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Security of quantum key 
distribution with multiphoton 
components
Hua-Lei Yin1,2,*, Yao Fu1,2,*, Yingqiu Mao1,2 & Zeng-Bing Chen1,2

Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from 
single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 
2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon 
component by modifying the classical post-processing procedure in the BB84 protocol. Employing 
the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from 
the components of single photon up to four photons. In this paper, we provide the exact relations 
between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, 
two-photon, three-photon, and four-photon sources. By restricting the mutual information between 
the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton 
components than previous works. Besides, we compare the performances of the six-state SARG04 with 
other prepare-and-measure QKD protocols using decoy states.

Quantum key distribution (QKD)1,2 offers information-theoretic security for two authorized users, Alice and 
Bob, when communicating secret information along an insecure quantum channel, while the laws of quantum 
mechanics bound the behavior of an eavesdropper3–6. Since its introduction in 1984 by Bennett and Brassard1, 
QKD has experienced great advances both theoretically7–12 and experimentally13–18, and has become the most 
mature quantum information technology for commercial use19. The study of QKD today is driven by the necessity 
to close the gap between its theory and practice, as experimental systems tend to differ remarkably from their 
simplified mathematical models, and any of these deviations may open doors to new attacks from Eve to compro-
mise security. Some of Eve’s eavesdropping techniques include simple individual attacks and Trojan-horse attacks, 
which one can overcome by investigating the bounds of information leakage in different scenarios and apply the 
suitable amount of privacy amplification to obtain the final secure key20. Other side-channel attacks, such as detec-
tor blinding attacks21 and time-shift attack22 that base on specific device imperfections, require more complicated 
QKD settings than the original BB84 to retrieve security again. Hence the measurement-device-independent 
(MDI) QKD23–32 and device-independent (DI) QKD33–35 were developed to combat these experimental flaws.

Compared with the entanglement-based QKD protocols, prepare-and-measure QKD protocols are widely 
studied. The photon-number distribution of weak coherent states is Poisson distribution, which contains a frac-
tion of multiphoton components. However, exploiting photon-added coherent states36, one can acquire large 
probabilities of single-photon, two-photon, three-photon or four-photon component. For the BB84 protocol, the 
single-photon source is usually replaced by weak coherent states, which suffer from the photon number splitting 
(PNS) attack37. The PNS attack, in which Eve blocks all single photon pulses and splits multiphoton pulses, results 
from the experimental variation of replacing the single photon sources from the original BB84 protocol with prac-
tical attenuated lasers. In this situation, Eve would forward some portion of multiphoton pulses to Bob through 
a lossless channel while keeping the rest to herself in the quantum memory38–40, and measure her photons after 
receiving the basis reconciliation information obtained via Alice and Bob’s public communication. The security 
basis of QKD provided by single photon pulses was guaranteed by the no-cloning theorem41, and thus this attack 
was regarded as a major threat to QKD and has been extensively studied37. Two major counter methods have 
been proposed. One is the decoy state method42–44, which is a powerful method devised to analyze rigorously the 
extractible secret key rate from the single-photon component of signal states, though its implementations would 
differ slightly from the prepare-and-measure setup45–47. To overcome this attack at a protocol level, the SARG04 
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QKD protocol48, which differs from the BB84 only in the classical post-processing part49,50, was proposed. In the 
SARG04 protocol, the reconciliation information is a pair of nonorthogonal states, which cannot be perfectly dis-
tinguished and can be able to address the PNS attack48. Subsequently, this prepare-and-measure SARG04 protocol 
was further investigated and ingeniously converted to an unconditionally secure entanglement distillation proto-
col (EDP) by Tamaki and Lo51, who showed that by exploiting the same arguments of Shor and Preskill4, SARG04 
protocol possesses the unique ability to extract the secure key from not only the single-photon component but 
also two-photon component51,52. This opens the interesting question that under certain modifications of the orig-
inal BB84 protocol, how the secret key can be extracted from multiphoton states. The SARG04 protocol has been 
widely investigated in theories49–56 and experiments57,58. Similarly to the MDIQKD protocol, which was proposed 
to make BB84 protocol naturally immune to all side-channel attacks on detectors, the SARG04 protocol in MDI 
setting has been considered likewise59. Also, with the advantage of secure key generation from two-photon com-
ponent, recently a nonorthogonal state encoding method of SARG04 has been successfully applied to circumvent 
the forging attack of quantum digital signature with insecure quantum channel60. A generalized SARG04 with six 
states (six-state SARG04) protocol has been analyzed in ref. 51, which showed that one could extract the secure 
key from the single-photon component to up to four-photon component. However, without the explicit relations 
between the phase error rate and bit error rate of the six-state SARG04 protocol51, one cannot acquire the exact 
secure key rate.

Here, we generalize the EDP of ref. 51 to acquire the exact relationships between the phase error rate and bit 
error rate of single-photon, two-photon, three-photon, and four-photon components in the six-state SARG04 
protocol. Furthermore, we carefully analyze the mutual information between phase error and bit error, and 
discover that the mutual information of two-photon component in a four-state SARG04 protocol and that of 
three-photon and four-photon components in a six-state SARG04 protocol are not zero, so the secure bit error 
rate threshold of those cases are higher than the results of previous works51. Finally, we perform a numerical 
simulation to study the performance of six-state SARG04 with weak coherent states in an infinite decoy states 
setting. Also, we compare the performance of six-state SARG04 and other prepare-and-measure QKD protocols, 
i.e., BB841,43, four-state SARG0448,52, and round-robin differential phase-shift (RRDPS) QKD protocols61–63 in the 
same situation.

Results
Six-state SARG04 QKD protocol. In this section, we introduce the six-state SARG04 QKD protocol with 
ν-photon (ν ∈  {1, 2, 3, 4}) source. In this protocol, there are six polarization encoding quantum states, |H〉 , |V〉 , 
± = ±H V( )/ 2 , = +R H i V( )/ 2 , and = −L H i V( )/ 2 . The six states are then arranged 
into twelve sets {|H〉 , |− 〉 }, {|− 〉 , |V〉 }, {|V〉 , |+ 〉 }, {|+ 〉 , |H〉 }, {|H〉 , |R〉 }, {|R〉 , |V〉 }, {|V〉 , |L〉 }, {|L〉 , |H〉 }, {|R〉 , |− 〉 }, 
{|− 〉 , |L〉 }, {|L〉 , |+ 〉 }, {|+ 〉 , |R〉 }, where the first and second states of each set correspond to logic 0 and 1, respec-
tively. The steps of the six-state SARG04 QKD protocol with a ν-photon source are outlined as follows. Alice 
sends a series of signals to Bob. Each pulse is chosen randomly from the twelve sets listed above, and Alice ran-
domly sends one state from each set to Bob through the insecure quantum channel. Bob randomly measures the 
incoming bit strings with one of the three bases, Z, X, and Y. Afterwards, he exploits an authenticated classical 
channel to announce to Alice the situations where he did not register any click at his detection unit, and both of 
them discard these signals. Alice reveals to Bob the sets on which she encodes her information. Bob then com-
pares his measurement results with Alice’s set information. If Bob’s measurement result is orthogonal to one of the 
states in the set, he concludes that the other state has been sent, which represents a conclusive result; he concludes 
an inconclusive result otherwise. He discards all the inconclusive results and broadcasts to Alice which of his 
results are conclusive. Alice selects randomly a portion of her remaining signals and announces them to Bob, and 
Bob calculates the bit error rate to test for eavesdroppers. If the bit error rate is much higher than the upper 
bound, they abort the protocol. They perform error correction and privacy amplification on the remaining bit 
string to obtain the shared secret key.

A virtual EDP-based six-state SARG04 protocol. To estimate phase error for privacy amplification, one  
can construct an equivalent EDP version of the six-state SARG04 protocol. First, we introduce some notations. {|0x〉 , 
|1x〉 } and {|0z〉 , |1z〉 } are the eigenstates for X and Z basis, respectively. π π= + −R cos( /4)I sin( /4)( 1 0 0 1 )x x x x
; T0 =  I is an identity operation; π π= − +T icos( /4)I sin( /4) Z X

1 2
 is a π/2 rotation around the +Z X

2
 axis; 

π π= − −T icos( /4)I sin( /4) Z X
2 2

 is a π/2 rotation around the −Z X
2

 axis. In the EDP-ν protocol, Alice  
prepares  many pairs  of  qubits  in  the state  ϕ ϕΨ = +ν ν ν⊗ ⊗( 0 1 )/ 2AB z A B z A B

( )
0 1 ,  where 

ϕ π π= + −cos( /8) 0 ( 1) sin( /8) 1j x
j

x  (j ∈  {0, 1}). She then randomly rotates TlRk and sends system B  
to Bob, where l ∈  {0, 1, 2} and k ∈  {0, 1, 2, 3}. Upon receiving the qubits, Bob first applies a random  
reverse rotation − ′

′
−R Tk
l

1, before performing a filtering operation defined by a Klaus operator 
π π= +F sin( /8) 0 0 cos( /8) 1 1x x x x . Then Alice and Bob would compare their indices k, l and k′ , l′  via public 

communication, and keep the qubit pairs with k =  k′  and l =  l′  when Bob’s filtering operation is successful. They then 
choose some states randomly as test bits and measure them in the Z basis, and compare their results publicly to esti-
mate the bit error rate and the information acquired by Eve. Finally, they utilize the corresponding 
Calderbank-Shor-Steane (CSS) code to correct the bit and phase errors4, and perform a final Z measurement on their 
qubits to obtain the secure key.

The six-state SARG04 QKD protocol is equivalent to the EDP-based six-state SARG04 QKD protocol, except 
for the only difference, a π/4 total rotation around Y basis. By analyzing the virtual EDP-based six-state SARG04 
QKD protocol, we give the exact phase error rate formula, whose detailed analysis is provided in the Methods 
section. For the case with a single-photon source, we have
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where ep and eb are the phase error rate and bit error rate, respectively. a is the probability that both bit flip and 
phase shift occur, which restricts the mutual information between phase error and bit error. For the case of a 
two-photon source, the relationship can be given by
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For the case with a three-photon source, the error rates can be written as
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For the case with a four-photon source, the error rates are calculated by

= + ∀
−

≤ ≤
+e xe f x x e a emin{ ( )}, , 2 2

4
4 2

8
, (4)p

x
b b b

where

=
− + − +

.f x x x x( ) 6 4 6 12 2 16
12 (5)

2

Now we reexamine the four-state SARG04 QKD protocol51,52, and we find that the mutual information 
between bit error and phase error of a two-photon source is not zero. The expression can be given by

= + ∀
−

≤ ≤
+
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4

2 2
4 (6)p
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b b b

where

=
− + − +f x x x x( ) 3 2 6 6 2 4

6
, (7)

2

from which we can see that this phase error rate formula is the same as the result in ref. 51.
The secure key rate of the EDP-based QKD using one-way classical communication can be given by52

= − − |r H e H e e1 ( ) ( ), (8)b p b

where H(x) =  − x log2(x) −  (1 −  x) log2 (1 −  x) is the binary Shannon entropy, H(ep|eb) is the conditional Shannon 
entropy function shown in the Methods section. We calculate the secure key rates versus the bit error rates for 
the six-state SARG04 QKD protocol with single-photon, two-photon, three-photon and four-photon sources, 
as shown in Fig. 1. For comparison, we also calculate the secure key rate versus bit error rate for BB84 protocol4,  
six-state protocol64, and four-state SARG04 QKD protocol51. For the six-state SARG04 QKD protocol, one can 
extract the secure key rate from ν-photon component when the bit error rate is no larger than 11.235% (with 
ν =  1), 5.602% (with ν =  2), 2.438% (with ν =  3), and 0.802% (with ν =  4). For the four-state SARG04 QKD  
protocol with our calculation, one can extract the secure key rate from two-photon component when the bit 
error rate is lower than 2.726%. We can see that the bit error rate thresholds of single-photon and two-photon in 
the six-state SARG04 QKD protocol are the same with the results in ref. 51, while the bit error rate thresholds of 
three-photon and four-photon in the six-state SARG04 QKD protocol and two-photon in the four-state SARG04 
QKD protocol are larger than the results in ref. 51. If we neglect the mutual information between phase error 
and bit error, the bit error rate thresholds of three-photon (2.370%) and four-photon (0.788%) in the six-state 
SARG04 QKD protocol and two-photon (2.710%) in the four-state SARG04 QKD protocol are the same with the 
results in ref. 51.

For the phase randomized weak coherent state sources65, we study the secure key rate with infinite decoy 
states42–44, which can be given by

= + − | + − | + − |

+ − | − µ µ

R Q Q H e e Q H e e Q H e e

Q H e e Q f H E

[1 ( )] [1 ( )] [1 ( )]

[1 ( )] ( ), (9)

p b p b p b

p b

0 1 2 3

4
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4 4

where Qn is the gain of the n-photon signal states which can be estimated by the decoy-state method; e pn
 e( )bn

 is 
the phase (bit) error for the n-photon state; Qμ and Eμ are, respectively, the total gain and quantum bit error rate 
under signal states with μ intensity, and can both be acquired directly through the experiment. We execute a 
numerical simulation to study its performance, as shown in Fig. 2. In our simulation, we use the following param-
eters: the detection efficiency is ηd =  43%, the dark count rate of each pulse is pdark =  1 ×  10−7, and the intrinsic loss 
coefficient of standard telecom fibre is α =  0.2 dB/km. These values are adopted from the 200 km MDIQKD 
experiment data16. We also set the misalignment error rate to ed =  0.5%, the efficiency of error correction is 
f =  1.16. For comparison, we also give the secure key rates of BB84 QKD protocol43, four-state SARG04 QKD 
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protocol52, and the RRDPS QKD protocol61 with the case of infinite decoy states. As shown in Fig. 2(a), the secure 
transmission distance of the six-state SARG04 QKD protocol is more than 270 km, farther than the four-state 
SARG04 QKD protocol because of the higher bit error rate threshold in the six-state SARG04 QKD protocol. The 
case of finite decoy states is considered in the Fig. 2(b). By exploiting one weak decoy state and vacuum state, one 
can extract the secure key from single-photon component (see Methods). However, the secure key rate and secure 
transmission distance of the six-state and four-state SARG04 QKD protocol are all smaller than those of BB84 
protocol since the bit error rate of BB84 protocol is small and the efficiency of basis shift is high52. Meanwhile, 
since the security of RRDPS QKD does not rely on signal disturbance monitoring, in our case where ed is low, the 
secure key of RRDPS QKD is much lower than qubit-based QKD protocols.

Discussion
For each QKD protocol, how to extract as much secure key as possible is a critical task. Here, we present the exact 
relations between the phase error and bit error as well as the mutual information parameters with single-photon, 
two-photon, three-photon, and four-photon sources. Through restricting the mutual information, we have 
obtained higher bit error rate thresholds of three-photon, four-photon six-state SARG04 and two-photon 
four-state SARG04 QKD protocol. In the quantum digital signature protocol with k +  1-participant60,66 (one 
signer and k recipients), the signer will prepares k copies of quantum states and send a copy of quantum states 
to each recipient through the insecure quantum channel. To guarantee the security against the forgery attack of 
untruthful recipient, the honest recipient needs to estimate the information leak of his received quantum states, 
which will correlate to the phase error rate of QKD with k-photon sources. The security analysis of the four-state 
and six-state SARG04 QKD protocol with two-photon sources has been used for the three-participants quantum 
digital signature60. Similarly, we can expect that the security analysis of the six-state SARG04 QKD protocol with 
three and four-photon sources can also be used for the four-participant and five-participant quantum digital 
signature.

Methods
The six-state SARG04 protocol with single-photon source. We consider the following four orthog-
onal Bell states

Figure 1. Plot of secure key rates versus bit error rates for (a) six-state SARG04 protocol with one-photon, 
two-photon, three-photon, and four-photon sources, and (b) BB84 protocol, six-state, and four-state SARG04 
protocol for comparison.
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Alice prepares the initial quantum state ϕ ϕΨ = +( 0 1 )AB z A B z A B
(1) 1

2 0 1 . If Eve performs no attacks and 
Bob does a successful filtering operation, the quantum state shared by Alice and Bob can be given by

Ψ = Ψ = + = Φ .+F 1
2 2

( 0 0 1 1 ) 1
2 (11)AB z A z B z A z B

(1)

Here, we consider that Eve can perform the most general attack on all qubits transmitted through the insecure 
quantum channel. By tracing out all other qubits, we can focus on one qubit state. Let ρqubit represent a pair of 
qubit states that Alice and Bob share after Eve’s attack, which can be given by

∑ρ = 

⊗ Ψ 


− −P̂ I FR T E T R( ) ,

(12)qubit
l k

A B
k

l B l B
k

AB
,

1 (1)
B B

where l ∈  {0, 1, 2}, k ∈  {0, 1, 2, 3}, and

= Ψ = Ψ Ψ .ˆ †( )E
a a
a a P X X X, ( )

(13)B
1 2

3 4

Here, EB is a 2 ×  2 matrix representing Eve’s operations on the single-photon qubit. Meanwhile, any quantum 
state in the form of a bipartite density matrix can be expressed by the Bell-basis diagonal states. From Eq. (25), we 
can see that the Bell state |Φ +〉  is a reference state. Thus, we have

Figure 2. (a) Plot of secure key rate versus fibre channel transmission for various QKD protocols with infinite 
decoy states. For each transmission loss, we optimize the intensity of signal states. For comparison, we set the 
number of pulses of each block L =  10, since the phase error rate is n/(L −  1) for n-photon in the RRDPS QKD 
protocol61. It means that we can extract the secure key from single-photon, two-photon, three-photon and four-
photon components for RRDPS QKD protocol. (b) Plot of secure key rate versus fibre channel transmission for 
various QKD protocols with one weak decoy state and vacuum state.
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representing the probabilities of only bit flip, only phase shift, both bit flip and phase shift, respectively. Therefore, 
the probabilities of bit flip and phase shift can be given by

= + = + .p P P p P P, (15)X Y Z Ybit ph

Let pfil =  Tr[ρqubit] represent the trace value of state ρqubit. One can clearly see that =
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fil fil , 
=
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T, where Afil, Abit, Aph, and AY are all 4 ×  4 diagonal matrices, 
and =a a a a a( )1 2 3 4  is a 1 ×  4 vector. If xAbit +  yAfil −  Aph ≥  0 is a positive semi-definite matrix, xpbit +  ypfil ≥  pph 
will always be satisfied. If pph ≤  xpbit +  ypfil holds, then ep ≤  xeb +  y becomes exponentially reliable as the number 
of successfully filtered states increases51. By using the same argument, if ≤ ≤xA A yAYbit bit holds, then 
xeb ≤  a ≤  yeb. The conditional Shannon entropy function can be given by
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The six-state SARG04 protocol with multiphoton sources. In the case of two-photon, for each quan-
tum state prepared by Alice, the density matrix of quantum state shared by Alice and Bob after Eve’s attack can 
be given by

∑ρ ξ

ξ ϕ ϕ ϕ ϕ
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where l ∈  {0, 1, 2}, k ∈  {0, 1, 2, 3}, u ∈  {0, 1} and
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EB is a 4 ×  4 matrix which depends on Eve’s operation on the two-photon qubit and we can safely assume that 
the final state of Eve’s system is a particular state |0x〉 . Afil, Abit, Aph, and AY  are 8 ×  8 diagonal matrices, 
=

a a a a a a a a a( )1 2 3 4 5 6 7 8  is a 1 ×  8 vector.
In the case of three-photon, for each quantum state prepared by Alice, the density matrix of quantum state 

shared by Alice and Bob after Eve’s attack can be given by
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EB is a 8 ×  8 matrix which depends on Eve’s operation on the three-photon qubit. Afil, Abit, Aph, and AY are 
16 ×  16 diagonal matrices, =a a a a a a a a a a a a a a a a a( )1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  is a 1 ×  16 vector.

In the case of four-photon, for each quantum state prepared by Alice, the density matrix of quantum state 
shared by Alice and Bob after Eve’s attack can be given by
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where l ∈  {0, 1, 2}, k ∈  {0, 1, 2, 3}, u ∈  {0, 1}, v ∈  {0, 1}, s ∈  {0, 1} and
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Since the photons of Eve’s system are identical, considering their symmetry, we have

= =

= = .
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B B B
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EB is a 16 ×  16 matrix which depends on Eve’s operation on the four-photon qubit. Afil, Abit, Aph, and AY are 
16 ×  16 diagonal matrices, =a a a a a a a a a a a a a a a a a( )1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  is a 1 ×  16 vector.

Decoy state method with weak coherent state sources. By using decoy state method42–44, one can 
have

∑ ∑µ µ µ
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0 0

n

where Yn is the yield of n-photon. In this simulation, we use the case where Eve does not interfere with the proto-
col. For the BB84 protocol, the Yn and ebn

 can be given by43
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where η η= − −1 (1 )n
n, η η= × α−10d

D/10 is the channel transmittance, and D is the distance of optical fibre. 
For the RRDPS protocol, the Yn and ebn

 can be given by61–63
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where L is the number of pulses of each block. For the four-state SARG04 protocol, the Yn and ebn
 can be given by52
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For the six-state SARG04 protocol, the Yn and ebn
 can be given by60

η η
η η

=







 +



 + −







=
+ −

.Y e p e
e p

Y
1
3

1
2

(1 ) ,
(1 )

3 (28)n n d n dark b
n d n dark

n

1
2

n

For the case with infinite decoy states, one can use the Eqs (25–28) to directly calculate the yield and bit error 
rate of n-photon component43,44. For the case with finite decoy states, we must estimate the lower bound of yield 
Yn

L and the upper bound of bit error rate eb
U

n
. One can exploit three intensities μ >  ν >  0 to estimate Y L

1  and eb
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1
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One can also exploit four intensities60 μ >  ν >  ω >  0 to estimate Y L
2  and eb

U
2
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For more photon components, the analytical method will become very complex to calculate the yield and 
bit error rate. However, the linear programming25 is a good method. To estimate the yield and bit error rate of 
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n-photon, one can use n +  2 kinds of intensities. Since the probability of multiphoton components is very small in 
the weak coherent state sources, we simply consider the single-photon component contribution using one signal 
state, one weak decoy state and vacuum state. The intensity of weak decoy state is 0.1 and the intensity of signal 
state is optimal for each distance.
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