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A B S T R A C T   

Chromatin regulators are indispensable upstream epigenetic regulators.The emergence and pro-
gression of atherosclerosis has been demonstrated to be influenced by smooth muscle-related 
chromatin regulators, such as ZEB2 and MAFF. However, specific chromatin regulators and 
their possible roles have not been clarified. Information was gathered from 51 patients diagnosed 
with coronary artery disease (CAD) and 50 individuals in good health from the GEO database. 440 
genes were identified as having differential expression across the two datasets, and these genes 
were linked to cellular reactions. Enrichment of pathways related to histone modification and 
transcriptional regulatory factors was observed in GO and KEGG analyses. Four machine learning 
models (RF, SVM, GLM, and XGB) were developed using the expression profiles of 440 chromatin- 
associated genes in the CAD cohort to pinpoint genes with significant diagnostic potential. After 
evaluating residuals, root mean square errors, receiver operating characteristic curves, and 
immune-infiltration, four key genes (HCFC1, RNF8, TNP1, and SET) were identified. Gene 
expression in different blood vessel levels in atherosclerotic plaques in a mouse model of coronary 
artery disease showed significant variations. The gene expression levels in macrophages aligned 
with clinical data from the GEO database as expected. This discovery is crucial for future analysis 
and the prediction of drug and miRNA targets. In conclusion, we found that the four hub genes are 
important in the mechanism of CAD. These findings provide new ideas for the study of potential 
epigenetic predictive markers and therapeutic targets to be used in determining a treatment 
strategy for CAD.   

1. Introduction 

Epigenetic regulation involves genomic imprinting, DNA methylation, RNA editing and histone modifications at the transcriptional 
level [1]. Acting as a connection between genetic elements, it does not change the DNA sequence directly, but regulates gene 
expression through different methods like DNA methylation, histone modification (including methylation, acetylation, and ubiq-
uitination), chromatin remodeling, noncoding RNA editing, and other processes that control genes [2–4]. 

At first, it was thought that epigenetics was involved in the process of cell specialization as organisms develop.However, there is 
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growing recognition of its causal involvement in cardiovascular diseases and organ fibrosis.To understand this phenomenon better, it is 
essential to classify DNA methylators and histone modifiers based on their ability to encode and decode diverse cytosine and histone 
residue modifications [5]. Readers typically include a specific domain that identifies cytosines or their modified colored residues, and 
determines the state and type of modification [6,7]. In addition to adding and removing certain modifications, writers and erasers can 
methylate and demethylate specific cytosine or histone residues [6,7]. Chromatin remodelers are regulators of chromatin that alter 
nucleosomes, either replacing or eliminating them, leading to abnormal epigenetic modifications in cells.Atherosclerosis, also known 
as, is characterized by the involvement of various cell types such as endothelial cells, smooth muscle cells, and inflammatory mac-
rophages [8]. According to recent research, smooth muscle cell (SMC) phenotypic transformation is controlled by two classical 
molecules [9]. The protein family containing the bromine domain and beyond the terminal domain includes BRD2, BRD3, and BRD4. 
Additionally, BRDT is part of this, which is a protein involved in reading epigenetic information and attaches to particular acetylated 
lysine residues located on the histone tail [10]. RNA polymerase II promotes the assembly of transcriptional complexes including 
transcription factors [10]. Research in cardiovascular environments has emphasized the importance of BET in regulating gene 
expression throughout differentiation, cell identity, and transitions between cell states, whether they are normal, abnormal, adaptive, 
or non-adaptive. The intricate genetic marker of CAD patients in the 2q22.3 region is found in the long-range enhancer of ZEB2, a 
well-researched transcription factor involved in epithelial mesenchymal transition during cancer progression.ZEB2 influences the 
change in characteristics of smooth muscle cells by altering chromatin structure, which hinders access and interferes with the Notch 
and TGF-β signaling pathways, ultimately changing the epigenetic location of smooth muscle cell transformation [11]. Other mole-
cules such as neutrophil-related NETs and macrophage-related TFEB emphasize the importance of epigenetic inheritance in AS [12]. 
Nevertheless, there has not been a comprehensive study detailing the involvement of CRs in CAD to date. In this study, 870 CRs were 
analyzed to identify potential therapeutic targets and possible predictive markers for CAD, thereby providing new ideas for the 
treatment and diagnosis of CAD. 

Abbreviations 

ASXL3 Additional sex combs like transcriptional regulator 3 
AS Atherosclerotic disease 
β-ET β-extra terminal protein 
BRD Bromine domain 
BRDT Bromodomain testis-specific protein 
CAD Coronary artery disease 
CRs Chromatin regulators 
CRDGs Chromatin regulators different genes 
DCA Decision curve analysis 
DCs Dendritic Cells 
DGIdb Drug–Gene Interaction Database 
FDR False Discovery Rate 
GLM Generalized Linear Model 
GO Gene Ontology 
HCFC1 Host cell factor C1 
IMF Immune function 
IMC Immune cell 
KEGG Kyoto Encyclopedia of Genes and Genomes 
SET SET nuclear proto-oncogene 
SVM Support Vector Machine, 
TNP1 Transition protein 1 
PPI Protein‒protein interaction 
RNF8 Ring finger protein 8 
ROC Receiver operating characteristic 
RMSE Root mean square of residuals error 
RF Random Forest 
XGB eXtreme Gradient Boosting 
SMYD1 SET and MYND domain-containing protein 1 
SMCs Smooth muscle cells 
TET1 Ten-eleven translocation-1 
TAF5 Transcription initiation factor TFIID subunit 5 
TGF-β1 Transforming growth factor-β1 
TIL Tumorin filtrating lymphocytes  
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2. Materials and methods 

2.1. Animals and experimental design 

Six-week-old male ApoE− /− mice weighing between 20 and 22 g were acquired from GemPharmatech Co. in Jiangshu, China. 
Twenty ApoE− /− mice were given either a high-fat diet (40% of energy from fat, 20% fructose, and 0.8% cholesterol, ten mice) or a 
standard diet (20% of energy from fat, 20% fructose, and 0.01% cholesterol, ten mice) from Trophic Animal Feed High-Tech Co., Ltd., 
China, for a duration of 8 weeks. Serum and blood vessels were obtained, while tissues were preserved in 4% paraformaldehyde. 
Approval for this research was granted by the Institutional Animal Care and Ethics Committee at Ningbo University of Medicine 
(10489) and conducted following the NIH guidelines. 

2.2. Blood lipid test 

After incubating at room temperature for 2 h, the supernatant was obtained with mouse plasma, then centrifuged at 1000×g for 20 
min at 4 ◦C, and finally stored at − 80 ◦C. The LDL-C, HDL-C, TG, and TC concentrations were determined with kits following the 

Fig. 1. Study flow chart.  
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manufacturer’s guidelines (Elab. Biotech. Co., Ltd., Wuhan, China). 

2.3. Histopathological staining 

Extravascular tissue from the abdominal aorta of the mice was separated from the aortic arch. Oil Red O solution (Leigen Co., Ltd., 
China, DL0010) was added dropwise. A fine needle was used to spread the blood tube horizontally, and a macro lens was used for 
observation and photography. 

2.4. Immunostaining 

Aortic vessel samples were preserved in 4% paraformaldehyde for a night, then encased in paraffin before being sliced into 5-μm 
sections of diseased tissue with a Leica microtome. Hydration was performed using xylene and gradient alcohol dewaxing with water. 
The samples were incubated with 3% H2O2 for 20 min and washed thrice with phosphate-buffered saline. After high-pressure repair, 
sheep serum was blocked for 1 h and the corresponding primary antibody was incubated. Following an overnight incubation at 4 ◦C, 
the cells were then exposed to fluorescent secondary antibodies for 1 h and DAPI for 5 min the following day. Images were captured 
using a multi-monitor color digital camera on a laser confocal miniature display (Leica, USA).The fluorescence intensity of CD31/ 
α-SAM/CD68/HCFC1/SET/RNF8/TNP1 was measured in 8–12 tissue images at 63 × magnification. Various antibodies including 
CD31, CD68, α-SMA, HCFC1, SET, RNF8, and TNP1 were used in the experiment, all at a dilution of 1:100 or 1:400, along with a 
multicolor fluorescence kit from China. 

2.5. Identification of differentially expressed CRDGs 

440 genes were found to be expressed differently in 51 patients with CAD compared to 50 healthy individuals, with the top 60 genes 
identified (Fig. 1A and B). In addition, 870 CRFGs were analyzed as described previously by Liu et al. [13]. A total of 841 CRs 
intersected with the differential genes in the sample. Following this, 440 CRDGs were chosen for additional examination based on 
standard of |log2FC| > 0.5 and adjusted P-values <0.05 as shown in Table S1. Adjusted P values were calculated using FDR. FDR is 
calculated as the ratio of false positives to the sum of false positives and true positives, with true positives representing positive test 
results for positive samples and false positives representing positive test results for negative samples. 

2.6. Pretreatment and detection of original expression signal and CRDGs 

The original expressed signal was processed using the Bioconductor package of R software [14]. The sample data was standardized 
and noise was reduced by uploading the CEL file to Affymetrix Quality Assessment and Analysis Tool Bioconductor version 1.30.19. By 
applying robust multi-array mean methods, the unprocessed expression signal was normalized to the median [15]. Genes that 
exhibited a 1.5-fold change in expression and passed FDR（Benjamini and Hochberg’s false discovery ）rate correction with a p value 
of 0.05 or less were identified as CRDGs [14]. The limma package in R software was used to create maps of volcanoes and averages. 

2.7. Functional annotation of CRDGs 

Analysis of GO annotation and enrichment of KEGG pathways was performed using the Metascape database [16]. Significantly 
enriched pathways related to CRF genes were identified based on a p value threshold of <0.05. 

2.8. Machine learning-based prediction model construction 

The caret R package (version 6.0.93) was utilized to create ML models using two distinct CRG clusters, incorporating the RF, SVM, 
GLM, and XGB algorithms. The RF [4], acting as a collective machine learning technique, employs numerous separate decision trees to 
make predictions on classifications or regressions [17]. The Support Vector Machine (SVM) algorithm creates a hyperplane within the 
feature space to separate positive and negative instances with the largest possible margin [18]. GLM is a multivariate linear regression 
method that can be used to analyze the relationships between categorical or continuous factors and normally distributed dependent 
factors [19]. Based on gradient boosting, XGB compares the classification errors and complexity by comparing the boosted trees [20]. 
DEGs were used as explanatory variables in this study in conjunction with distinct clusters as response variables. Fifty-one samples of 
CAD were randomly divided into a training set consisting of 75% (numbers = 38) and a validation set consisting of 25% (numbers =
13). The caret package was used to conduct a grid search to optimize the parameters of the models, which were then assessed with 
default settings through 5-fold cross-validation. We utilized the pROC R package (version 1.18.0) to display AUC. The top five pre-
dicted genes were identified as the most important variables for predicting CAD. AUC were analyzed in datasets GSE20680 and 
GSE100927 to confirm the diagnostic accuracy of the model. 

2.9. Construction and validation of a nomogram model 

A nomogram model was created to predict CAD using the rms R package (version 6.2.0).A score was given to each predictor, and 
the total score was determined by adding up all the individual scores.Calibration curve and DCA were used to assess the predictive 
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accuracy of the nomogram. 

2.10. Assessment of immune cell infiltration and its correlation with hub genes 

The ssGSEA algorithm was utilized to measure immune cells (IMCs) and immune functions (IMFs) for the purpose of creating an 
immune map [21]. The Wilcoxon test compared the IMC and IMF fractions in patients with CAD and healthy participants, with a filter 
set at 0.05. The Spearman’s rank correlation coefficient was used to establish the relationship between overlapping genes and immune 
components, providing essential insights into CRDG-related immune landscapes. The majority of researchers concur that a coefficient 
below 0.4 suggests a minimal connection, while a coefficient above 0.4 indicates a significant correlation between immunity and 
CRDGs [22,23]. 

2.11. Enrichment analysis of the ssGSEA 

The signature gene set score was obtained by performing ssGSEA to investigate functionally enriched pathways and hallmark gene 
sets associated with subgroups using the R GSVA software package [24]. The hallmark (h.all.v7.3) gene sets were obtained from the 
Molecular Signatures Database (http://software.broadinstitute.org/gsea/msigdb/).The correlation between CAD, molecular function, 
and gene expression was evaluated using Spearman’s correlation coefficient. Significantly enriched items were those with a P value 
less than 0.05. 

2.12. Gene-drug interactions 

The druggability of genes was assessed by utilizing the drug-gene interaction database known as DGIdb [25]. DGIdb serves as a 
central database for housing information on interactions between drugs and genes, as well as aggregating information on the potential 
for drugs to target each gene from various origins. Default filters, such as cytotoxic drugs, immunotherapy drug interactions, approved 
drugs from a database of nine sources unrelated to the disease, were used in the search. The drug-gene interactions were filtered based 
on interaction type and gene class, with a critical interaction score above 0.03. 

2.13. Target miRNA prediction of hub genes 

In this study, the miRNA target prediction tool Enrichr TargetScan 2017 (https://maayanlab.cloud/Enrichr/enrich#) was used to 
predict target miRNA genes [25]. MicroRNAs (miRNAs) are abundant in eukaryotic organisms and display important biological 
characteristics including strong conservation, temporal expression patterns, and tissue-specific expression patterns.The significant 
conservation of miRNAs suggests the presence of homologues in germlines. The dataset GSE66360 was utilized to investigate 
stage-specific miRNA profiles in atherosclerosis progression, potentially aiding in the identification of crucial miRNAs involved in 
atherosclerotic pathogenesis. Validation was limited to target genes that overlapped with hub genes. It was considered a key gene to 
forecast target genes predicted by multiple miRNAs.miRNAs of human origin (p < 0.05) were selected, and four key gene interaction 
networks were constructed and visualized using Cytoscape software 3.7.1. 

2.14. Statistical analysis 

All data processing, statistical analyses, and plotting were conducted using R version 4.1.0. The importance was evaluated by 
utilizing either Student’s t-test or Wilcoxon rank-sum test when comparing two groups. For the establishment of relationships between 
continuous variables, Pearson’s correlation coefficient was used. The pROC R package was utilized to conduct analysis on the AUC. All 
tests were conducted with a two-tailed approach, and significance was determined at a p < 0.05. 

3. Results 

3.1. Flow chart of the analysis process 

Fig. 1 displays a flowchart outlining the bioinformatics analysis.Using the microarray dataset GSE66360, we used |log2FC calcu-
lated differentially expressed mRNA| > 0.5 after adjustment for P-values <0.05.Liu et al.reported readings for 870 CRs [13]. Moreover, 
870 CRs intersected with the differential genes in the sample.440 genes showed differential expression in both datasets and were 
associated with CRs. GO and KEGG analyses revealed that histone modifications and transcriptional regulatory factor-related pathways 
were enriched. In order to pinpoint particular genes that are highly useful for diagnosis, we created four ML models using the 
expression profiles of 440 CRDGs in the CAD group. Following assessments of residual and RMSE as well as ROC analysis, five crucial 
genes (HCFC1, RNF8, TNP1, KANSL1, and SET) were discovered. Examination of immune cells, immune function, and their correlation 
indicated that KANSL1 had a weak association with immunity, leading to its exclusion from further discussion. Following this, a mouse 
model was created to study AS, revealing notable differences in gene expression at various levels of blood vessels in AS plaques, 
providing valuable insights for future investigations. Finally, the drug and miRNA targets were predicted. To summarize, we have 
pinpointed four genes (HCFC1, RNF8, TNP1, and SET) that could have significant implications in the development of CAD.As a result of 
this study, it has been possible to develop ways to study epigenetics, identify potential predictive markers, and identify therapeutic 
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targets for the treatment of CAD. 

3.2. Chromatin-related differential gene screening, GO and KEGG in patients with CAD and healthy subjects 

We identified 440 differentially expressed genes in 51 patients with CAD and 50 healthy subjects (Fig. 2A, top 60). Liu et al. re-
ported readings for 870 CRF genes [13]. Moreover, 870 CRs intersected with the differential genes in the sample. Subsequently, 440 
CRDGs underwent additional analysis (|log2FC| > 0.5, adjusted P-values <0.05; Table S1). Analysis of the 440 CRDGs showed GO 
enrichment in histone modifications, binding regions, and transcriptional regulatory activators (Fig. 2B). The majority of enriched 
KEGG functional categories, such as ATP-dependent chromatin remodeling pathway, polycomb repressive complex, and lysine 
degradation, were also observed in Fig. 2C. 

3.3. Construction and assessment of machine learning models 

In order to pinpoint subtype-specific genes that are highly valuable for diagnosis, we created four machine learning (ML) models 
(RF, SVM, GLM, and XGB) using the expression profiles of the 440 CRDGs in the CAD cohort. The residual distributions of the four ML 
models were analyzed and visualized using the "DALEX" package. The RF and GLM machine learning algorithms showed relatively low 
residuals (Fig. 3A–B).Afterwards, the most important 15 feature variables of each model were ordered according to the RMSE (refer to 
Fig. 3C).Furthermore, the effectiveness of the four ML models in the test set was assessed by generating ROC curves with 5-fold cross- 
validation. The RF machine learning model described the highest area under the ROC curve (GLM, area under ROC curve = 0.552; 
SVM, area under ROC curve = 0.843; RF, area under ROC curve = 0.852; XGB, area under ROC curve = 0.829; Fig. 3D). Ultimately, the 
RF model demonstrated superior performance in distinguishing patients across various clusters. Finally, the five most important 
variables (HCFC1, RNF8, TNP1, KANSL1, and SET) from the RF model were selected as predictor genes for further analysis. 

In order to evaluate the accuracy of the RF model, we initially developed a nomogram to predict the likelihood of important 

Fig. 2. Functional enrichment analysis of chromatin regulator-related differentially expressed genes (CRDGs) in the CAD GSE66360 dataset. (A) 
Heatmap showing the top 60 CRDGs in CAD. (B) GO analysis of CRDGs in GSE66360. (C) KEGG analysis of CRDGs in GSE66360. 
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chromatin regulator-associated genes in 51 CAD patients (Fig. 4A). The nomogram’s predictive efficiency was evaluated through 
calibration and DCA. The calibration curves demonstrated minimal error between actual CAD and predicted risk, as depicted in Fig. 4B, 
while the DCA indicated high accuracy of the nomogram (Fig. 4C).Validation of the prediction model in external datasets showed good 
performance, with AUC values of 0.703 and 0.718 in the GSE20680 and GSE100927 datasets, as shown in Fig. 4D and E.The findings 
indicate that the diagnostic model successfully differentiates between CAD patients and healthy subjects. The inclusion of KANSL1 in 
the ROC analysis impacted the overall results of the database, leading to its exclusion from further analysis. 

3.4. Infiltration state of immune cells and their relationship with hub gene expression 

Immunity-related studies have been screened as an integral part of the understanding of CAD. Inflammation presents a clear risk of 
immune cell infiltration, and any dysfunction in the immune system can amplify the inflammatory response. Heatmaps, which 

Fig. 3. Construction and evaluation of the RF, SVM, GLM, and XGB machine learning(ML) models. (A) The cumulative residual distribution of each 
ML model is analyzed. (B) Boxplots are utilized to display the residuals of each ML model, with red dots indicating the RMSE. (C) The significant 
features in the RF, SVM, GLM, and XGB machine learning models are identified. (D) The ROC analysis is conducted on four ML models using 5-fold- 
validation in the testing cohort. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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represent the correlations between IMCs or IMFs in batch-corrected validation cohorts (Figures S1A 1C), revealed that the interactions 
between immune components are associated with the onset and progression of CAD.A Wilcoxon test with a p-value less than 0.05 
indicates a significant difference in immune composition between CAD patients and controls on the boxplot (Figure S.1B and 1D).More 
importantly, Spearman correlation analysis showed that SET and HCFC1 were negatively correlated with NK cells, TIL, checkpoints, 
inflammation promotion, and T-cell co-inhibition and positively correlated with DCs (Fig. 4F). Additionally, TNP1 and RNF8 levels 
were inversely correlated with the number of immune cells. In Fig. 4F, there was a difference in RNF8 expression when TNP1 showed a 
negative correlation with cytolytic activity, MHC class I, T-cell co-inhibition, T-cell co-stimulation, and TILs. From the perspective of 
immunity, the possible reasons for the inconsistent expression of TNP1 and RNF8 in patients with CAD and healthy individuals are also 
well explained. 

Fig. 4. Validation of the 5-gene-based RF model. (A) Based on a five-gene-based RF model, the nomogram model is utilized to predict CAD risk. (B, 
C)The calibration curve (B) and DCA(C) were constructed to access the predictive accuracy of the nomogram model. (D, E)The ROC analysis was 
conducted on the 5-gene-based RF model using 5-fold-validation in the GSE20680 (D) and GSE100927 (E) datasets. (F) Correlation scores of 5 hub 
genes with immune cells and their functions. 
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3.5. Analysis of ssGSEA marker gene set of hub genes 

We investigated the functions of the four central genes in the subsequent signaling cascades. We first used ssGSEA to analyze the 
signaling pathways enriched by the four genes, particularly the upregulated and downregulated pathways (Figure S2A-D). Subse-
quently, the marker gene set was utilized to enhance the marker signaling pathways associated with the four hub genes. The findings 
indicated notable variances in the inflammatory and metabolic pathways, specifically in bile acid, fatty acid, xenobiotic, IL2-STAT5, 
and heme metabolism (Figure S3A-B). The enhancement of these distinct pathways indicates that CRs are crucial in the onset and 
progression of CAD. Considering the complex signaling processes and phenotypic modification of genes in vivo, this phenomenon 
warrants further study. 

3.6. Expression of the four genes in CAD tissues 

Initially, we examined the genes HCFC1, RNF8, TNP1, and SET utilizing clinical information from the database. The findings 
indicated that the levels of HCFC1, TNP1, and SET were elevated in individuals diagnosed with CAD (See Fig. 5A–C-D). However, the 
RNF8 expression was higher in the control group (Fig. 5B).In order to confirm the activity of these four genes in a living organism, 
ApoE− /− mice were given a high-fat diet for 8 weeks. Oil Red O, HE, and Masson’s staining were employed to confirm the extent of AS 
lesions in the mice (Figure S4A-C,E). Enzyme colorimetry revealed alterations in lipids, with elevated TG, TC, and LDL-C levels 
observed in the HFD group compared to the control group, while HDL-C levels were decreased (Figure S4D). These results demonstrate 
that AS modeling was successful. The expression of HCFC1, RNF8, TNP1, and SET in the blood vessels was detected using immuno-
fluorescence staining (Figs. 6–8). CD31 is used to identify the endothelial cell layer, α-SMA to identify vascular smooth muscle cells in 
the media layer, CD68 to identify macrophages, and DAPI to identify the nucleus.HCFC1, RNF8, SET, and TNP1 showed increased 
expression in the smooth muscle cells of the HFD group. Our results revealed no notable difference in the expression of HCFC1 and 
TNP1 in the endothelial cells of normal and HFD-fed mice.In contrast, the endothelial cells of mice fed a high-fat diet exhibited reduced 
RNF8 expression compared to those fed a normal diet (Fig. 7B). The expression of SET aligned with the anticipated outcomes in our 
dataset, with HFD-fed mice displaying increased expression in endothelial cells (Fig. 7C). Additionally, our database analysis 
confirmed that the levels of HCFC1, SET, and TNP1 expression in CD68+ macrophages were notably elevated in the group fed a high-fat 

Fig. 5. Analysis of the expression level of four key genes and correlation analysis of CRDGs and clinical factors. (A) mRNA expression of 
HCFC1. (B) mRNA expression of RNF8. (C) mRNA expression of TNP1. (D) mRNA expression of SET. Control group included healthy subjects 
whereas Treat group included patients with coronary atherosclerotic disease. 
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diet (HFD) (Fig. 8A,C-D). RNF8 was significantly more abundant in the macrophage layer of the CD group compared to the HFD-fed 
group.This finding aligns with the results obtained from our database analysis, indicating that RNF8 expression was observed in both 
the HFD and CD groups but was more pronounced in the CD group (Fig. 8B). Consequently, RNF8 may exert a substantial influence on 
immune metabolism and contribute to the progression of AS. 

Fig. 6. Expression of four hub genes in the α-SMA-labeled smooth muscle cells. (A–D) The expression of (A) HCFC1, (B) RNF8, (C) SET, and 
(D) TNP1 in mouse arterial vessels was detected by immunofluorescence. Green represents smooth muscle cells, DAPI represents the nucleus, and 
red represents target proteins. Positive cells are marked with triangles. The magnification is 630. *p < 0.05 compared to the CD group. Data are 
shown as the mean ± SEM (n = 5). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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3.7. Forecasts derived from the drug and miRNA targets associated with the four central genes 

We used Maayanlab (https://maayanlab.cloud/Enrichr/) to predict drug targets based on the four hub signaling pathways and 
functional analysis of genes. We selected the top ten target drugs for presentation (Table S2). With the development of modern 
technology, miRNAs have become important targets for the treatment of gene-related diseases. Maayanlab was also used to predict the 
miRNA targets. The findings indicated that hsa-miR-423-3p and hsa-miR-3132 controlled HCFC1 and SET, while hsa-miR-4715-5p, 
hsa-miR-645, hsa-miR-556-5p, hsa-miR-4317, and hsa-miR-4714-3p regulated RNF8 and HCFC1 (Figure S5A). Moreover, hsa-miR- 
496, hsa-miR-4694-5p, and hsa-miR-550b controlled the expression of RNF8 and SET, while hsa-miR-3147 regulated RNF8, TNP1, 
and HCFC1 (Figure S5A).Supplementary Table 3 shows the full names and related functions. By using the GeneMANIA database, we 
explored these genes’ co-expression networks and associated functions.These genes showed a complex PPI network with 70.9% 
physical interactions, 16.01% co-expression, 4.96% predicted interactions 3.22% colocalization interactions, 2.63% genetic in-
teractions, 0.55% shared protein domains, and 1.74% pathway interactions (Figure S.5B). The findings offer an in-depth examination 
of the potential diagnostic significance of CRFs in individuals with CAD, the impact of following medications, and predictive miRNA 
targets, thus presenting fresh perspectives for the diagnosis and management of CAD. 

Fig. 7. Expression of four hub genes in the CD31-labeled endothelial cells. (A–D) The expression of (A) HCFC1, (B) RNF8, (C) SET, and (D) 
TNP1 in mouse arterial vessels was detected by immunofluorescence. Green represents endothelial cells, DAPI represents the nucleus, and red 
represents target proteins. Positive cells are marked with triangles. The magnification is 630. *p < 0.05 compared to the CD group. Data are shown 
as the mean ± SEM (n = 5). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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4. Discussion 

In this research, ssGSEA was utilized to examine the impact of CRFs on immune cell infiltration, revealing that the primary in-
fluence of these four genes was on the adaptive immune response of T cells and macrophages. Moreover, the effects of CRFs on 
atherosclerotic diseases are immune related. Furthermore, machine learning was performed to screen for molecules related to AS 
diagnosis, namely HCFC1, RNF8, TNP1, and SET. The marker gene set was utilized for enriching the marker pathways of the four 
central genes, revealing notable variances in metabolic pathways, particularly in bile acid, fatty acid, xenobiotic, IL2-STAT5, and heme 
metabolism. This further suggests that these molecules affect AS progression. 

HCFC1, a member of the host cell factor family, contains a protein with five Kelch repeats, a fibronectin-like pattern, and six HCF 

Fig. 8. Expression of four hub genes in the CD68-labeled macrophages. (A–D) The expression of (A) HCFC1, (B) RNF8, (C) SET, and (D) TNP1 
in mouse arterial vessels was detected by immunofluorescence. Green represents macrophages, DAPI represents the nucleus, and red represents 
target proteins. Positive cells are marked with triangles. The magnification is 630. *p < 0.05 compared to the CD group. Data are shown as the mean 
± SEM (n = 5). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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repeats, each containing a unique cleavage signal. During the development of the heart in mammals, HCFC1 is expressed and linked to 
congenital heart disease. The research conducted by Zhe et al. demonstrated that the suppression of HCF, the Drosophila counterpart of 
the mammalian HCFC1, in cardiac tissue results in aberrant cardiac morphology, tissue fibrosis, impaired cardiac function, and 
decreased H3K4 monomethylation. Intracellular cobalamin metabolism disorders are associated with a hemizygous variant of HCFC1. 
These conditions may impact the advancement of illness at different points, resulting in unusual heart structure, tissue scarring, and 
functional heart abnormalities in the prenatal period. Moreover, HCFC1 was discovered to have a receptor for SREBP-1, an important 
controller of genes related to cholesterol and fatty acid processing, aligning with our research showing a rise in HCFC1 levels in 
macrophages labeled with CD68 and smooth muscle cells labeled with α-SMA. This suggests that HCFC1 influences the development of 
CAD by influencing lipid metabolism. 

TNP1 is essential in the substitution of histones with protamines during the elongation of mammalian spermatids [26]. Sperm cells 
in the condensing stage are placed onto nucleosomes, aiding in the attraction and modification of the protamines that cause histones to 
be removed. Current studies on this gene have focused primarily on its role in sperm production [27]. However, it is important to 
highlight the findings of Hasegawa et al., who demonstrated that anti-TNP1 autoantibodies are recognized and deposited in the 
glomerulus as immune complexes (IC) and that 14.7% of patients with systemic lupus erythematosus (SLE) exhibit a response to TNP1 
[28]. These results suggest that TNP1 contributes to the development of SLE, which may have implications for immune prediction in 
patients with CAD. Although limited direct research on the association between TNP1 and CAD is available, this study indicates that 
TNP1 may affect immune pathways involving dendritic cells (DCs) or tumor-infiltrating lymphocytes (TILs). 

The versatile protein SET is involved in multiple cellular functions, such as apoptosis, transcription, nucleosome assembly, and 
histone chaperoning [29]. Isoform 2 of SET functions to inhibit apoptosis by blocking the activity of GZMA-activated DNase NME1. 
During cytotoxic T lymphocyte-induced cell death, GZMA cuts SET, breaking its connection with NME1 and releasing the suppression 
of NME1 [29]. Both isoforms 1 and 2 function as strong blockers of phosphatase 2A.Isoforms 1 and 2 also hinder EP300/CREBBP- and 
PCAF-mediated histone acetyltransferases and nucleosomes, possibly by blocking the access of histone lysine residues to acetylases 
[30]. 

The primary focus of inhibition is on histone H4. Blocking histone acetyltransferase (HAT) activity leads to the inhibition of HAT- 
dependent gene expression and impedes the process of active DNA demethylation. Both isoforms promote DNA replication within the 
adenovirus genome when bound to viral core proteins, with isoform 2 exhibiting greater activity. Phosphorylation of the SET protein 
facilitates apoptosis through the hyperactivation of P53 and the nuclear import of NM23-H1 [31]. An in vivo experiment indicated that 
increased levels of SET might function through Akt/PTEN to either promote cell survival or serve as a sensor for oxidative 
stress-induced cell death [32]. Frequent SET overexpression is linked to negative results and leads to the inhibition of protein phos-
phatase 2A in acute myeloid leukemia [33]. These results are consistent with our experimental results showing increased SET 
expression in the three cell types in HFD-fed mice. Another research demonstrated that increased levels of SET lead to the development 
of human promonocytic cell line U937 into dendritic cells, showing characteristic morphological changes and expressing dendritic cell 
surface markers CD11b and CD86.U937 cells undergo dendritic cell-like differentiation through SET-induced calcium signaling and 
activation of the MAPK/ERK pathway [34]. The p300 and SET, an oncomodulator, both positively and negatively control the car-
diovascular transcription factor KLF5 by interacting with its DNA-binding domain and acetylating it. Additionally, SET negatively 
impacts KLF5’s abilities in DNA binding, transactivation, and cell proliferation. KLF5-mediated gene activation leads to the down-
regulation of the negative regulator SET. On the other hand, the coactivator/acetylase p300 binds to and adds acetyl groups to the 
KLF5 DBD, leading to the activation of its transcription. Interestingly, SET inhibits the acetylation of KLF5, and non-acetylated KLF5 
mutants show reduced transcriptional activation, with cell growth complementing the effects of SET [30]. 

RNF8 functions as a ubiquitin E3 ligase with two conserved regions: the N-terminal FHA domain, which has a strong attraction to 
phosphorylated peptide units in target proteins, and the C-terminal RING domain. This enzyme is primarily responsible for the cat-
alytic activity of E3 ligases [35]. The original curiosity for research was sparked by its crucial role in DNA repair and the creation of 
sperm [35,36]. Additionally, RNF8 is involved in important functions during cell division, sperm production, safeguarding telomere 
ends, and programmed cell death, as well as participating in the cellular reaction to DNA damage [37]. EndMT cells are involved in 
atherosclerotic plaque formation [38]. The specific transcription factor Snail mediates this transformation. Snail interacts with the 
ubiquitin E3 ligase Ring1B, which recruits Ring1B and its parallel Ring1A to inhibit the target promoter via its carboxyl zinc finger 
[39]. Deletion of Ring1A and Ring1B leads to decreased Snail attachment to specific chromatin sites and mono-ubiquitination of 
histone 2A at K119.This hinders the transcription and movement of cells mediated by Snail [39]. Moreover, the initiation of EndMT 
through TGF-β is dependent on the activation of target genes and the interaction among different signaling pathways. Inhibition of 
Smads6/7 may lead to the activation of SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) to aid in the breakdown of activated 
TβR1 through ubiquitination, ultimately hindering the advancement of EndMT [40]. SMURF1 is able to suppress the activation of 
TGF-β1/Smad3/4-induced vascular endothelial growth factor, leading to a reduction in the angiogenesis linked to EndMT [41]. Recent 
research has shown that RNF8 is capable of triggering the activation of the GSK3β/β-catenin and PI3K/Akt signaling pathways, as well 
as interacting with slug to enhance K63 ligase ubiquitination and activate downstream twist in various tumor disease models, ulti-
mately advancing the epithelial mesenchymal transition process [42,43]. Our research showed an increase in RNF8 levels specifically 
in the endothelial cell layer of the high-fat group, with no notable changes in the stromal cell layer. This discrepancy can be attributed 
to the intricate immune regulation and ubiquitination mechanisms associated with RNF8, thereby warranting further exploration of its 
role in coronary artery disease. 
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5. Conclusion 

The advancement of contemporary science and technology in genomics has led to CRs playing a crucial part in diagnosing and 
treating CAD. The GEO database and basic experiments demonstrated that HCFC1, RNF8, TNP1, and SET may play roles in the for-
mation of CAD. Nevertheless, the precise functions of these four genes must be confirmed through experiments involving a substantial 
amount of clinical samples. 
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