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A polarizing view on posttraumatic 
brain injury inflammatory response
Susanna Rosi

Abstract:
Traumatic brain injury (TBI) activates the simultaneous proliferation of various pro‑ and anti‑inflammatory 
molecules. Considering the amount of factors participating, this response is naturally complex. However, there 
is an increasing trend in neurotrauma research to delineate the injury‑induced inflammatory responses within the 
constraints of in vitro defined macrophage polarization phenotypes “M1” and “M2”. Here, we evaluate research 
examining the complexity of the inflammatory response that cannot be so easily characterized using this binary 
nomenclature. TBI is demonstrated to induce a broad spectrum of simultaneous expression responses involving 
both pro‑ and anti‑inflammatory reactions. Specifically, the research revealed a very heterogeneous parenchymal 
landscape associated with TBI. The concurrent expression of both “M1” and “M2” phenotypic markers on the 
microglia/macrophages involved suggests that the polarization phenotypes cannot be neatly defined in this 
M1/M2 paradigm. Recent studies displaying neurotrauma also report similar conflict with the constraints of this 
binary categorization of “M1/M2”, demonstrating that microglia/macrophages cannot effectively cross‑over to 
strictly polarized “M1‑only” or “M2‑only” phenotype. Therefore, the complex signaling events surrounding this 
response indicate that a binary M1/M2 characterization is not adequate to define inflammatory profile. This paper 
is a review article. Referred literature in this paper has been listed in the references part. The datasets supporting 
the conclusions of this article are available online by searching the PubMed. Some original points in this article 
come from the laboratory practice in our research centers and the authors’ experiences.
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Traumatic Brain Injury Activates a 
Complex, Broad‑Spectrum Inflammatory 

Response

Following traumatic brain injury (TBI), 
neuroinf lammation is  an axiomatic 

physiological response. Various cell types 
proliferate this response via the upregulation 
and release of soluble cellular components 
to the proximate tissues.[1,2] CNS-resident 
microglia and astrocytes primarily produce 
these constituents, prolonging the activation 
of the innate immune response within the 
brain.[3] Considering the amount of factors and 
receptors participating, this response is naturally 
complex. Despite this, many have dedicated 
their time and efforts to the categorization of the 
inflammatory response into a “M1” versus “M2” 
delineation as innate polarization phenotypes. 
Originally, studies had described innate immune 
polarization by examining the particular 
effects of singular stimuli (lipopolysaccharide, 

interleukin-4, interferon), on the gene expression 
of the macrophages in vitro.[4] The “M1/M2” 
terminology later evolved[5] and expanded 
into subdivisions[6-9] to appropriately adapt 
to the constant-changing range of stimuli and 
gene responses of macrophages in vitro over 
time. Overall, this effort focused on grouping 
tissue macrophage responses to corresponding 
responses of polarized lymphocytes.[5] However, 
it has been revealed that the polarization 
states of lymphocytes[10] do not adequately 
transfer to macrophages, referencing their 
recognizable plasticity.[11-14] Martinez and 
Gordon reiterated these conclusions in a 
recent review[15] proposing that, in vivo, the 
inflammatory response associated with disease 
or injury involves cells reacting to various 
stimuli concurrently, suggesting these responses 
involve mixed phenotypes.

Accordingly, we classified the inflammatory 
response of the brain within the parameters of 
simultaneous or mixed macrophage phenotypes 
after TBI. The rodent model displaying moderate 
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TBI[16] was used to characterize the temporal inflammatory 
profiles following trauma at various succeeding time points. 
The inflammatory response was examined over ninety 
subjects covering a wide range of the M1/M2 macrophage 
inflammatory spectrum, guided by exceptional sources 
majoring in macrophage polarization.[6,8,11,12,15,17-21] A recent 
study investigated whether TBI activated a broad-spectrum 
inflammatory response, involving the expression of both M1 
and M2 phenotypes associated with TBI.[22] This simultaneous 
expression was displayed at many time points following injury, 
suggesting a common point of differential gene expression. In 
addition, microglia/macrophages in the area of trauma reflect 
these responses antigenically by the simultaneous expression 
of both M1 and M2 phenotypes on the same cell. This high 
level of complexity and plasticity of parenchymal macrophage 
responses in TBI questions the efficacy of the dichotomous 
system, “M1 versus M2,” that poses constraints in defining 
such responses.

Simultaneous M1/M2 Profiles Induced by Traumatic 
Brain Injury

In the study by Morganti et al., they showed that TBI elicited 
substantial morphological changes in the innate effectors of 
the surrounding tissue at each time point following injury.[22] 
Moreover, as a progression of time after trauma, the cells 
principally responsible for the production of the inflammatory 
mediators, macrophages/microglia, expressed a mixed 
phenotype by co-labeling with both polarization markers 
across three time points; one day, two days, and seven days 
following injury. The authors next demonstrated that at each 
time point, TBI initiated significant changes in expression of 
each analyte for both pro‑ and anti‑inflammatory gene markers. 
Taken together, these data support the recent reports proposing 
that macrophages/microglia cannot effectively cross-over 
to a strictly polarized “M1-only” or “M2-only” phenotype. 
Rather, these cells display a mixed phenotype as a result 
of the complex signaling events that occur after injury. As 
such, these data show that while the macrophage/microglia 
population profile displays an “activated” appearance, these 
cells are responding to both pro- and anti-inflammatory 
milieu concurrently. Moreover, these techniques revealed a 
very heterogeneous parenchymal landscape associated with 
TBI, with cells displaying dually labeled “M1/M2” markers 
alongside “M1” and “M2” cells.

Binary characterization of microglia/macrophages is not 
sufficient to define inflammatory profile
Despite the complex inflammatory response discovered by 
microarray[23-25] and bioinformatics,[16,26] there is an increasing 
trend to adopt a binary approach to categorize these reactions 
based upon decade-old understanding of in vitro-derived 
stimulus responses of isolated macrophages.[5] However, 
the findings by Morganti et al. have demonstrated that the 
polarization phenotypes cannot be neatly delineated in this 
M1/M2 paradigm, as there is a simultaneous differential 
expression of both “M1” and “M2” phenotypes in both the 
microenvironment and within the same cell.[22] Moreover, 
other models displaying neurotrauma have reported similar 
conflict with the constraints of the binary categorization 
of “M1/M2”,[27-31] even when examining a variety of 
differentiating factors including time course, species, and 

injury location (e.g., brain or spinal cord). While the study by 
Morganti et al. admittedly does not examine every mediator 
previously reported to represent M1/M2 bias, the subjects 
studied encompass an everchanging collection of molecular 
mechanisms, those of which that are frequently used as 
animal models of neurotrauma. Moreover, as demonstrated 
in our data, there exists no preferential bias toward or 
against one polarization phenotype versus the next. This 
gene expression calls into question the viability of using 
a single antigenic marker of cell morphology (e.g., Iba1 or 
F4/80) to determine the inflammatory profile of these cells in 
a specific population. Therefore, these data show that while 
the macrophage/microglia population profile displays an 
“activated” appearance, these cells are responding to both 
pro‑ and anti‑inflammatory milieu concurrently.

Conclusion

The recent findings by Morganti et al. align with recent works 
acknowledging a gap between the in vitro macrophage phenotype 
modeling and the in vivo tissue trauma response.[22] Surely, 
these findings are by no means meant to discredit previous 
studies exploring M1/M2 bias after neurotrauma, recognizing 
the role of neuroinflammation in the propagation of 
neuropathopysiology following neurotrauma. Nonetheless, 
attempting to easily delineate the highly complex molecular 
mechanisms of an inflammatory response into a dichotomous 
nomenclature poses too many restrictions to be viable. The 
simultaneous differential expression of inflammatory status 
in this current study shows the “polarization” dogma is 
not applicable to TBI. While we recognize that performing 
large profiling experiments is not practical for every study, 
classification of cells (e.g. M1, M2a, M2b, M2c, M2d) depending 
on few selectively chosen inflammatory markers is not 
reasonable either in this sense. Rather, defining the roles of 
these markers by a neuroinflammatory sequela appears as a 
more pragmatic approach in characterizing the TBI-induced 
inflammation.
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