed eyes (3 min) the participants
performed a mental arithmetic task—serial subtraction
during 4 min.

In this study, we analyzed EEG during the last minute of rest
state and the first minute of the mental arithmetic, since the
strategy of the task performance is being formed at the present
time and the emotional state of the participants is changing
considerably due to intellectual overload.

Behavioral Data Analysis
After the finishing of the arithmetic task execution, the subject
informed the result of subtraction. The number of operations
and correctness were computed for each participant. For
each participant, a mental arithmetic score was obtained by
subtracting the last number reached from a 4-digit number. The
task performance was accurate if the score was an exact multiple
of a corresponding 2-digit subtrahend. We had compared the
mentally calculated subtraction across subjects and concluded
that the participant had successfully engaged in the task if their
reported result did not differ by more than 20% from the correct
value. A similar approach in assessing the quality of the task was
applied in the study (Kissler et al., 2000).

One of our aims was to assess the ability of participants to
proceed with the arithmetic task. In this study, we investigate
how brain activation changes as the dependent of individual
task difficulty. This issue has been left unexplored by studies.
The increase in the rate of presentation numbers is used to
investigate the task difficulty (Menon et al., 2000). Individual
task difficulty for participants can be assessed by the number of
operations performed in unit time and by the characteristics of
proposed numbers. In this work, to identify the EEG features
associated with the task difficulty for the participants we used the
variation series (ranked series) of behavior data as the basis of
the grouping. Based on the number of arithmetic operations per
minute, we divided the sample (36 subjects) into two groups: the
proposed task was a difficult task for one group of participants
(group ‘‘B,’’ 12 subjects, Mnumber operations = 7, Standard Deviation
(SD) = 3.6), the second group effectively managed with the task
(group ‘‘G,’’ 24 subjects, Mnumber operations = 21, SD = 7.4).

EEG Frequency Ranges
For effective estimation of the changes in EEG due to the
cognitive activation, the following frequency subbands were
chosen:

1. θ1 (4.1, 5.8) Hz
2. θ2 (5.9, 7.4) Hz
3. β1 (13, 19.9) Hz
4. β2 (20, 25) Hz

Theta- and beta-band oscillations directly reflect such
cognitive processes as retrieval and actualization of memory
(Osipova et al., 2006; Bastiaansen et al., 2008), emotional
excitement (Demiralp and Başar, 1992) and other consciousness-
driven processes (Gundel and Wilson, 1992). Also, it has been
shown the increased synchronization in theta-band particularly
in its low-frequency subband during the execution of complex
mental tasks, activation of the processes underlying working
memory, as well as in neurodynamics in altered states of
consciousness (Molnár et al., 2005). The reasoning behind the
focusing only on these frequency ranges will be provided in the
‘‘Discussion’’ section.

To establish EEG correlates of emotions (emotion features)
during mental load and during rest state, we conducted DFA,
Oscillatory Power (PSD) and coherence analysis (Analysis of
Functional Connectivity) of the recorded data.
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FIGURE 1 | Assessment of scaling exponents of time series {xi} by detrended fluctuation analysis (DFA). (A,D,G) Examples of time series. (B,E,H) Integrated series
(blue solid lines) of the time series shown in the left hand panel. (C,F,I) Log-log plot of F(n) vs. n. The scaling exponent α is estimated by the slope of the linear fit (red
dashed lines).

Detrended Fluctuation Analysis
DFA has been widely used to quantify the long-range correlation
embedded in a non-stationary time series (Peng et al., 1995;
Kiyono, 2015). The standard procedure of the DFA:

1. Observed time series {xi} (Figures 1A,D,G) after subtracting
the mean from each data point (a) is integrated (blue solid
lines in Figures 1B,E,H).

2. The integrated time series is divided into equal-sized,
non-overlapping segments of length n samples (n = 200 in
Figures 1B,E,H).

3. In each segment, the mean-square-deviation from the least-
squares polynomial fit of degree k is calculated (k = 1 in
Figure 1B). Depending on the polynomial degree k, the
method is referred to as kth-order DFA or DFAk, in which
non-stationary trends approximated by polynomial functions
of degree (k-1) are removed from {xi}. The mean-square-
deviations are then averaged over all segments and its square
root F(n) is calculated. This computation steps (2) and
(3) are repeated over multiple time scales (window sizes) to

characterize the relationship between F(n) and n (Figure 1C).
A linear relationship on a log-log plot of F(n) as a function of
n indicates the power-law scaling range. In the scaling range,
the fluctuations can be characterized by a scaling exponent
α, the slope of the linear relation between log F(n) and log n
(Figures 1C,F,I).

In conventional EEG spectral analysis, the mean
characteristics of the power spectra averaged over extended
periods of time have been studied to obtain statistically reliable
characteristics. In that case, averaging procedures (resulting
in a ‘‘static’’ picture) may mask the dynamical properties. To
characterize such dynamical properties, we analyze the temporal
fluctuations of EEG-band powers using DFA.

First, for each EEG channel, the spectrogram was obtained
with the following parameters (window size = 10 s, window
type = Hamming, 0.1 s overlap). Then, for each frequency band,
the power spectrum density value time series was obtained.
These sequences were then used as the input for performing
the DFA.
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FIGURE 2 | Example of the log-log plots for different orders of detrending
polynomial (dotted line) and their respective linear approximations (solid line).

To check spurious detection of scaling behavior caused by a
nonstationary trend embedded in the time series, we calculated
double logarithmic plots for several orders of DFA. In Figure 2,
the examples of the log-log plots for DFA1, DFA2 and DFA3 are
presented with the straight lines (dashed lines) showing the linear
approximations. The aim of this comparison among different
orders of DFA is to evaluate the consistency of the estimated
scaling exponent. As seen on the plots, after some point on
horizontal axes, all plots for larger values of log(n) in different
orders of DFA are converging to the same slope line of the
log-log plots. The asymptotic slope convergence indicates that
the correct scaling exponent can be estimated by higher-order
DFA. Hence for this study, we used second order detrending for
all feature time series.

In DFA applications, one often computes separately the
scaling exponents for short-length window sizes n, and for
long-length window sizes, describing the short-range and
long-range persistence for the time series.

The reasoning behind the usage of DFA in our work is
to employ its capability of identification long- and short-term
correlations in the time series. We consider the correlation as
a property of possessing similar characteristics over a certain
time span. Depending on the duration of the period when the
time series properties are stable, longer- or shorter-periods of the
autocorrelation are observed.

As we aimed to find the locations when the neuronal
activity is considerably stable, we need to use DFA to describe
the long-range correlation of the human brain activity during

the mental arithmetic task performance. We were interested
particularly in the long-range scaling exponent. So, we developed
the algorithm for automatic finding the crossover point between
the short and the long-range scale in log-log plot. The second
order detrending curve was analyzed and the position of the
bending point was located based on the Akaike information
criterion (AIC) between the fitted line with or without a
crossover and the actual line. The point, where AIC value
was the smallest one was the actual crossover point. After
finding the crossover point, we used its coordinate as the
bottom margin of log window sizes to calculate the scaling
exponent α, the slope of the log-log plot (DFA scaling exponent).
This parameter represents the autocorrelation properties of the
time series:

1. α < 0.5 long-range anti-correlated signal
2. α = 0.5 uncorrelated signal (white noise)
3. α > 0.5 long-range correlated signal

Power Spectral Density Maps
To compare our approach to the existing methods of
quantification of brain activity during cognitive activation,
we calculated the PSD based on Fourier Transform. This
characteristic is a de facto standard measure of the strength
of oscillatory activity which was widely used in the study of
emotional activations (Davidson et al., 1990; Koelstra et al.,
2012; Zhao et al., 2018). We calculated PSD for every EEG
channel in every frequency range for every task. PSD was
calculated by the Welch method (Welch, 1967; Marple and
Marple, 1987) which is preferred for finite and imperfect signals
under analysis. This method consists in averaging of modified
periodograms, calculated by Fast Fourier Transform, which
results in the reduction of the noise in the power spectrum.
After obtaining the PSD in the corresponding frequency
range, it was normalized to the maximum value for count
and background, and then the PSD map was plotted over the
head surface.

Coherence
Another metric for comparison to DFA results is coherence.
Coherence of the EEG activity in different brain regions is
widely used to quantify the synchronicity of oscillations in
two distinct areas of the brain (functional connectivity) for
different conditions/states, such as working memory or mental
disorders (Thatcher et al., 1986; Locatelli et al., 1998; Sauseng
et al., 2005; Kropotov, 2010), emotions (Hinrichs and Machleidt,
1992; Aftanas and Golocheikine, 2001; Reiser et al., 2012).
In the context of the present study, coherence is used as an
indicator of the statistical similarity of the neural generators’
activity in a particular frequency range in two distinct areas
of the brain. In this work, the coherence was calculated
as follows.

For every frequency range, we took one of all possible
pairs of different EEG channels and calculate the coherence
(Bendat and Piersol, 2011) using the entire recordings. To
assess the validity of the coherence between the current pair
of EEG signals, the surrogate data analysis was performed
(Faes et al., 2004). Surrogate signals were obtained using the
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phase randomization: for one of two EEG signals, the Fourier
Transform was calculated, and a random number from the
range −π...+π was added to the phase of each harmonic
component. Then the inverse Fourier Transform was performed,
and the coherence was calculated between one initial EEG and
the surrogate EEG. This procedure of surrogate calculation
was repeated 100 times for each pair of electrodes. Only the
coherence which is significantly based on the t-test (p < 0.05)
was considered valid and used for further analysis. In the result,
we obtained the valid values of the EEG coherence between
the pairs of the electrodes, for every frequency range and for
two experiments: resting state and calculations (groups ‘‘B’’ and
‘‘G’’ separately).

Statistical Analysis and Validation
With three sets of the calculated characteristics (PSD, coherence,
and DFA scaling exponents) the statistical analysis was
performed. All statistical tests were performed using the Python
SciPy library. The general aim is to understand if the identifiable
differences are present in the data from two groups of subjects
during the mental cognitive workload. The null hypothesis was
that there is no difference in the PSD, DFA scaling exponent,
and coherence values between resting and counting states for
both groups of subjects. To challenge this hypothesis separately
for three characteristics separately, we assumed that the data are
i.i.d. and as a first step check the distribution for normality using
D’Agostino and Pearson’s tests. As a result, the distributions were
not normal, therefore we applied the Wilcoxon rank test for
paired samples to compare medians of the distributions.

For PSD values in every frequency range, the channels for
which the median values of the characteristics were statistically
different for resting and counting were identified. Then for these
channels, the difference between medians for was calculated
and its map across the head surface was analyzed. The
statistical tests for DFA scaling exponent were conducted in
the same way. If the median value of scaling exponent for
counting is statistically different from that in rest state in some
channel, it is used for further analysis. The confidence level
of p = 0.05 was used as a threshold for both PSD and DFA
medians comparison.

Then the statistical hypothesis testing was performed to define
the pairs of the electrodes for which the coherence is different for
resting state and counting state. To do this, the Wilcoxon test
for difference of medians was performed for the data from all
subjects in each group separately (p < 0.05). As all frequency
bands (β1, β2, θ1, θ2) that were analyzed in this work are
derived from the same EEG recording, Bonferroni correction was
applied to account for the multiple comparisons. The 5% p-value
was corrected to eliminate the multiple comparison problem by
division by N = 4. Those coherences which differ between rest
and count states were subdivided into three ranges: low (0.3 . . .

0.49), middle (0.5 . . . 0.69), and high (0.7 . . . 1.0) to analyze
them separately.

Finally, in each group, the difference between medians was
calculated and plotted in the graph with a red line connecting
two electrode locations if coherence for counting is larger than
during rest, and in blue otherwise. These graphs were analyzed

separately for each range (high, middle and low), and for
groups B and G.

RESULTS

Analysis in both groups was aimed to describe differences in
performing mental arithmetic task and subjective assessment of
it (groups ‘‘G’’ and ‘‘B’’) and neurodynamics of resting state for
good and bad counters (Figure 3).

Resting state in group ‘‘G’’ was characterized by a distinct
level of cortico-hippocampal networks activity and significant
activation processes in both fronto-central regions, primarily
expressed in θ2- subband, where exaltation of oscillations
was already observed in temporal areas (T3, T6; Figure 3,
PSD, Background). However, in group ‘‘B’’ the power of
oscillations in both θ subbands during resting state was not
expressed prominently.

Similar patterns were observed also in high-frequency β-band
dynamics during resting state (Figure 4). At the same time,
‘‘G’’ group was characterized by significantly higher power
of β1 and β2 frequency subbands in both hemispheres of
the brain with a prevalence of β1 in left frontal, posterior
frontal and occipital cortical areas, alongside with generalized
distribution across the cortex except for central occipital region.
Prevalence of β2-subband oscillations was well expressed in
the right hemisphere. In our opinion, certain topographic
asymmetry of the activation processes identified within β-band
fully corresponds to the functional role of the rhythms of these
ranges. At the same time, power of high-frequency oscillations in
‘‘B’’ group can be explained by the formation of a pronounced
β1-oscillations focus in left posterior parieto-temporal and both
occipital regions and generalized distribution of β2-oscillations
in central and right frontal cortical regions.

The processes associated with distant synchronization
represented by coherence were rather similar in both theta- and
beta-bands. No significant differences were observed in groups
of subjects in terms of distribution topography. However, more
well-defined functional connectivity distribution was revealed
by a comparative analysis of DFA scaling exponent values in all
EEG bands in both subject groups.

As it can be noticed from Figure 3, within θ subbands resting
state in subjects of ‘‘G’’ group was described by the fact that
values of DFA scaling exponent in all EEG bands were close to
0.5, which indicated the lack of long-range correlation in neural
activity processes, particularly in right fronto-temporal cortical
areas (medial area of right hemisphere cortex). Relatively similar
pattern of changes in DFA scaling exponent was observed in this
group in the range of β-band (Figure 4).

A completely different topography of DFA scaling exponent
distribution was observed in the EEG recordings of ‘‘B’’ group.
Resting state here was accompanied by a significant increase
in temporally stable long-range correlation of EEG fluctuations
(scaling exponent = 0.75, p < 0.05) in both θ subbands in
temporal-parietal regions of the right hemisphere and left
inferior frontal regions of the cortex. In the left occipital cortical
area, DFA scaling exponent values reached 0.85 and higher
(p < 0.05). Interestingly, in the right occipital area close to
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FIGURE 3 | Topographic distributions of PSD, DFA exponent, and coherence in θ1 and θ2 electroencephalogram (EEG) subbands in groups with different
evaluation of the task’s complexity (“G” and “B”) during resting state (Background) and mental calculations (Count). PSD, power spectral density; DFA, α values;
Coherence, coherence coefficient value.

0.5 DFA scaling exponent values were observed, whichmeans the
practical absence of temporally stable long-range correlation of
EEG fluctuations (Figure 3).

Topography of the DFA scaling exponent values distribution
within the range of β-oscillations in the ‘‘B’’ group was
characterized by similarity in both subbands which consisted in
a significant increase (up to 0.85) in the posterior regions of the
neocortex (Pz, O1–O2, T5), alongside with mean values of DFA

scaling exponent reaching 0.78 in frontal areas (Fp1, Fp2, F8) in
β1-subband. However, DFA scaling exponent values in all other
cortical areas did not exceed 0.7 (p < 0.05; Figure 4).

Generally close to 0.5 DFA scaling exponent values mean
that the EEG fluctuations show uncorrelated behavior in
all cases of our study of resting state (most prominently
expressed in ‘‘G’’ group) may indicate the randomness of EEG
dynamical characteristic.
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FIGURE 4 | Topographic distribution of PSD, DFA exponent, and coherence in β1 and β2 frequency subbands in groups with different evaluation of the task’s
complexity (“G” and “B”) during resting state (Background) and mental calculations (Count). PSD, power spectral density; DFA, scaling exponent values; Coherence,
coherence coefficient value.

Completely different EEG pattern was obtained during
cognitive load. Execution of mental arithmetic task in subjects
of ‘‘G’’ group was characterized by an increase in the magnitude
of oscillatory power density of θ1-subband exclusively in orbito-
frontal and central areas of either hemispheres and left temporal

region (F7, T3, T5), while θ2-subband demonstrated a certain
decrease in power. At the same time, in β1-frequency subband,
formation of the PSD amplification center was observed
in the posterior regions of the cortex (O1-T5-P3 and T6;
p < 0.05; Figure 4).
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Analysis of distant synchronization processes with coherence
revealed that performance of a cognitive task in the participants
of ‘‘G’’ group in the θ1-subbands was accompanied by formation
of amplification focus with center in left temporal (T3) and
right occipital areas (O2; Figure 5). However, within the range
of θ2-subband, a significant decrease in functional interactions
between frontal areas was observed, as well as a decrease in COH
levels within frontal and F3, Fz–T5.

As for the β1-frequency oscillations, an increase of the
functional association between cortical regions, such as the right
occipital area parietal, temporal and frontal segments of both
hemispheres was observed. Additionally, a significant decrease
in the intrafrontal COH levels and functional connections of the
left posterior temporal zone (T5) with frontal regions (Figure 5)
were detected. In β2-subband only decrease in Fp1-Fz interaction
was observed.

Furthermore, presence of active cognitive processes in ‘‘G’’
group was also revealed by DFA. Topography of the DFA scaling
exponent values under cognitive activation within the range of
θ1, 2-subbands was to a certain extent similar to each other.
Likewise, similar patterns were observed for PSD results in the
aforementioned subbands. Average values of scaling exponent
were observed in Fp1, F4, F8 and T3, while maximum values were
measured for Pz, P4, T4, T6 locations (scaling exponent > 0.8;
p < 0.05). There were sustainably high (scaling exponent > 0.8;
p < 0.05) and average (scaling exponent = 0.7; p < 0.05) values
of DFA scaling exponent measured in left frontal, right parieto-
temporal and right frontal areas within β1-subband, respectively
(Figures 3, 4). However, β2-subband was characterized by the
maximum regularity of oscillations only in the right temporal
location (T4).

In the θ1-subband PSD (compared to the resting state),
exaltation was observed with a dominance of the left hemispheric
regions and central areas of the cortex. Within the range of
θ2-subband, the focus of activation was expressed in the right
central hemispheric regions (F4-C4-Fz; Figure 3). Wherein, the
significant decrease of β1 frequency oscillations power (p< 0.05)
was registered in the frontal areas. In the posterior areas (parietal-
occipital; Figure 5), maximum values of power (p < 0.05) were
recorded with a certain topographic dominance of the left-side
cortical areas. In the topography of PSD distribution of the
β2-subband against increased levels of activation processes were
observed withmaxima in C3 and T6, while minimum values were
measured in the inferior frontal areas and right occipital zone
(F7, Fp1-F8, Fp2, O2; Figure 4).

As for the results of DFA in ‘‘B’’ group, it turned out that
in the θ1-subband cognitive task execution was accompanied
by an increase of scaling exponent values in the frontal right-
hemispheric (Fp2, F8) and central left-hemispheric (Cz, P3, T5)
areas to the level >0.75 (p < 0.05), as well as a decrease in scaling
exponent values in T3-F7-Fp1 locations to level <0.7 (p < 0.05).
In the θ2-subband, a similar distribution of scaling exponent
values was noted. However, a substantial decrease in the scaling
exponent values to 0.65 (p < 0.05; Figure 3) was observed
in T3-F7 locations. Analysis of β1-range oscillations revealed
a change of occipito-frontal pole of dominance during resting
state to the fronto-occipital one during cognitive activation

FIGURE 5 | Distribution of changes in coherence in θ (A) and β (B) EEG
bands during the execution of cognitive task compared to the initial resting
state in groups with different subjective evaluation of the complexity of the
task. Only statistically significant changes are indicated (p < 0.05), red
indicates the increase, blue indicates the decrease.

(p < 0.05; Figure 4) with increasing scaling exponent values
in the central areas (Fz-Cz-Pz, P4) as if manifesting interaction
between the right frontal and left occipital regions of the
cortex, which can be conditionally taken as indication of the
intuitive cognitive axis emergence. Within the β2-subband, a
decrease (compared to resting state) of the area of maximum
scaling exponent values (>0.75) to occipital areas (O1–O2)
was observed, alongside with increased scaling exponent values
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to the average level (≥0.75) in frontal areas (except Fp1, F3;
p < 0.05; Figure 4).

Activation-related changes of cortical connections measured
by coherence in ‘‘B’’ group also turned out to be quite
different from those in ‘‘G’’ group (Figure 5). Performing a
cognitive task in subjects of this group was accompanied by a
prominent decrease in frontal distant synchronization processes
in both θ subbands focused mainly in left prefrontal area,
but more prominently in θ2 range oscillations, with foci in
left anterior frontal (Fp1) and posterior temporal (T5) cortical
areas (p < 0.05). Changes of COH for β-oscillations also
had their own specifics in this group. Thus, the decrease in
distant synchronization processes was observed only in the left
fronto-temporal region. In contrast, changes of COH in ‘‘B’’
group, compared to ‘‘G’’ group, in the range of β2 oscillations
had a significant increase of interhemispheric fronto-temporal
functional connections, alongside with functional association
in anterior regions of the right hemisphere (Fp2-F8-T4;
p < 0.05; Figure 5).

Thus, from the results obtained it can be seen that subjective
attitude to the performance of cognitive tasks (in our case, mental
arithmetic task) has its own encephalographic manifestations,
analysis of which may be helpful in understanding various
brain mechanisms.

DISCUSSION

In our study, we focused on the analysis of θ- i β- frequency
bands. EEG PSD as a parameter related to the strength of
local synchronization processes was calculated alongside with
detrended fluctuations analysis, which was used to quantify the
stability of oscillations in time via long-term correlations. These
characteristics were considered together with coherence analysis
which estimates the synchronicity of the neural oscillations in the
distinct parts of the brain.

First, we have to explain why the analysis of alpha
frequency range was avoided in our study. Based on modern
representations, α-activity (7.5–13.5 Hz) is associated with
resting state, passive wakefulness, relaxation, etc. When its power
increases, there is a decrease in the activity of the cortical zones
observed alongside with increased activity in the thalamic zones.
Its presence in the anterior areas of the neocortex is considered
to evidence general low activation level of the brain.

At the same time, the views on the functional significance
of α-oscillations have recently changed to some extent.
So, according to Klimesch (1999), Röhm et al. (2001)
and Sauseng et al. (2005), desynchronization in low- and
mid-frequency sub-bands of the α-rhythm reflects activation
of the thalamo-cortical loop and correlates with the processes
of attention, while desynchronization in its high-frequency
sub-band (mainly of cortical origin) reflects the enhancement of
human cognitive activity.

Numerous sources have shown that the study of power
fluctuations in the α-band of human EEG today is associated with
processes of perception, attention, and memory. Consequently,
the functional value of this EEG phenomenon remains not
very well understood. Synchronization processes in α-band are

nowadays taken to associate with suppression of mental tension
and active inhibition of sensory information or irrelevant tasks.

In view of all of the aforementioned, we came to the
conclusion that it would be inappropriate to include the analysis
of data on changes in the α-band of EEG in this particular article
because of the significant increase in the volume of the work and
difficulty of its perception.

In the current study, we concentered our attention to a
detailed analysis of the characteristics of beta and theta rhythms.
Theta rhythm, generated in the limbic system, is considered to
be ‘‘emotional’’ band of human brain, which refers to its role
in cortical-limbic interactions. Hence it constitutes a cognitive
component of emotional reaction and increase of its power
cannot be simply reduced to activation transmitted from limbic
system to different regions of neocortex (Demiralp and Başar,
1992). Moreover, according to modern concepts, an increase in
theta-activity in the anterior cortical areas can be evaluated as a
marker of its enhanced activation (Gundel and Wilson, 1992).
Increased anterior frontal and midline theta synchronization,
and enhanced theta long-distant connectivity between prefrontal
and posterior association cortex with distinct ‘‘center of gravity’’
in the left prefrontal region (AF3 site) characterize states
of internalized attention and positive emotional experience
(Aftanas and Golocheikine, 2001). Thus, theta-activity in
anterior-central regions of the human brain cortex is usually
seen as basic, connected to cognitive functions implementation
through cortico-hippocampal interactions and integrative in
terms of functional connections between different cortical and
subcortical structures (Başar et al., 2001a). Memory processes
that are localized in the orbitofrontal cortex, are accompanied by
an increase in the power of the θ-range of the EEG. In this case,
the activation-cognitive view of the functional manifestation
of θ-rhythms is confirmed by synchronization with β- and
γ-oscillations and phase non-linear connectionwith the first ones
(Schack et al., 2002).

There are two distinct functional θ-subbands, slow and
fast cortical frequencies (Pastötter and Bäuml, 2014), which
are differently related to the memory neural networks.
The slow θ-oscillations are associated with the processes
of remembering and awareness, and fast theta-subband
reflects the emotional background of cognitive activity.
It is well known that the magnitude of θ-oscillatory
power density (specifically in θ1-subband) is significantly
increased when complex mental problems are to be solved
(Gundel and Wilson, 1992). Because of the widespread
topography of shifts in θ-activity, it is now thought that
left-hemispheric synchronization of oscillations in this
band stands for formation and subsequent implementation
of the analytical strategy of information perception,
while activity in temporal, parietal and occipital cortical
areas marks the initiation of extended cognitive analysis
(Aftanas and Golosheykin, 2005).

At present time the beta range is mainly associated with
various aspects of the functioning of the brain, from simple
sensory reactions (visual, auditory, somatosensory, etc.)
to higher cognitive functions, such as sensory memory,
mechanisms of regulation of visual attention, movements,
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the processes of identification and cognition, emotional
states and the implementation of cognitive, creative tasks
(Özgören et al., 2005).

Activation processes in the β-range of human EEG
are considered in connection with the analysis of various
complex cognitive processes, memory mechanisms (recognition
processes) and informational differentiation (Pulvermüller et al.,
1997; Özgören et al., 2005), as a manifestation of activation
mechanisms of cognitive control over behavioral reactions,
attention focusing, estimation of stimulus significance (Cómez
et al., 1998) and beginning of complex cognitive processes
(Pulvermüller et al., 1997). Namely, oscillations in β-frequency
band are associated with diverse functions and states, including
the integration of incoming sensory information, selective
attention, short-term memory, associative and perceptive
learning. All of this provides evidence that synchronization
in β-band is bound to such state of human brain as directed
attention underlying cognitive abilities (Röhm et al., 2001;
Rodriguez et al., 2004).

Furthermore, low-frequency β1-subband (13–20 Hz) is
characterized by significant power increase when spatial visual
attention processes take place, when β2-subband (20–30 Hz)
is nowadays seen as a correlate of creative mental processes,
heuristic task performing and verbalized thinking, as well
as emotion regulation (Razoumnikova, 2000; Wróbel, 2000).
Generally speaking, changes in β1-subband during the resting
state today are seen along the lines of hypothesis, which assumes
that oscillations of this particular frequency band maintain the
status quo of current sensorimotor and cognitive state, in this
means affecting the efficiency of cognitive control (Kukleta et al.,
2003). On the other hand, the increase observed in β2-subband
is thought to reflect synchronization of different polymodal
information processing mechanisms during active thinking. This
EEG-activity is linked to higher cognitive functions and noesis
per se, videlicet defining the essence of the phenomena (Greicius
et al., 2009).

Recently it has been shown, that both slow and fast cortical
theta oscillations are critically involved in human episodic
memory retrieval, being related to processes of recollection and
conscious awareness, and fast theta oscillations being linked to
processes of interference and interference resolution (Pastötter
and Bäuml, 2014). Given the assumption that functional
link between increased θ-activity in anterior and posterior
cortical areas and cognitive/emotional processes depicts
enhanced activation related to cortico-limbic interactions (Başar
et al., 2001b), it can be presumed that execution of cognitive
task will induce various changes in activation values of the
corresponding neural networks of the brain and that should
correlate with subjective assessment of complexity of the task
performed. The concept of β-band as a marker of complex
cognitive processes, memory mechanisms (i.e., recognition) and
information processing (Pulvermüller et al., 1997; Schneider
et al., 2016) also speaks in favor of this hypothesis. Furthermore,
values of θ/β ratio are increasingly used these days as a
marker of arousal or cognitive processing capacity (Clarke
et al., 2019). EEG bands and cortical regions mentioned
above are seen as those carrying cognitive functions and

reflecting initiation of memory networks, attention and
verbalization mechanisms (Klimesch, 1999; Razoumnikova,
2000; Fuster, 2015; Haber, 2016; Näätänen, 2018). A
noteworthy feature of EEG-recordings in ‘‘B’’ group during
the execution of a cognitive task lied in a completely different
neurodynamics observed.

According to our results, the analysis of the brain functional
connectivity and oscillatory power of the human cortical bands
revealed functional structure of human brain activity both
during resting state (activity of default mode networks and
resting state neural networks, which provide the basis for
internal mental activity (Karapanagiotidis et al., 2018) and during
the execution of an intensive cognitive task (arithmetic task),
confirming functional predictive values of θ and β frequency
bands (Sauseng et al., 2010; Fries, 2015; Schneider et al., 2016).
It is evident that initial resting state in the groups of participants
was accompanied by the activation of mechanisms reflecting
internal and external stimuli (self-assessment, thinking), that is,
stream of consciousness, which includes activation of episodic
memory, internal speech, mental representation, imagination,
emotions et cetera (Greicius et al., 2003, 2009). However, it
is quite possible to assume that in ‘‘G’’ group, these processes
were much more powerful and state of conscious rest in these
subjects was more closely connected with mind-wandering—the
free flow of thoughts (Mason et al., 2007). This, in essence,
reflects the unfocusedness of informational cognitive component
of this state of brain activity. It is well known that cognitive
processes are associated with the resting state (spontaneous
cognitive processes, personal thoughts etc.; Buckner et al., 2008;
Hasson et al., 2009). Therefore, in our case, the DFA allows
describing additional features of the ongoing mental activity of
the resting brain.

It is worth noting that major changes in both powers of
oscillations and levels of coherence had localization specificity
for the state being analyzed and were reasonably specific
for coherence values (formation of specific foci in coherence
topography). At the same time, visualization of changes in
coherence turned out to be the most representative, which in
turn gave a clear neurophysiological basis for the difference in
brainmechanisms of information processing in our experimental
groups (Figure 5). Thus, our results confirm the presence of
well-established EEG correlates of the effect of subjective task
complexity evaluation on elementary cognitive task performance
as described in Schmidt et al. (2018).

DFA of activation rearrangement in EEG dynamics suggests
that normal functioning of the brain is characterized by
long-term temporal correlations between regions of the cortex,
thereby supporting decision-making processes and memory
mechanisms (performing cognitive tasks). At the same time,
studies of the initial resting state show that the resting brain
works on the threshold of dynamic instability, which is expressed
in a low scale of time correlations in the vast majority of
cortical areas, regardless of the typology of emotional response to
cognitive activity. In this, our data is to a certain extent synergistic
with the results of Daffertshofer et al. (2018). However, it should
be noted that in ‘‘B’’ group during resting state high scaling
exponent values were observed in the posterior and partially
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anterior regions of the neocortex in both θ and β-bands, which
differed from the EEG data from ‘‘G’’ group (Figures 3, 4).
Therewith, at present, the posterior areas of the cortex are
associated with neural networks that are actively involved in
the implementation of cognitive reactions (working memory), in
particular in control systems (Schiffler et al., 2016).

Topographical distributions of the DFA scaling exponent
were comparable for θ and β frequency bands, demonstrating
the largest values of DFA scaling exponent during cognitive
activation in both groups of subjects. The long-term temporal
correlations were stronger in the ‘‘G’’ group especially in θ-band
and involved mainly right temporal, parietal and occipital
regions, whichmight be related to additional strengthening of the
mechanisms of verbal memory (Shinoura et al., 2011). Increase
in the DFA scaling exponent values in β-band and coherence
values in β2-subband in the ‘‘B’’ group was topographically
related to the anterior and posterior areas—the ones that are
actively involved in the implementation of cognitive activity,
including regions displaying somatic background of emotional
response. In this regard, it is possible to assume that it is due
to the increased level of cognitive activity, including systems of
downward control (both during resting state and cognitive task
performing), that difficulties and negative emotions elicited by
cognitive task were encountered.

Obtained values of DFA exponent suggest that normal
functioning of the brain is characterized by long-term temporal
correlations in the cortex, which are involved in decision-making
and memory. At the same time, it is important to note that
according to our results, presence or absence of long-range
temporal correlations may represent the greatest interest for
diagnosis of the variety of brain dysfunctions of different
etiology, including emotional and cognitive impairments. In
addition, its use has enabled us to integrate more subtle
mechanisms of working memory activation (in regions of right
hemisphere), which cannot be achieved, for example, bymeans of
PSD analysis. Furthermore, the results obtained by DFA coincide
quite well with the results of fMRI studies (Zago et al., 2008).

We assume that DFA may also be an useful tool in the
determination of psycho-neurological status and for control
of pharmacological treatment efficacy of pathologies that
are accompanied by stable tonic states (e.g., phobias),
informational exhaustion and psycho-emotional overload,
including post-traumatic stress disorder. The important data in
support of this assumption were obtained on the use of DFA in
the study and treatment of neurological diseases. The strength
of long-term temporal correlations was significantly lower in
patients with infantile spasms (West syndrome) than in control
patients, indicating a decrease in the control of neural synchrony
(Smith et al., 2017). There were no differences between patients
without hypsarrhythmia and control patients. In addition, the
presence of hypsarrhythmia can be classified based on the results
of DFA. Successful treatment was marked by an increase in
DFA scaling exponent values compared to data obtained from
patients with persistent spastic activity. These results suggest
that the strength of long-range time correlations is a marker
of pathological cortical activity that correlates with response to
treatment. In combination with current clinical measures, this

quantitative tool can help to objectively identify hypsarrhythmia
and evaluate the effectiveness of treatment to inform patient
about clinical decision making.

Furthermore, the recent introduction of DFA technique for
heart rate variability measuring appears to provide improved
prognostic methods of cardiovascular diseases diagnostics by
calculating the alpha fractal scaling component (Willson et al.,
2002; Chiang et al., 2016). As it was noted by Arsac and
Deschodt-Arsac (2018), in the last decade there has been a
growing interest in fractal physiology among neuroscientists and
clinicians. Many physiological systems coordinate themselves
to reduce variability and maintain a steady-state. Further
advancement of application of DFA to studying of brain behavior
is in focus of our research.

CONCLUSION

DFA proved to be efficient in terms of brain functional state
estimation, as it reflects long-term correlations of oscillatory
processes and can provide information about the reliability of
cognitive engagement or initiation of certain brain functions
during formation of behavioral strategies with noticeable
activation component.

Based on the analysis of EEG recordings obtained during
mental arithmetic task performance (serial subtraction), we
demonstrated the ability of the DFA to showcase the long-
and short-term connections in EEG time series, related to
the changes in EEG dynamics due to the cognitive workload.
Current study provides evidence that DFA used jointly with
PSD and coherence, shows benefits of DFA application to
describe durable informational connections in the process of
human cognitive activity reveals comprehensive information
about strength, duration and spatial connectivity of neuronal
oscillations, which can advance our knowledge about processes
in the brain under various conditions. However, it should still
be stressed that the physiological value of the scaling exponent
parameter of DFA remains to some extent unclear and requires
its further detailed neurophysiological study.
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