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Abstract: To date, placental trophoblasts have been of interest in the fields of obstetrics and gyne-
cology, mainly due to their involvement in the formation of a connection between the mother and
fetus that aids in placental development and fetal survival. However, the regenerative capacities of
trophoblasts for application in regenerative medicine and tissue engineering are poorly understood.
Here, we aim to determine the skin regeneration and anti-aging capacities of trophoblast-derived con-
ditioned medium (TB-CM) and exosomes (TB-Exos) using human normal dermal fibroblasts (HNDFs).
TB-CM and TB-Exos treatments significantly elevated the migration and proliferation potencies of
HNDF cells in a dose- and time-dependent manner. When RNA sequencing (RNA-seq) was used to
investigate the mechanism underlying TB-CM-induced cell migration on scratch-wounded HNDFs,
the increased expression of genes associated with C-X-C motif ligand (CXCL) chemokines, toll-like
receptors, and nuclear factor-kappa B (NF-κB) signaling was observed. Furthermore, treatment
of intrinsically/extrinsically senescent HNDFs with TB-CM resulted in an enhanced rejuvenation
of HNDFs via both protection and restoration processes. Gene expression of extracellular matrix
components in the skin dermis significantly increased in TB-CM- and TB-Exos-treated HNDFs. These
components are involved in the TB-CM and Exo-mediated regeneration and anti-aging of HNDFs.
Thus, this study demonstrated the regenerative and anti-aging efficacies of trophoblast-derived
secretomes, suggesting their potential for use in interventions for skin protection and treatment.

Keywords: human trophoblasts; extracellular vesicles; exosomes; skin regeneration; aging; chemokines

1. Introduction

The placenta is a unique maternal organ in mammals that exists temporarily for the
development of the fetus. After delivery, the placenta is usually discarded, but owing to its
multifunctional properties, such as anti-inflammatory, anti-oxidant, anti-bacterial/viral,
radioprotective, and immunological modulation, it is well-regarded as a natural bioma-
terial [1–4]. Many researchers and clinicians are interested in placenta-derived materials,
including placenta extracts, cord blood serum and cells, the amniotic/chorionic membrane,
and placental mesenchymal stem cells (MSCs), to study their therapeutic potential and
clinical applications in the field of tissue engineering [5]. Of particular interest is the regen-
erative efficacy of trophoblast cells found in the chorionic membrane. The trophoblast layer
occupies most of the chorionic membrane and plays an important role in maternal–fetal
communication, which might rely on trophoblast-derived materials such as extracellu-
lar vesicles (EVs) [6,7]. However, the therapeutic efficacy of trophoblasts has not been
well studied.

Currently, MSCs are still considered the most common cell source in various regenera-
tive medicine strategies for damaged tissue repair and engineering [8,9]. Although MSCs
can be obtained easily from adipose tissue, bone marrow, dental pulp, and umbilical cord,
they constitute a small population in the whole tissue; the cells thus obtained suffer from a
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low yield of in vitro expansion and loss of biological activity during long-term culture [10].
These issues consequently impede the development of MSC therapies for regenerative
medicine. Therefore, finding alternative cell sources is a pressing need in the field of
regenerative medicine, for the development of clinical applications. From this perspective,
trophoblasts can serve as a desirable cell candidate with bioactive potential. It has been
shown that trophoblasts secrete numerous growth factors, hormones, and biological signal
substances containing EVs, such as microvesicles and exosomes, to transmit maternal
signals to the fetus [11]. One of the recent approaches in regenerative medicine is cell-free
therapy involving cell-derived conditioned medium (CM) and exosomes, for injection into
live cells [12]. Despite the potential benefits of MSCs, their use for direct cell therapy may
cause undesirable side effects, such as inflammation and tumorigenesis in recipients [10].
Cell-free exosome therapy offers safety strategies, as well as well-established quality con-
trol and guidelines for clinical settings [13]. Stem cell-derived CMs and exosomes have
been studied for their regenerative effects. Exosomes from MSCs have been studied for
their bone and cartilage regenerative effects [14,15]. In addition, Oh et al. studied the skin
regeneration effects of human-induced pluripotent stem cell-derived exosomes [16].

We also hypothesized that trophoblasts containing EVs have regenerative effects, and
investigated the regenerative effect of trophoblast-derived conditioned medium (TB-CM)
and exosomes (TB-Exos) on human skin fibroblasts. The excellent proliferative and anti-
aging effects of TB-CM and TB-Exos on human normal dermal fibroblasts (HNDFs) were
explored while using MSC-CM and MSC-Exos as controls. The mechanisms underlying
TB-CM-induced cell migration during wound healing in HNDFs were also determined
using RNA sequencing (RNA-seq) analysis. Additionally, we also showed that TB-derived
materials provided skin protection against UV photoaging by recovering UV-induced skin
damage and protecting against it, thus serving as effective anti-photoaging agents.

Thus, the present study reveals the possible value of trophoblasts in skin regeneration
and demonstrates the therapeutic potential of trophoblast-derived secretomes, such as
EVs, for skin rejuvenation, to be considered for an application in clinical medicine and
cosmetic manufacturing.

2. Materials and Methods
2.1. Cell lines and Culture Procedure

The human trophoblast cell line (HTR-8/SVneo) was obtained from American type
culture collection (ATCC) (Manassas, VA, USA; CRL-3271) and cultured in RPMI-1640
(Gibco, Grand Island, NY, USA) supplemented with 5% fetal bovine serum (FBS) (Gibco)
and penicillin/streptomycin (1000 U/mL, Gibco, New York City, NY, USA). HNDF cells
were kindly provided by Dr. Shin Ohk (Department of Infectious Immunology, Korea
University Guro Hospital, Seoul, Korea) and maintained in DMEM (Gibco) supplemented
with 10% FBS (Gibco) and penicillin/streptomycin (1000 U/mL, Gibco). Human bone
marrow MSCs were purchased from Cefobio (Gyeonggi-do, Korea; CEFO-BMMSC) and
cultured in MEM (Gibco) supplemented with 5% FBS (Gibco) and penicillin/streptomycin
(1000 U/mL, Gibco). All cells were maintained in a humidified atmosphere at 37 ◦C, with
5% CO2.

2.2. Preparation of Conditioned Medium and Exosomes

When the confluency of trophoblast cells reached 50%, the growth medium was
replaced with 5% (v/v) exosome-depleted FBS (Gibco) and the cells were incubated in it
for 48–72 h until cell confluency reached 100%, post which the CM was collected. The CM
was then filtered with a 0.2 µm syringe filter (Millipore, Billerica, MA, USA) before use.
Exosomes were isolated from the collected CM using an exosome isolation kit (ExoQuick-
TC™, Systemic Biosciences, Palo Alto, CA, USA), according to the manufacturer’s protocol.
Briefly, CM was centrifuged at 1000× g for 5 min to remove the cells and filtered using
a 0.22 µm syringe filter. The ExoQuick-TC™ solution was added to the supernatant in
a ratio of 1:5, mixed carefully, and then left at 4 ◦C for 16 h. The exosomal pellets were
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precipitated by means of centrifugation at 3000× g for 30 min, resuspended in phosphate
buffered saline (PBS), and used immediately or stored at −80 ◦C until use.

2.3. Nanoparticle Tracking Analysis

The size and concentration of the TB-Exos were determined using a NanoSight™
LM10-HS10 system (NanoSight, Amesbury, UK). Exosome samples were diluted with
PBS at a ratio of 1:10 and three recordings were performed in 30 s. A combination of a
monochromatic laser beam (405 nm) and NanoSight™ tracking software version 3.0 were
used to analyze the average exosome size and concentration.

2.4. Western Blot Analysis

TB-Exos were lysed and the same amounts of proteins were subjected to immunoblot-
ting using antibodies against CD9, CD63, CD81, ALIX (used at a ratio of 1:1000; Systemic
Biosciences), and β-actin (used at a ratio of 1:2000; Santa Cruz Biotechnology, Dallas, Texas,
USA). Immunoreactive protein bands were captured using a Fusion Solo Imaging System
(Vilber Lourmat, Marne-la-Vallée, France).

2.5. CCK8 Assay

HNDFs were seeded at a density of 1 × 104 cells/well into 96-well plates and then
treated with TB-CM or TB-Exo in serum-free medium for 24 or 72 h, under the indicated
conditions. Cell proliferation was measured using a CCK8 kit (Dojindo Laboratories,
Kumamoto, Japan), according to the manufacturer’s protocol. Absorbance of the live cells
was measured at 450 nm using a microplate spectrophotometer.

2.6. Wound Scratch Assay

HNDFs were seeded into 6-well plates at a density of 5 × 106 cells per well and
incubated at 37 ◦C in 5% CO2. After incubation for 24 h, the cells were scratched at regular
intervals using a sterilized 200-µL pipette tip. The cells were washed with PBS, following
which TB-CM or TB-Exos were added to them. Images of the scratched areas from three
independent experiments were observed at 0, 24, and 48 h using a cellSens imaging camera
(ver.1.18) and software. The area of cell migration was quantified using ImageJ software,
calculating the ratio of the scratch area at the given point in time and the original scratched
area, 0 h. At least three-microscope fields were determined for each condition.

2.7. SA-β-Gal Staining

Senescent HNDFs from passages 19–22 were seeded into 6-well plates at a density of
1 × 106 cells/well and incubated for 24 h. Following that, 20% TB-CM or MSC-CM was
added to the cells and the cells were incubated with it for 72 h. The cells were then stained
with SA-β-Gal using a Senescence Cells Histochemical Staining Kit (Sigma-Aldrich, St.
Louis, MO, USA), and three images were obtained from each group. Strong, weak, and
unstained cells upon SA-β-Gal staining were classified into groups and the cells in each
group were counted.

2.8. RNA Extraction and Quantitative Real-Time RT-PCR

RNA was extracted using TRIzol™ reagent (Invitrogen, Carlsbad, CA, USA) to analyze
the relative gene expression. PrimeSript™ 1st strand cDNA Synthesis Kit (Takara Bio,
Tokyo, Japan) was used for the reverse transcription of 1 µg of total RNA to cDNA,
according to the manufacturer’s instructions. PCR was then carried out using the obtained
cDNA as a template with the Power® SYBR Green PCR Master Mix (Life Technologies Co.
Ltd., Woolston Warrington, UK). The standard PCR cycle conditions were as follows: 95◦C
for 1 min, 40 cycles of denaturation at 95 ◦C for 15 s, and annealing-extension at 60 ◦C for
30 s. To analyze the relative expression level of the mRNA, the 2(−∆∆Ct) method was used,
with normalization to GAPDH. The specific primer sequences used in this study are listed
in Table 1.
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Table 1. Sequences of oligonucleotide primers for quantitative RT-PCR.

Primer Direction Sequence (5′ to 3′)

collagen type 1 (COL1) F CAC AGA GGT TTC AGT GGT TTG G
R GCA CCA GTA GCA CCA TCA TTT C

collagen type 3 (COL3) F CTG AAA TTC TGC CAT CCT GAA C
R GGA TTG CCG TAG CTA AAC TGA A

matrix metallopeptidase 1 (MMP-1) F TTG AGA AAG CCT TCC AAC TCT G
R CTG CAA CAC GAT GTA AGT TGT A

matrix metallopeptidase 3 (MMP-3) F TGC TGC TCA TGA AAT TGG CC
R TCA TCT TGA GAC AGG CGG AA

Fibronectin 1 F AAG ATT GGA GAG AAG TGG GAC C
R GAG CAA ATG GCA CCG AGA TA

Elastin F GGG TTG TGT CAC CAG AAG CA
R CAA CCC CGT AAG TAG GAA TGC

C-X-C motif chemokine ligand 1 (CXCL1) F AAG TGT GAA CGT GAA GTC CC
R GTC ACT GTT CAG CAT CTT TTC G

C-X-C motif chemokine ligand 6 (CXCL6) F AGA GCT GCG TTG CAC TTG TT
R GCA GTT TAC CAA TCG TTT TGG GG

C-X-C motif chemokine ligand 8 (CXCL8) F ACT GAG AGT GAT TGA GAG TGG AC
R ACA ACC CTC TGC ACC CAG TT

C-X-C motif chemokine ligand 10 (CXCL10) F TTC TAC GCT GTA CCT GCA TCA
R TTC TTG ATG GCC TTC GAT TC

C-X-C motif chemokine ligand 11 (CXCL11) F AGA GGA CGC TGT CTT TGC AT
R TAA GCC TTG CTT GCT TCG AT

GAPDH F TCG CCC CAC TTG ATT TTG G
R GCA AAT TCC ATG GCA CCG T

2.9. Ultraviolet B Irradiation on HNDFs

Senescent HNDFs were seeded at a density of 2 × 105 cells/well into 6-well plates
and incubated in growth medium, until the confluence reached 70%. The cells were then
washed with PBS and exposed to ultraviolet B radiation for 40 s, at a dose of 0.36 J/cm2,
using a UV transilluminator (Bi-O-Vision™ UV transilluminator, SpectroLine, NY, USA)
with a spectral peak at 312 nm. UV irradiation was performed before and after treatment
with TB-CM. After 72 h, SA-β-Gal staining was performed, and stained/unstained cells
were examined.

2.10. RNA-seq

The concentration and purity of the isolated RNA were determined using Quant-iT™
RiboGreen™ Assay Kit (Invitrogen, #R11490). High-quality mRNA for Illumina libraries
were prepared with RNA integrity number (RIN) greater than 7.0, according to the TruSeq®

Stranded mRNA Sample Preparation Guide (Illumina platform, part number 15031047
Rev. E). The transcriptome library was constructed using the TruSeq® Stranded mRNA
LT Sample Prep Kit (Illumina, San Diego, CA, USA), according to the manufacturer’s
protocol. RNA fragments (1000 ng) from each group were purified using poly T-attached
magnetic beads and then reverse-transcribed to cDNA using SuperScript™ II Reverse
Transcriptase (Invitrogen, #18064014). Adapters were ligated to the library and amplified
using PCR, to generate the final cDNA library. The concentrated library was quantity- and
quality-controlled using KAPA Library Quantification Kits for Illumina Sequencing plat-
forms, according to the qPCR Quantification Protocol Guide (Kapa Biosystems, MA, USA,
#KK4854) and the TapeStation D1000 ScreenTape (Agilent Technologies, Santa Clara, CA,
#5067-5582), following the manufacturer’s instructions. Multiple libraries were combined
in equal molar ratios and then sequenced on an Illumina NovaSeq platform (Illumina).

Adapter and low-quality sequences were removed before analysis of the transcriptome
target regions, following which the quality-controlled sequences were read with the Homo
sapiens (GRCh38) sequences using HISAT v2.1.0 [17]. The reference genome sequences and
annotations for Homo sapiens (GRCh38) were obtained from the UCSC genome browser (
http://genome.uscs.edu, accessed on 31 March 2021). After alignment with HISAT, the
relative abundance of the transcript-level expression was analyzed in terms of read count
values using StringTie v2.1.3b [18,19]. To determine the DEGs, statistical analyses such

http://genome.uscs.edu
http://genome.uscs.edu
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as the Benjamini-Hochberg algorithm were used to obtain adjusted p-values < 0.05. Gene
ontology, functional annotation, and enrichment pathways for significant genes were
analyzed using gProfiler (https://biit.cs.ut.ee/gprofiler/gost, accessed on 5 April 2021)
and KEGG.

2.11. Statistical Analysis

Statistical analyses were performed using Student’s two-tailed t-test and 2-way
ANOVA with Prism 7 software (GraphPad, San Diego, CA, USA). The p-values are shown in
the figures. The differences were considered statistically significant at * p < 0.05, ** p < 0.01,
and *** p < 0.001. All representative data were obtained from triplicate experiments and
are presented as mean ± standard deviation.

3. Results
3.1. Characterization of Extracellular Vesicles Derived from Human Trophoblasts

To investigate the regenerative effects of human trophoblast-derived biological factors
on human dermal fibroblasts, we first prepared conditioned medium and exosomes from
trophoblasts. Conditioned medium secreted by human trophoblast cells was obtained at
50–100% confluency of cells. Nanoparticle tracking analysis and Western blotting were
carried out to characterize the exosomes secreted from human trophoblasts using size and
exosome-specific marker proteins. The average size of exosomes isolated from trophoblasts
was 132.2± 3.9 nm, which is within the known range of exosome size (30–150 nm) for small
membrane vesicles [20]. EVs contained in TB-CM showed a broader size distribution than
TB-Exos, with an average EV size of 195 ± 4.3 nm (Supplementary Figure S1A). Exosome-
specific markers, such as CD9, CD63, CD81, and ALIX, were detected in exosomes from
trophoblasts using Western blotting (Supplementary Figure S1B).

3.2. TB-CM and TB-Exos Enhanced the Proliferation of HNDFs

We first compared the effect of TB-CM on proliferation with that of MSC-derived
conditioned medium (MSC-CM), because MSC-CM is a well-known trophic activator in the
field of regenerative medicine [21,22]. Our results indicated that exogenous treatment with
TB-CM for 24 h highly induced the proliferation of HNDFs, as compared to treatment with
MSC-CM (Figure 1A). Quantitative real-time polymerase chain reaction analysis showed
that treatment of HNDFs with TB-CM led to an increase in the relative expression of genes
such as collagen type 1 and 3, elastin, and fibronectin (Figure 1B), which are related to the
constitution of the dermal matrix as a structural component of the skin dermis [23]. We
analyzed the effect of cell proliferation on HNDFs using Cell Counting Kit 8 (CCK8) assay
post-treatment with various concentrations of TB-CM (0–30%) for 24 and 72 h. A greater
increase in proliferation was detected in HNDF cells cultured with TB-CM (<20%) than
in the untreated cells (Figure 1C). In addition, proliferation of HNDFs was significantly
promoted by TB-CM in a time-dependent manner upon treatment for 24 h to 72 h, indicating
excellent efficacy. Similar to the CCK8 assay results, cell counting assay results also showed
the stimulatory effect on HNDF cell proliferation at 24, 48, and 72 h post-treatment with
different concentrations of TB-CM, suggesting that TB-CM has cell proliferation potential in
HNDFs (Supplementary Figure S2A). No cytotoxic effect was observed, even in the group
treated with high amounts of TB-CM (60%). TB-Exo also displayed a positive effect on the
proliferation of HNDFs; treatment with 1× 104 and 1× 105 particles/mL of TB-Exo caused
a dose-dependent increase in the proliferation of HNDFs (10% and 30%, respectively;
Figure 1D). These results demonstrated that TB-CM and TB-Exos have non-cytotoxic effects
on HNDFs.

https://biit.cs.ut.ee/gprofiler/gost
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treated with 0%, 5%, 10%, 15%, 20%, 25%, and 30% TB-CM, respectively. The cell viability was measured using CCK8 
assay at 24 and 72 h. (D) HNDF cells seeded into a 96-well plate were treated with TB-Exos (1 × 103, 1 × 104, and 1 × 105 
particles/mL), following which the cells were cultured in growth medium for 24 h. Cell proliferation was determined using 
CCK8 assay. Data are represented as means and standard deviation (n = 3); *p < 0.05, **p < 0.01, and ***p < 0.001, as com-
pared to the corresponding control. 
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Figure 1. TB-CM and TB-Exos induced proliferation of HNDFs. (A) HNDFs were treated with 20% TB-CM and MSC-CM
for 24 h, followed by the estimation of the number of cells under a light microscope. Scale bar: 200 µm. (B) After treatment
of HNDFs with 20% TB-CM and MSC-CM for 24 h, the cells were harvested and the relative mRNA levels of collagen
type I and III, fibronectin 1, and elastin in the cells were quantified using quantitative RT-PCR analysis. (C) HNDF cells
were treated with 0%, 5%, 10%, 15%, 20%, 25%, and 30% TB-CM, respectively. The cell viability was measured using
CCK8 assay at 24 and 72 h. (D) HNDF cells seeded into a 96-well plate were treated with TB-Exos (1 × 103, 1 × 104,
and 1 × 105 particles/mL), following which the cells were cultured in growth medium for 24 h. Cell proliferation was
determined using CCK8 assay. Data are represented as means and standard deviation (n = 3); * p < 0.05, ** p < 0.01, and
*** p < 0.001, as compared to the corresponding control.

3.3. TB-CM and TB-Exos Have Migration-Promoting Effects on HNDFs

In the next part of the study, we investigated whether TB-CM and TB-Exos stimulated
the migration of HNDFs. In the scratch wound assays, scratched HNDFs were treated
with TB-CM and TB-Exos, following which the coverage rate of the scratched area was
evaluated. MSC-CM-treated and untreated HNDF cells were used in this assay as positive
and negative controls, respectively. The rate of migration of the HNDF cells increased
rapidly upon TB-CM treatment at 24 h, as compared to that of the control HNDF cells,
and covered 80% of the scratch-wounded area (Figure 2A). MSC-CM also promoted the
migration of HNDFs, but closed the scratched area gradually, in a time-dependent manner.
In addition, the expression levels of skin regeneration-related genes, including genes
encoding for matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-3 (MMP-3),
collagen type 1, elastin, and fibronectin were evaluated when scratch-wounded HNDFs
were cultured with or without TB-CM and MSC-CM (Figure 2B). As compared to the
untreated HNDFs, cells treated with TB-CM displayed a significant decrease in the mRNA
levels of MMP-1 and MMP-3, which have an inhibitory role in the regenerative capacity
of skin as extracellular matrix proteases. Increased collagen, elastin, and fibronectin gene
expression were determined in TB-CM-treated HNDFs, indicating that TB-CM is capable
of upregulating the gene expression of these important structural proteins in the dermis.
Treatment of HNDFs with MSC-CM caused an increase in the expression of collagen-,
elastin-, and fibronectin-encoding genes, but the fold change increase in the expression
of these genes was higher in the TB-CM-treated HNDFs (collagen, 6-fold; elastin, 25-fold;
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fibronectin, 35-fold) than in the MSC-CM-treated cells (collagen, 5.5-fold; elastin, 5-fold;
fibronectin, 2.5-fold). The migration-stimulatory effect of TB-Exos was also analyzed in
this protocol, indicating that the migration rate of HNDF cells increased significantly (by
3-fold) in cells treated with TB-Exo (Figure 3A). Treatment with TB-Exo also led to similar
results to those of the treatment with TB-CM; there was a decrease in the mRNA levels
of MMP-1 and MMP-3, while the expression levels of collagen, elastin, and fibronectin
increased significantly in the TB-Exo-treated HNDFs, as compared to in the untreated cells
(Figure 3B). These results demonstrated that TB-CM and TB-Exos significantly induced the
migration and reconstitution capacity of HDNFs in the scratch-wounded area, as compared
to the control cells.
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under a light microscope. Scale bar: 200 µm. The area of migration was quantified for each group using ImageJ and is
represented as a graph. (B) The expression levels of genes encoding for MMP-1, MMP-3, collagen type I, fibronectin 1, and
elastin were determined using quantitative real-time RT-PCR post-treatment of scratch-wounded HNDFs with 20% TB-CM
and MSC-CM for 48 h. Data are represented as means and SD; * p < 0.05, ** p < 0.01 and *** p < 0.001, as compared to the
corresponding control.

3.4. TB-CM Recovered the Senescence of HNDFs

Next, we validated whether TB-CM reversed the senescence of HNDFs. To assess
the aging recovery capacity of TB-CM on HNDFs, senescent HNDF cells were cultured
with or without TB-CM and MSC-CM for 24 h. The expression of senescence-associated
β-galactosidase (SA-β-Gal) was used in this experiment as a typical senescence marker
in aging skin [24]. As shown in Figure 4A, positive staining of SA-β-Gal was highly
observed in the senescent HNDFs, but upon treatment with TB-CM, there was a remarkable
reduction in the strong expression of SA-β-Gal in these cells. The proportion of SA-β-Gal-
positive stained area significantly decreased and disappeared in TB-CM-treated groups,
as compared to that in the untreated control cells (unstained area in the untreated group,
57%; TB-CM group, 91%). Treatment with MSC-CM also slightly reduced the ratio of
strongly and weakly stained cells, but TB-CM more effectively recovered the senescence
of dermal fibroblasts. We also determined the anti-aging effect of TB-CM on UV-induced
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damage in HNDFs. Extrinsic aging caused by UV in senescent HNDFs resulted in a sharp
increase in the number of SA-β-Gal-positive cells; upon treatment with TB-CM, there was
recovery in the number of unstained cells in this group (Figure 4B). Upon treatment of
senescent HNDFs with TB-CM before and after UV exposure, to investigate the protective
and recovery effects of TB-CM on skin fibroblasts, TB-CM was found to have an anti-
photoaging effect on HNDFs in both the groups. This result indicated that TB-CM inhibited
the senescence of HNDF cells. Moreover, remarkable protection and recovery of aged skin
cells were observed in the SA-β-Gal staining analysis when senescent HNDFs were treated
with TB-CM, which could indicate that trophoblast-derived substances can be used as
excellent anti-aging materials for skin rejuvenation.
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Figure 3. TB-Exos induced migration of HNDFs. (A) Scratch-wounded HNDF cells were treated with 1 × 105 particles/mL
of TB-Exos for 24 and 48 h, followed by the determination of the area of cell migration using ImageJ. Scale bar: 200 µm.
(B) Quantitative RT-PCR method was used to analyze the relative expression levels of genes encoding for MMP-1, MMP-3,
collagen type I, fibronectin 1, and elastin in TB-Exo-treated scratch-wounded HNDFs. Data are represented as means and
SD; * p < 0.05, ** p < 0.01, and *** p < 0.001, as compared to the control.

3.5. Transcriptomic Analysis of TB-CM in Scratch-Wounded HNDFs: Chemokine
Signaling Pathway

We next investigated the changes triggered at the whole-transcriptome level upon
TB-CM treatment of scratch-wounded HNDFs, to analyze the mechanism of the wound-
healing effect of TB-CM on skin fibroblasts. RNA-seq analysis identified 160 genes as
significant differentially expressed genes (DEGs; <2-fold change) in the TB-CM-treated
HNDFs. Ninety genes were significantly upregulated, while 70 genes were significantly
downregulated (Figure 5A). The significantly upregulated and downregulated genes, with
fold changes, have been represented in the form of a Volcano plot (Figure 5B). Panel C of
Figure 5 shows the Top 30 upregulated and downregulated genes in the TB-CM-treated
HNDF cells. Following this, the DEGs up- and downregulated by a fold change of 2-
fold or greater in the TB-CM-treated HNDF cells were further subjected to gene ontology
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(GO) analysis. The key GO terms for biological processes included response to external
biotic stimulus, cytokine-mediated signaling pathway, and defense response to viruses
(Figure 6A). The GO terms for molecular function included C-X-C motif ligand (CXCL)
chemokine receptor binding, receptor regulator activity, and signaling receptor activator
activity (Figure 6A). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
was carried out based on the DEGs in the TB-CM-treated HNDF cells, to define a more exact
mechanism and pathway at the cellular level. Cytokine- and chemokine-related signaling
pathways were also determined in the GO analysis result with virus defense mechanism
(coronavirus disease (COVID-19)). Toll-like receptor (TLR) and nuclear factor kappa B
(NF-κB) signaling pathways were associated with TB-CM treatment of scratch-wounded
HNDFs. From the results of the GO and KEGG analyses, we selected the upregulated CXCL
family genes in the TB-CM-treated HNDFs, confirmed their expression levels in vitro using
quantitative real-time RT-PCR, and then compared the results obtained with the results
of RNA-seq. Strong upregulation of CXCL family genes such as CXCL1, CXCL6, CXCL8,
CXCL10, and CXCL11 was observed in TB-CM-treated HNDF cells (Figure 6C), suggesting
that TB-CM might induce chemokine-related cellular pathways during wound healing in
skin fibroblasts.
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Figure 4. Anti-aging effect of TB-CM on senescence in HNDFs. (A) Senescent HNDF cells (at passage 21) were treated with
20% TB-CM and MSC-CM for 72 h and then stained with SA-β-Gal. Positive staining with SA-β-Gal was detected in terms
of strong and weak blue color upon observation under a light microscope. According to the degree of SA-β-Gal stain on
the cells, the cells were divided into unstained, weak, and strong groups, for the quantification of the stained cells. The
percentage of SA-β-Gal-positive cells was determined in three independent images. Scale bar: 100 µm. (B) Senescent HNDF
cells were incubated with TB-CM (20%) before and after UV irradiation, and the number of cells positively stained with
SA-β-Gal was determined in three different images in each group. Scale bar: 100 µm. Data are represented as means and
standard deviation (n = 3); * p < 0.05 and *** p < 0.001, as compared to the corresponding control. Representative images of
strongly and weakly stained cells have been included in the figure.



Int. J. Mol. Sci. 2021, 22, 6959 10 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 16 
 

 

define a more exact mechanism and pathway at the cellular level. Cytokine- and chemo-
kine-related signaling pathways were also determined in the GO analysis result with virus 
defense mechanism (coronavirus disease (COVID-19)). Toll-like receptor (TLR) and nu-
clear factor kappa B (NF-κB) signaling pathways were associated with TB-CM treatment 
of scratch-wounded HNDFs. From the results of the GO and KEGG analyses, we selected 
the upregulated CXCL family genes in the TB-CM-treated HNDFs, confirmed their ex-
pression levels in vitro using quantitative real-time RT-PCR, and then compared the re-
sults obtained with the results of RNA-seq. Strong upregulation of CXCL family genes 
such as CXCL1, CXCL6, CXCL8, CXCL10, and CXCL11 was observed in TB-CM-treated 
HNDF cells (Figure 6C), suggesting that TB-CM might induce chemokine-related cellular 
pathways during wound healing in skin fibroblasts. 

 
Figure 5. TB-CM induced widespread transcriptome alteration in HNDF cells during migration. (A) Scratch-wounded 
HNDF cells were treated with 20% TB-CM, following which RNA-seq was performed to identify the DEGs upon the 
treatment of HNDFs with TB-CM. The number of up- and downregulated genes in response to TB-CM treatment of HNDF 
cells is indicated (p < 0.05). (B) The distribution of significant DEGs is visualized in the form of a Volcano plot, which 
analyzed statistical significance versus fold change. (C) The top 30 up- and downregulated genes in TB-CM-treated 
HNDFs are represented by means of color images and value of fold change (fold difference with p < 0.05). The color depicts 
the levels of fold change.  

Figure 5. TB-CM induced widespread transcriptome alteration in HNDF cells during migration. (A) Scratch-wounded
HNDF cells were treated with 20% TB-CM, following which RNA-seq was performed to identify the DEGs upon the
treatment of HNDFs with TB-CM. The number of up- and downregulated genes in response to TB-CM treatment of HNDF
cells is indicated (p < 0.05). (B) The distribution of significant DEGs is visualized in the form of a Volcano plot, which
analyzed statistical significance versus fold change. (C) The top 30 up- and downregulated genes in TB-CM-treated HNDFs
are represented by means of color images and value of fold change (fold difference with p < 0.05). The color depicts the
levels of fold change.
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Figure 6. Changes in biological processes in HNDFs upon treatment with TB-CM. (A) The top 10 gene ontology terms of
associated biological processes and molecular function from DEGs in TB-CM-treated HNDF cells are represented using a
dot plot with adjusted p-value (p < 0.05). GeneRatio is the intersection size/query size, while the dot size represents the
intersection size. (B) KEGG pathway analysis showed the significantly correlated biological pathways in the results of
RNA-seq upon treatment of HNDFs with TB-CM during scratch wound migration. (C) The representative upregulated
CXCL-related genes, namely CXCL1, CXCL6, CXCL8, CXCL10, and CXCL11, in TB-CM-treated HNDFs were confirmed
using quantitative real-time RT-PCR and compared with the results of RNA-seq.
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4. Discussion

Among placental components, the regenerative properties of the amniotic membrane
have been well-studied since 1910 and steadily developed for application in various
reconstructive surgical procedures [25–27]. The bioactive factor-containing epithelial layer
of the amniotic membrane must be decellularized to avoid unwanted immunological
rejection by a recipient; therefore, this process reduces the regenerative efficacy of the
amniotic membrane. In contrast to the amniotic membrane, the chorionic membrane
compactly consists of three cellular layers, namely reticular, basement, and trophoblast
layers, which warrants its use as a biological dressing for wound surface reconstruction [28].
The chorionic membrane plays an important role in forming the connection between the
fetus and mother to facilitate mutual trafficking, not only for nutrition supplementation
and gas exchange, but also for the removal of metabolic waste from the fetus. In addition,
the chorionic membrane contains a better variety of bioactive factors such as collagen,
cell-adhesion bioactive factors (fibronectin, lamin, and proteoglycan), and growth factors,
compared to the amniotic membrane, which have beneficial effects on the overall functional
properties of the placenta [28,29]. Therefore, the chorionic membrane or its composed cells
can serve as excellent biomaterials for tissue engineering. Nonetheless, little is known
about the functional applications of the chorionic membrane.

In the present study, we focused on the regenerative capacity of trophoblast cells in the
chorionic membrane and revealed the protection/recovery effects of TB-CM and TB-Exos
on skin aging due to intrinsically or extrinsically induced skin damage. The dermis layer in
the skin includes fibroblasts, which synthesize fundamental components such as collagen,
elastin, and fibronectin to constitute the extracellular matrix (ECM) [30]. Aged fibroblasts
have conspicuously lower regenerative capacities for the synthesis of ECM, proliferation,
and migration than young cells [31]. Increases in the levels of MMP, interleukin-6 (IL-
6), angiogenic inducer protein, and in pro-apoptotic gene expression are also commonly
observed in aged fibroblasts [32–34]. However, TB-CM and -Exos stimulated a decrease in
MMP gene expression and an increase in collagen, elastin, and fibronectin gene expression
in HNDFs. In particular, we observed that TB-CM and TB-Exo mediated proliferation and
migration in HNDFs, indicating that some paracrine factors secreted from the trophoblasts
in TB-CM and TB-Exos are clearly involved in the regeneration of skin fibroblasts. Overall,
TB-derived CM and Exos exerted a rejuvenating effect and were not cytotoxic to skin
fibroblasts, and in addition, induced a remarkable recovery of SA-β-Gal-stained cells to
unstained cells, which are youthful cells in senescent HNDFs.

Cells usually secrete biological factors, such as cytokines, growth factors, other pro-
teins, lipids, and nucleic acids to communicate with adjacent cells [35,36]. For example,
stem cells produce and secrete various chemokines, which can modulate the migration
of macrophages [37]. Chemokines play important roles in promoting wound healing,
which dynamically regulate angiogenesis, inflammation, proliferation, and the remodel-
ing stage of wound healing [38]. During migration of scratch-wounded HNDFs in our
study, TB-CM treatment specifically led to the upregulation of CXCL chemokine genes,
including CXCL1, CXCL6, CXCL8, CXCL10, and CXCL11, as identified using RNA-seq. It is
known that chemokines regulate wound healing via growth factors [39–41]. Together with
CXCL8- and transforming growth factor-beta-induced differentiation of fibroblasts into
myofibroblasts, cells secrete various ECM components such as fibronectin, which suppress
the integrin-mediated cell adhesion that facilitates cell movement for wound closure [40].
CXCL8 and CXCL1 have been shown to stimulate neo-angiogenesis and cell migration,
while CXCL9, 10, and 11 have been shown to induce anti-inflammatory and angiogenesis
at the proliferation stage of the wound healing process in previous studies [40,42]. A recent
study reported that wound exudate CXCL6 levels were increased in the rapidly healing
patients with neuropathic diabetic foot ulcers as a biomarker for wound healing [43]. In
the remodeling stage of wound healing, excess neo-vessels are removed by CXCL10 and
CXCL11 via preventing endothelial cells tubulogenesis [44]. Interestingly, we found in-
creased expression levels of TLR3 and growth differentiation factor 11 (GDF11) in our
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study. Nelson et al. showed that double-stranded RNA from damaged tissue induced
the activation of TLR3 to drive skin regeneration via IL-6 and signal transducer and acti-
vator of transcription 3-mediated wnt/shh signaling in hair follicles [45]. A recent study
considered GDF11 as an anti-aging effector that can preserve the youthful phenotypes of
several types of skin cells [46]. In addition, GDF11 is also associated with the inactivation
of inflammatory responses and protection against them by inhibiting oxidative stress and
the expression of heat shock proteins [47]. Downregulation of homeodomain interaction
protein kinase 4 was determined in our analysis; its silencing was found to be related to
skin epithelial differentiation from stem cells in a previous study [48].

Activation of the TLR and NF-κB signaling pathways promotes epidermal wound
repair in Drosophila [49]. NF-κB signaling is capable of regulating proteins such as cyclin
D1, fibronectin, and vascular endothelial growth factor, which leads to wound healing
in rats [50]. We also found that TLR and NF-κB signaling were the most related cellu-
lar pathways upon treatment of scratch-wounded HNDFs with TB-CM, as determined
using RNA-seq. The exact mechanism of TB-CM in HNDFs remains unknown, but our
results suggest that TB-CM effectively promotes HNDF cell proliferation and migration by
inducing chemokine expression and other regenerative activators.

We used a trophoblast cell line isolated from an embryo of 6 to 12 weeks gestation,
and which could develop into a large proportion of the placenta, directly connect with
maternal blood, and supply nutrients and oxygen to the fetus. This cell line expresses
stem cell marker genes encoding for OCT4, Sox2, Nanog, and Klf4, whose expression
levels were compatible with those observed in the MSCs in our study (data not shown).
Cellular approaches using paracrine factors from stem cells, including embryonic stem
cells, induced pluripotent stem cells (iPSCs), and MSCs have been used in regenerative
medicine [16,51,52]. However, trophoblast stem cells (TSCs) have not yet been studied.
TSCs can be obtained from discarded placenta using a recently established protocol [53]
or from somatic cells and iPSCs [54,55]. If somatic cells or iPSCs are used to obtain TSCs
as cell sources, patient-specific TSCs can be generated and applied in clinical research for
regenerative medicine and tissue engineering, including skin regeneration.

In conclusion, our study determined the skin regenerative capacity of TB-derived CM
and Exos. In addition, treatment of aged HNDFs with TB-CM or TB-Exos promoted HNDF
cell rejuvenation, modulation of ECM component expression, and chemokine activation.
Therefore, our study suggests that CM and Exos from TB can serve as excellent therapeutic
agents against skin aging.
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Abbreviations

TB trophoblasts
EV extracellular vesicles
HNDFs human normal dermal fibroblasts
TB-CM trophoblast-derived conditioned medium
TB-Exo trophoblast-derived exosomes
ECM extracellular matrix
MSCs mesenchymal stem cells
iPSCs induced pluripotent stem cells
MSC-CM MSC-derived conditioned medium
qRT-PCR quantitative real-time polymerase chain reaction
CCK8 cell counting kit 8
MMP matrix metalloproteinase
MSC-Exo MSC-derived exsomes
SA-β-Gal senescence-associated β-galactosidase
DEGs differentially expressed genes
KEGG Kyoto encyclopedia of genes and genomes
GO gene ontology
TGF-β transforming growth factor-beta
TLR3 toll-like receptor 3
GDF11 growth differentiation factor 11
IL-6 interleukin-6
STAT3 signal transducer and activator of transcription 3
NF-κB nuclear factor kappa B
VEGF vascular endothelial growth factor
HIPK4 homeodomain interaction protein kinase 4
ESCs embryonic stem cells
TSCs trophoblast stem cells
UVB ultraviolet B
FBS fetal bovine serum
PBS phosphate-buffered saline
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