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The rapid spread of coronavirus 2019 disease (COVID-19) has manifested a global public

health crisis, and chest CT has been proven to be a powerful tool for screening, triage,

evaluation and prognosis in COVID-19 patients. However, CT is not only costly but also

associated with an increased incidence of cancer, in particular for children. This study will

question whether clinical symptoms and laboratory results can predict the CT outcomes

for the pediatric patients with positive RT-PCR testing results in order to determine the

necessity of CT for such a vulnerable group. Clinical data were collected from 244

consecutive pediatric patients (16 years of age and under) treated at Wuhan Children’s

Hospital with positive RT-PCR testing, and the chest CT were performed within 3 days of

clinical data collection, from January 21 to March 8, 2020. This study was approved by

the local ethics committee of Wuhan Children’s Hospital. Advanced decision tree based

machine learning models were developed for the prediction of CT outcomes. Results

have shown that age, lymphocyte, neutrophils, ferritin and C-reactive protein are the

most related clinical indicators for predicting CT outcomes for pediatric patients with

positive RT-PCR testing. Our decision support system has managed to achieve an AUC

of 0.84 with 0.82 accuracy and 0.84 sensitivity for predicting CT outcomes. Our model

can effectively predict CT outcomes, and our findings have indicated that the use of CT

should be reconsidered for pediatric patients, as it may not be indispensable.

Keywords: COVID-19, decision trees, machine learning, RT-PCR—polymerase chain reaction with reverse

transcription, artificial intelligence, pediatric
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INTRODUCTION

Since December 2019, the worldwide spread of coronavirus 2019
disease (COVID-19) has had a significant impact on public health
and the global economy. Although most people with COVID-19
manifest mild symptoms, ∼20% of patients go through several
clinical stages ending in diffuse lung injury, i.e., severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2).

COVID-19 is highly contagious, and severe cases can lead
to acute failure of the lungs, multiple organs and ultimately
death. The diagnosis of COVID-19 can be confirmed by
a laboratory test, i.e., the reverse transcription-polymerase
chain reaction (RT-PCR) test; however, the test has high
false-negative rates and low sensitivity, which leads to
late diagnosis and treatment. Delays in the diagnosis of
COVID-19 indicate that patients will amplify the hazard
of patient-to-patient COVID-19 transmission within
the hospital.

Chest imaging techniques, e.g., chest computed tomography
(CT), provides valuable diagnostic and monitoring information
that can be used as an important complementary indicator
in COVID-19 screening due to high sensitivity (1–4). This
is mainly due to most COVID-19 infected patients having
chest imaging abnormalities, e.g., bilateral patchy shadows and
ground glass opacity (GGO), which are manifested in chest CT
scans (5). Meanwhile, subsequent chest CT imaging every 3–
5 days are recommended to evaluate the disease progression
for fast therapeutic response. Hence, chest CT imaging has
become a viable method for early COVID-19 diagnosis and
tracking the progression of the disease with high sensitivity.
In addition, the WHO Guidelines on Imaging and COVID-19
suggest the diagnostic use of chest imaging for symptomatic
patients suspected of having COVID-19 if: (1) RT-PCR testing
is not available; (2) RT-PCR testing is available but results are
delayed and (3) initial RT-PCR testing is negative but there
remains a high clinical suspicion of COVID-19. From a global
perspective, imaging techniques are important due to the fact that
imaging infrastructures are more advanced in many countries
compared to the COVID-19 RT-PCR diagnostic laboratories.

Although chest CT imaging can provide important and
complementary diagnostic and prognostic information for
COVID-19 patients, some studies believe that the results of
CT scans are not highly specific and are not suitable for
screening for COVID-19 (6–9). Moreover, multiple chest CT
scans have potential carcinogenic effects, which have more
prominent risk for vulnerable pediatric patients (10). Besides,
for pediatric patients with positive RT-PCR testing results, it
is well-known that they can have milder symptoms compared
to adults patients (11–13). Despite the fact that chest CT
examinations can help us understand the condition of the lungs
in pediatric patients (14–16), 35% children with positive RT-PCR
testing results can still have negative CT examinations (13, 15),
and therefore these patients suffer from unnecessary ionizing
radiation (17, 18). Currently, there is no decision support system
that can help clinicians to determine whether these pediatric
patients with positive RT-PCR testing results need further chest
CT examinations.

In this study, we study the relationship between the results
of the chest CT examinations and clinical symptoms, laboratory
tests and other clinical factors for RT-PCR positive pediatric
cases, retrospectively. Using our developed advanced machine
learning methods, we establish a systematic decision support
system to predict the chest CT results for RT-PCR positive
pediatric patients. Our approach will help vulnerable pediatric
patients to avoid receiving unnecessary radiation from chest CT
scans. At the same time, early predictions of the chest CT results
for the pediatric patients using our decision support system
can provide better patient classification, clinical decision-making,
and more efficient hospital resource allocation.

METHODS

Datasets
The pediatric patient datasets were collected from Wuhan
Children’s Hospital. The tabular data contained information for
244 pediatric cases, in which 3 cases had critical COVID-19
symptoms (Table 1). For the feature columns of the tabular data,
we collected 32 clinical symptoms for diagnosis (e.g., cough,
running nose, sneeze etc.). Following the standard experimental
practice, we employed the 5-fold cross-validation for model
selection and evaluation. In particular, we split the datasets
into five disjoint folds with the same number of samples.
Then, we held out each fold for evaluation and the rest 4-
folds were used for training our machine learning models. The
final result was calculated by averaging over the results of the
five experiments. This study was approved by the local Ethics
Committee of Wuhan Children’s Hospital (Wuhan Maternal and
ChildHealth CareHospital #WHCH2020005).Written informed
parental/guardian consent and child assent (where appropriate)
were obtained prior to enrollment in the study.

Proposed Methods
It is essential to explore the relationship between the clinical
characteristics of children and the COVID-19 RT-PCR testing
results. Therefore, an explainable model is required not only
to find the implicit relations but can also yield reasonable
explanations. Meanwhile, given tabulated data of children who
were tested COVID-19 positive or negative, the proposed model
should accurately predict the corresponding testing results. We
denoted children who were infected by COVID-19 virus (RT-
PCR positive) as class 1 and children who were COVID-19
negative (RT-PCR negative) as class 0.

Before building the model, the tabulated data were pre-
processed to explore the mean and standard variance of each
feature, which provided extra information for mining the
relationship. Meanwhile, we also divided the discrete features
(e.g., age, leukocyte etc.) into several disjoint intervals which
could reduce the complexity of the model.

Besides, feature encoding was also applied due to the fact that
some features were not inner correlated. Gender, for instance,
was sequentially numbered instead of recorded separately.
Therefore, we adopted the one-hot encoding to handle such
problems. After pre-processing, we further explored the mutual
relationship within the encoded features. We then used the
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TABLE 1 | Baseline characteristics of children with COVID-19.

CT normal

(n = 102)

CT abnormal

(n = 142)

All patients

(n = 244)

Fundamental state

Age [Mean (SD)] 7.9 (4.5) 5.6 (4.8) 6.6 (4.8)

Sex (Male/Female) 54/48 85/56 139/104

Contact history 92 126 218

Symptoms

Fever 23 70 93

Cough 23 70 93

Vomit 3 13 16

Diarrhea 2 9 11

Poor spirit 0 7 7

Running nose 4 11 15

Laboratory examination [median (Range, Q1–Q3)]

LDH(U/L) 221 (189–260) 246 (213–326.5) 238 (201–294)

Ferritin (ng/mL) 58.1 (36.8–86.6) 61.6 (40.2–95.3) 58.9 (39.9–90.2)

CK-MB (U/L) 20 (16–32) 24 (18–35) 23 (17–34)

Leukocyte (109/L) 7 (6–8.9) 6.9 (5.4–8.6) 6.9 (5.6–8.7)

Neutrophils (109/L) 3.6 (2.5–4.6) 2.4 (1.7–3.8) 3 (1.9–4.2)

Lymphocyte (109/L) 2.8 (2.3–3.5) 2.9 (2–4.5) 2.9 (2.1–4)

C-Reactive protein (mg/L) 1 (0.8–4) 3 (1–5.9) 1.2 (0.8–5)

Neutrophil lymphocyte ratio (NLR) 1.3 (0.9–1.9) 0.9 (0.5–1.5) 1 (0.6–1.7)

LDH, Lactic Dehydrogenase; CK-MB, Creatine Kinase-MB.

random walk to quantify the strength of the pairwise relations
for different features. For example, we found that age had a strong
correlation with the contents of the C-reactive protein (CRP).

Furthermore, since the contributions of each feature varied,
we quantified the importance of features. Features were ranked
by measurement generated from algorithms, and we adopted the
features with high importance scores to train our model. The
ultimate goal of our decision support system is to determine
whether CT is required if the RT-PCR test is positive. This
is a classification problem with prerequisites; therefore, the
interpretability of themodel is also very important. Our proposed
decision support system (Figure 1) contains the two major
modules as follows.

An Explainable Feature Extractor Module

TF-IDF Embedding
TF-IDF, which stands for Term Frequency–Inverse Document
Frequency, is a numerical statistic that can reflect how important
a word is to a document in a collection or corpus. A word
with higher TF-IDF value is thought to be more important and
representative for a document. In this study, for each patient, we
extract all the feature values and combines them into a single
document. These documents form the whole corpus collection.
Then we use TfidfVectorizer from scikit-learn library to find the
most important and influential features.

Frequency Encoding/Count Encoding
Frequency Encoding/Count Encoding: Both frequency encoding
and count encoding are methods to utilize counts of the

categories. Since these two methods mainly focus on the
frequency and count of each category, they are less affected by the
feature values. For example, if two features have similar frequency
distribution, we can keep one feature and leave out the other.
Although we may miss some information from the discarded
features, our model is less likely to overfit as it has less features.
In our current study, we develop frequency encoding and apply
it to find connections and relationships between features.

Target Encoding
Target encoding is a process of replacing a categorical value with
the mean of the target variable.

Cohen Effect Size
Cohen’s d is an appropriate effect size for the comparison between
two means. To calculate the standardized mean difference d
between two groups, subtract the mean of one group from the
other and divide the result by the standard deviation s of the
population from which the groups were sampled.

An Explainable Classification Module

GBDT
Gradient Boosting is a machine learning technique for regression
and classification problems, which produces a prediction model
in the form of an ensemble of weak prediction models, typically
decision trees. It can be fitted to current residuals with gradients
of the loss function, in a forward stepwise manner. The GBDT
requires no feature normalization and it has an inherently feature
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FIGURE 1 | Flow chart and network architecture of our proposed model.

TABLE 2 | Odds ratio for features.

Feature OR value 95% CI p-value

Ferritin 10.36 [1.28, 83.69] 0.0196

Lymphocyte 3.11 [1.57, 6.15] 0.0014

C-reactive protein 2.40 [1.42, 4.05] 0.0014

LDH 2.30 [1.12, 4.72] 0.0322

CK-MB 1.67 [0.5, 5.59] 0.5815

Leukocyte 0.47 [0.26, 0.85] 0.0199

Age 0.41 [0.24, 0.69] 0.0011

Neutrophils 0.41 [0.24, 0.7] 0.0016

Neutrophils lymphocyte

ratio (NLR)

0.37 [0.15, 0.87] 0.0322

selection during the learning process. Besides, it is easy to specify
different loss functions for the GBDT.

Bayesian Optimization
Bayesian optimization is a sequential design strategy for global
optimization for black-box functions that does not assume any
functional forms.

Because of the imbalanced nature of the dataset, the
traditional training process would lead to unstable performance.
In order to tackle unstable training, we divide our dataset into
5-folds and apply the stratified sampling method to ensure each
fold’s ratio of the positive patients to the negative ones is close to
the overall ratio. Furthermore, we adopt the idea of focal loss (19)
in our Bayesian optimization process tominimize the influence of
the imbalancement.

We used the odds ratio (OR value) to quantify the impact of
the individual feature against the output value of our model and
the results are reported in Table 2. The OR value in our work
referred to the ratio of the exposed patient to the unexposed
patient in the positive group divided by the ratio of the exposed
patient to the unexposed patient in the negative group. For each
feature, if its OR value was >1, it indicated that the factor, which

patients were exposed to, was a risk factor that would increase
the possibility of being positive. If the OR value was<1, the factor
was one protective factor that decreased the chance to be positive.
Besides, if the OR value equaled 1 or the confidence interval
contained 1, the factor could be considered as irrelevant from
a statistical perspective. For example, for feature age, we set the
threshold to 7 so the factor is age≥7. As the OR value was<1 and
the confidence interval did not contain 1, so children exposed to
this factor, in other words, children who were older than 7 years
old were less likely to be positive in CT abnormality than those
unexposed, who were under 7 years old.

We also used Spearman’s correlation to find features most
related to our target and screened out highly correlated features
to minimize input feature numbers. We use a heat map in
Figure 2 to present our results. Then we set the threshold value
to 0.4 and selected five features out of all the features, which were
age, C-reactive protein, Neutrophils, lymphocyte, and ferritin.

However, when we used single-feature models, we could
only obtain a relatively fair performance in predicting CT’s
abnormality. To improve the performance and generalization
of our model, the combination of features was necessary. After
grouping and aggregating all the patients by their ages and their
CT results, we found three significant bounds in ages, which were
4, 7, and 14. We then divided patients into four age groups [0, 4],
[4, 7], [7, 14], [14, 16] and calculated the ratio of positive ones to
negative ones inside. So, we chose the age as our base feature and
combined other features with it.

RESULTS

As Table 3 shows, compared to conventional and state-of-the-
art models, our model has performed significantly better. For
instance, our model achieves a higher AUC score of 0.8412,
and it is performed better than compared methods by at
least 0.8464 for the F1 score. This can be attributed to our
effective feature extraction. Compared to our model, TabNet
(20), AutoML (21), and DeepFM (22) can only extract the
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FIGURE 2 | Spearman’s Correlation for all features.

TABLE 3 | Comparison of general models.

Method AUC Accuracy Recall Precision F1 score

TabNet (20) 0.7891 0.7755 0.7727 0.7391 0.7559

AutoML (21) 0.7453 0.7368 0.7143 0.7895 0.7519

DeepFM (22) 0.6941 0.6818 0.7273 0.6667 0.6970

XGBoost (23) 0.7131 0.7097 0.6429 0.6923 0.6676

Our Model 0.8412 0.8191 0.8597 0.8389 0.8464

For all the comparison methods please refer to the opensource implementations

at TabNet: https://github.com/dreamquark-ai/tabnet, AutoML: https://github.com/

google/automl, DeepFM: https://github.com/ChenglongChen/tensorflow-DeepFM,

XGBoost: https://github.com/dmlc/xgboost.

Bold values indicate the best performed method.

representation of the whole tabular while ignoring representation
of the feature itself, which is also important for mining tabular

data. Meanwhile, compared with XGBoost (23), we project
the feature into higher dimensions with embedding leading
to better representation of features. Besides, this leads to an
intuitive interpretation, for instance, C-reactive protein may not
only indicate the body is healthy or not but can also share a
correlation with other indicators (e.g., lymphocyte). Therefore,
better feature representation can also lead to better capability of
model generalization.

To examine the influence of each component and module
in our model, we conducted ablation studies, and the results
are summarized in Table 4. It can be seen from Table 4 that
with the equipment of the encoding procedure, our model can
find strong connections between indicators thus has resulted in
better performance than the model with GBDT only. Moreover,
embedding the features in tabular data and projecting them
into higher dimensional space can enrich the representation
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TABLE 4 | Result of all cases where each proposed method can be applied.

Model GBDT Encoding Embedding AUC Accuracy Recall Precision F1 score

1
√

0.7081 0.6957 0.7297 0.7105 0.7201

2
√ √

0.7635 0.7581 0.7941 0.7714 0.7828

3
√ √

0.7812 0.7761 0.8158 0.7949 0.8053

4
√ √ √

0.8412 0.8191 0.8597 0.8389 0.8464

Bold values indicate the best performed method.

FIGURE 3 | Combinations of different dual features.

TABLE 5 | Results of single feature models.

Feature AUC score Accuracy Sensitivity Specificity F1 score

Age 0.6683 (0.0806) 0.6477 (0.0561) 0.8015 (0.1786) 0.4371 (0.2707) 0.7172 (0.0684)

C-reactive protein 0.5981 (0.0864) 0.6102 (0.0462) 0.7387 (0.2140) 0.4352 (0.3635) 0.6771 (0.0536)

Ferritin 0.5327 (0.1163) 0.6355 (0.0453) 0.8613 (0.1161) 0.3195 (0.2679) 0.7322 (0.0103)

Lymphocyte 0.6194 (0.1047) 0.6355 (0.0659) 0.8500 (0.1225) 0.3424 (0.2990) 0.7302 (0.0266)

Neutrophils 0.6726 (0.0813) 0.6513 (0.0523) 0.8313 (0.1239) 0.4048 (0.2651) 0.7325 (0.0276)

of features, which improves the model performance on all
metrics when Model 1 and Model 3 are compared (Table 4). By
incorporating the above two components, our model can achieve
a significant improvement by at least 4% on the AUC and 2% on
the accuracy.

To make our work more explicable and understandable,
we visualized all the dual combinations. For each patient, we
divide patients into different age groups and make them as
the x-axis and the combined feature values as the y-axis. The
results are demonstrated in Figure 3. We can see significant
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differences between negative and positive patients when features
were combined. For example, with the combination of age and C-
reactive protein, we found that for those pediatric patients older
than 14 years old, if their C-reactive protein was relatively high,
they were more likely to present positive results on CT scans.

From Tables 5, 6, we can see the performance of our
combined-feature models have outperformed single feature
models (Figure 4). With all features combined, we managed to
get a model achieving AUC score over 0.84 and an accuracy of
0.82. Besides, this model has reached relatively high sensitivity of

TABLE 6 | Results of combined feature models.

Feature AUC score Accuracy Sensitivity Specificity F1 score

Age-C-reactive protein 0.8163 (0.1311) 0.7288 (0.0759) 0.8589 (0.0854) 0.5490 (0.2774) 0.7883 (0.0334)

Age-Neutrophils 0.7915 (0.0326) 0.7129 (0.0355) 0.8512 (0.0255) 0.5243 (0.1097) 0.7748 (0.0182)

Age-Ferritin 0.7551 (0.0437) 0.7214 (0.0375) 0.7803 (0.0465) 0.6410 (0.0660) 0.7637 (0.0329)

Age-Lymphocyte 0.7956 (0.0775) 0.7332 (0.0452) 0.7724 (0.0873) 0.6805 (0.0622) 0.7679 (0.0472)

Combination 0.8412 (0.0982) 0.8191 (0.0590) 0.8597 (0.0407) 0.7767 (0.1853) 0.8464 (0.0348)

FIGURE 4 | AUC score for all models.
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0.86, which has indicated that our model is accurate at detecting
positive patients, which is quite important for clinical usage.

DISCUSSION

In this study, we have developed a decision support system
which uses five laboratory indicators as inputs and predicts CT
scan results of the pediatric patients who have positive RT-PCR
testing results.

We found that the combination of five laboratory indicators,
i.e., age, C-reactive protein, neutrophils, lymphocyte, and ferritin,
can effectively predict whether the CT findings of COVID-
19 children are positive or not. The ratio of CT positive to
negative is >2 for patients under the age of 4. Between the
ages of 4 and 7, the ratio is between 1 and 2; The ratio
between 7 and 14 is between 0.7 and 1; >14, the ratio is
<0.7. Therefore, we used 4, 7, and 14 years as the cut-off
points for predicting CT abnormalities in children, which was
proved to be reasonable in our subsequent validation model
(Figure 4). We speculate this may be related to the immune
system of children. Children under 4 years of age have an
immature immune system and weak resistance to the virus (6),
which is likely to cause inflammatory changes in the lungs.
Therefore, they are more likely to have lung CT abnormalities.
Children over the age of 14 have a relatively mature immune
system, and at the same time, they have been exposed to places
where bacterial or other viral infections are more common,
such as nurseries or schools, which allow them to have better-
trained immunity, immune fitness and cross-protection (7).
It is believed that previous exposure to milder respiratory
pathogens can train the immune system of the hosts against
the coronavirus (8). Children are less likely to develop severe
symptoms of illness as they grow with age, perhaps because the
immune system adapts to environmental influences, giving it
greater stability (10). Therefore, they are less likely to have lung
CT abnormalities.

Neutrophils and lymphocytes, as important components
of the innate immune system, have vital functions in
the development and recovery of influenza (11). The
neutrophil count reflects mostly innate immune cell
function, indicating systemic oxidative stress, inflammation,
and tissue damage (12). Lymphopenia is very common
in patients with influenza virus infection and bacterial
infection (13, 14). Ferritin is an acute reactant that is
highly expressed in infection and inflammation. Elevated
ferritin levels are associated with pro-inflammatory cytokines
(15). Ferritin may be a key marker and pathogenic factor
in inflammatory pathology, and its signaling pathway is
part of innate immune response and regulates lymphocyte
function (16).

CRP has been used as a predictor in several previous studies
of COVID-19 prediction models (17, 18, 24), and disease
progression in MERS, influenza-infected and community-
acquired pneumonia patients (25–27). CRP is a marker and
indicator of inflammation and plays an important role in
host resistance to invasive pathogens and inflammation (28).

CRP is elevated in response to inflammation (29) and the
level can reflect a persistent state of inflammation which
is not affected by factors such as age and gender, detected
CRP levels in COVID-19 patients is of great value in
assessing the severity of the disease (24, 30, 31). Moreover,
CRP was correlated to the acute lung injury in COVID-19
patients (32).

From Figure 3, we can see that the combination of CRP,
neutrophils, and ferritin with age is better than these indicators
alone. This empirically proves the efficacy of the combination.
At the same time, we can also see from Figure 3 that according
to the age node we divided before, after combining age with
CRP, neutrophils, and ferritin, there are indeed differences
among different age groups, which also proves the rationality
of our age node division. Finally, we combined age, C-reactive
protein, neutrophils, and ferritin, which produced high clinical
predictive value. It can be seen that the combined effect is
better than the previous pairwise combination (Table 4), and
the AUC value can reach to 0.83, which means that through
the four indicators of the patient’s, we can predict whether
the CT appearance of children with COVID-19 is abnormal
or not.

In conclusion, in this work, we focus on the explainable
features and manage to find some hidden connections between
different medical indicators. This is one major advantage of
our prediction model compared most current deep learning
based black-box models on CT images although different
Explainable Artificial Intelligence (XAI) models are currently
under development (33–35). The most important contribution
of our work is to find five specific indicators out of 32
clinical indicators to predict CT abnormality results. These five
indicators, i.e., age, C-reactive protein, Neutrophils, lymphocyte
and ferritin, are all easy and quick to obtain under real
clinical environment. Thus, pediatric patients with positive
RT-PCR testing results may not need to take further CT
scans. Besides, we introduced some deep learning methods
to the traditional machine learning process. This innovative
approach incorporated into our decision support system is a
key factor of the success of our model. It is of note that in a
recent study (36) it has shown that RT-PCR could yield false
negative results at first. To prevent misdiagnosis, the study
recommended to isolate patients with normal CT findings but
unfavorable RT-PCR outcomes and repeating the RT-PCR. In
our current study, we have relied on a single RT-PCR results
for model construction and prediction, and we will consider
repeating RT-PCR as our future strategy to prevent misdiagnosis
and construct more robust gold standard for training the
prediction model.

Although our model has outperformed other models
for most of the evaluation metrics, there are limitations
on the specificity, which means our models may perform
less well on predicting negative samples. Moreover,
our pediatric patients are all Asian populations, it
needs further evaluation to validate if our model could
perform well in other human races. These limitations
can be eliminated by performing multi-institutional and
multi-national studies.
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