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Abstract

Connectomics data from animal models provide an invaluable opportunity to reveal the complex 

interplay between structure and function in the mammalian brain. In this work, we investigate the 

relationship between structural and functional connectivity in the rat brain cortex using a directed 

anatomical network generated from a carefully curated meta-analysis of published tracing data, 

along with resting-state functional MRI data obtained from a group of 14 anesthetized Wistar rats. 

We found a high correspondence between the strength of functional connections, measured as 

blood oxygen level dependent (BOLD) signal correlations between cortical regions, and the 

weight of the corresponding anatomical links in the connectome graph (maximum Spearman rank-

order correlation ρ = 0.48). At the network-level, regions belonging to the same functionally 

defined community tend to form more mutual weighted connections between each other compared 

to regions located in different communities. We further found that functional communities in 

resting-state networks are enriched in densely connected anatomical motifs. Importantly, these 

higher-order structural subgraphs cannot be explained by lower-order topological properties, 

suggesting that dense structural patterns support functional associations in the resting brain. 

Simulations of brain-wide resting-state activity based on neural mass models implemented on the 

empirical rat anatomical connectome demonstrated high correlation between the simulated and the 

measured functional connectivity (maximum Pearson correlation ρ = 0.53), further suggesting that 

the topology of structural connections plays an important role in shaping functional cortical 

networks.
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1. Introduction

The study of brain connectivity from a network perspective (Newman, 2003; Strogatz, 2001) 

has become a promising framework to understand how action, perception, and cognition 

emerge from a dense ensemble of neural elements (Park and Friston, 2013). Leveraging 

advances in brain imaging and network science (Sporns, 2013; Sporns et al., 2005), recent 

approaches have focused on the topology and dynamics of large-scale projections linking 

anatomically distinct and functionally specialized brain regions (Bullmore and Bassett, 

2011). The structure of these large-scale networks is thought to shape and constrain inter-

regional interactions and computations.

Interactions between neuronal populations spanning brain-wide networks can be described 

from three different, but related, perspectives (Friston, 2011). Briefly, anatomical or 

structural connectivity (SC) refers to patterns of synaptic connections linking brain areas. 

Functional connectivity (FC) refers to statistical interdependence between activity time 

series recorded in different, often spatially remote, areas. Finally, effective connectivity (EC) 

refers to the influence that one neural system in one area exerts over another. While the 

interplay of these three modes of brain connectivity is not completely understood, some 

progress has been made combining anatomy with both resting-state and task-based 

functional connectivity (Hermundstad et al., 2013). Spontaneous or intrinsic neural activity 

(Cole et al., 2010; Fox and Raichle, 2007), as measured using fluctuations in the blood 

oxygen level dependent (BOLD) signals of resting-state functional MRI (rs-fMRI), has 

proven to be a useful technique for examining the extent to which structural patterns shape 

functional interactions between neural assemblies (Honey et al., 2010). Previous studies 

have shown that the presence of strong SC, as measured with diffusion-weighted MRI, 

between two areas increases the probability and strength of corresponding FC. Nevertheless, 

it has also been reported that strong FC may exist between areas with no (direct) anatomical 

connections, (Bowman et al., 2012; Damoiseaux and Greicius, 2009; Skudlarski et al., 

2008), suggesting that indirect signaling and emergent dynamic processes make an 

additional strong contribution. For example, a study of SC and FC in macaque cortex 

supported the idea that functional interactions are strongly influenced by network-wide 

effects (Adachi et al., 2012).

Approaches simulating spontaneous cortical dynamics, in both humans and animal models, 

can yield invaluable insight into structure-function relationships by assessing the capacity of 

simulated dynamic patterns based on the SC scaffold to predict empirically measured BOLD 

signal correlations (Deco et al., 2011; Honey et al., 2007; Nakagawa et al., 2013). 

Connectomics data from animal models based on tract-tracing procedures allows in-depth 

characterization of SC networks. In contrast to MRI-based tractography, which provides 

coarse-grained undirected SC matrices, histological tracing technology yields highly 

resolved and directed connectivity information, hence providing important additional 
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information for modelling cortical dynamics (van den Heuvel et al., 2016a). For instance, 

recent work relating the structural connectome of the mouse brain and the intrinsic BOLD 

signal dynamics within individual brain regions have shown the importance of considering 

both the weight and directionality of structural connections (Sethi et al., 2017). In addition, 

the mapping of functional connectivity networks in rodents provides an invaluable tool to 

understand neurological and psychiatric disorders from a more mechanistic way for 

translational research. (Gozzi and Schwarz, 2016; Pan et al., 2015). These experimental 

possibilities together with theoretical developments in network analysis are extending 

systems neuroscience from unimodal investigations of brain connectivity to a network-level 

understanding of structure-function interactions (Adachi et al., 2012; Diez et al., 2015; Goñi 

et al., 2014; Hsu et al., 2016; Mišić et al., 2016; Skudlarski et al., 2016; Stafford et al., 2014; 

Wang et al., 2015; Wirsich et al., 2016).

In this work, we examine the relationship between SC and FC in the rat cortical network. 

Using a detailed cortical SC matrix obtained from a carefully curated meta-analysis of 

published histological tracing data in rats (Bota et al., 2015), we first compare structural 

connections in the rat cortex with their corresponding spontaneous correlations extracted 

empirically from rs-fMRI data collected in a group of 14 Wistar rats. We then show the 

results of this comparison taking into account network-level effects by relating structural 

properties of brain connectivity to the functional modularity of rs-fMRI networks. 

Specifically, we study link reciprocity in both intra- and inter-modular connections as well 

as the structural motif frequency spectrum within functionally defined modules. Finally, we 

carry out computational simulations of neural mass models implemented on the empirical 

SC to generate a simulated FC matrix and compare it with the empirically measured FC. 

Overall, our results provide evidence on rs-fMRI BOLD signal correlations being 

constrained and shaped by the underlying structural connectivity patterns.

2. Materials and methods

2.1. Animals and MRI acquisition protocol

Experiments were carried out in a horizontal 7 T scanner with a 30 cm diameter bore 

(Biospec 70/30v, Bruker Medical, Ettlingen, Germany). The system had a 675 mT/m 

actively shielded gradient coil (Bruker, BGA 12-S) of 11.4 cm inner diameter. A 1H rat 

brain receive-only phase array coil with integrated combiner and preamplifier, no tune/no 

match, in combination with the actively detuned transmit-only resonator (BrukerBioSpin 

MRI GmbH, Germany) was employed. Data were acquired and processed with a Hewlett-

Packard console running Paravision 5.1 software (Bruker Medical GmbH, Ettlingen, 

Germany) operating on a Linux platform.

For the rs-fMRI experiments, 14 Wistar rats were anesthetized with urethane (1.2 g/Kg). 

Anesthetized animals were placed in a custom-made animal holder with adjustable bite and 

ear bars, and positioned on the magnet bed. The animals were constantly supplied with 0.8 

L/m O2 with a face mask and temperature was kept between 36.5 and 37.5 °C through a 

water heat-pad. The temperature, heart rate, SpO2, and breathing rate were monitored 

throughout the session (MouseOx, Starr Life Sciences, Oakmont, US).
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T2-weighted anatomical images were collected using a rapid acquisition relaxation 

enhanced sequence (RARE), applying the following parameters: field of view (FOV) = 40 × 

40 mm; 15 slice thickness = 1 mm; matrix size = 128 × 128; effective echo time (TEeff) = 56 

ms, repetition time (TR) = 2 s, and a RARE factor of 8. The B0 field distribution in a large 

voxel (40 × 40 × 40 mm3) containing the whole head was acquired (FieldMap). Briefly, the 

brain was localized with T2-weighted RARE sequence, and first- and second-order shims 

adjusted with MAPSHIM application in a sufficiently large voxel containing the whole 

brain. Functional MRI acquisition was performed using a GE-EPI sequence in 30 coronal 

slices applying the following parameters: FOV = 25 × 25 mm; slice thickness = 0.5 mm; 

matrix size = 50 × 50; segments = 1; FA = 60°; echo time (TE) = 15 ms; repetition time (TR) 

= 2000 ms (300 samples per run, 10 min), rendering an isotropic voxel of 0.5 × 0.5 × 0.5 

mm3. Between one and three runs were acquired from each animal. T2-weighted anatomical 

images with exactly the same geometry were collected using a RARE sequence using the 

following parameters: FOV = 25 × 25 mm; 30 slices; slice thickness = 0.5 mm; matrix size = 

200 × 200; TEeff = 56 ms; TR = 2 s; RARE factor = 8.

2.2. Preprocessing of MRI data

Data preprocessing within runs was carried out using FSLv5.0 (FMRIB Software Library, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Jenkinson et al., 2012) and MATLAB 2014a (The 

MathWorks, Inc., Natick, MA, United States, https://www.mathworks.com/). Once images 

were converted to NIfTI (Neuroimaging Informatics Technology Initiative, http://

nifti.nimh.nih.gov/) data format, the original voxel size, (x,y,z), was scaled up by a factor of 

10. This step is very common when analyzing rodent data to accurately apply the same 

algorithms (largely those involving spatial transformations) as in human analyses (Kalthoff 

et al., 2013; Pan et al., 2015).

The very first volume of fMRI data was used as reference across runs of the same subject for 

head motion correction, brain segmentation and co-registration. As suggested by (Kalthoff et 

al., 2011), head motion correction was applied to each individual slice and restricted to 

(coronal) in-plane translations (x, y) and rotation (z) to reduce signal fluctuations related to 

respiration in anesthetized rats. After applying motion correction and brain segmentation 

(Smith, 2002), global intensity normalization was set to 1000 and spike detection was 

performed through using DVARS measure (Power et al., 2012). Note that DVARS is highly 

dependent on the particular dataset (Power et al., 2014); we therefore did not select an 

absolute threshold and instead considered as outliers those temporal points exceeding the 

75th percentile + 1.5*IQR (interquartile range). None of the runs were discarded since the 

number of spikes was below 30 (out of 300 samples) in all cases (15 ± 4.6 spikes per run, 

mean ± SD), hence ensuring a minimum length of 9 min to estimate functional interactions. 

By using a nuisance regression model, each voxel was corrected for: (1) the three rigid body 

parameters (translation in x and y, and rotation in z) previously computed and their 

derivatives (backward difference); (2) a single regressor per spike with a “b0, f0” window 

(Satterthwaite et al., 2013) (i.e. neither preceding nor following samples were used); (3) the 

global signal and its derivative (backward difference); and (4) two regressors modelling the 

mean and a linear trend. A Band-pass filtering (nonlinear high-pass filter of γ = 50 s, and 

Gaussian linear low-pass filter of γ = 2 s) was applied to retain those frequencies ranging 
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from 0.01 and at around 0.1 Hz (the resulting spectrum of this filter is shown in 

Supplementary Fig. 1). Spatial smoothing was not applied to avoid introducing spurious 

high correlations between a node and its neighbors (Fornito et al., 2010). Finally, filtered rs-

fMRI data were co-registered to the brain-extracted T2-weigthed image using a rigid body 

transformation and then normalized to a rat template described elsewhere (Schwarz et al., 

2006). Normalization was carried out through using an affine deformation (Jenkinson et al., 

2002; Jenkinson and Smith, 2001) and the template was resampled to match the original 

resolution of functional images (i.e., 0.5 × 0.5 × 0.5 mm3).

2.3. Rat connectome and definition of brain areas

We made use of a directed anatomical network coming from a systematic curation of the 

primary neuroanatomical literature for the rat (for specific details as to annotation and 

collation methodology, see ref. (Bota et al., 2015)). In particular, the dataset was originally 

composed of 73 cortical gray-matter regions that were defined according to the Swanson-04 

hierarchical nomenclature for the rat central nervous system (Swanson, 2004). Connections 

in the rat cortical association macro-connections (RCAMs) matrix are not yet defined 

bilaterally and are encoded by means of eight different ordinally arranged weight categories: 

not present, very weak, weak, weak/moderate, moderate, moderate/strong, strong, and very 
strong.

A critical point in neuroimaging research is the use of a common framework for localization 

of brain structures, which allows comparison among results coming from different studies. 

Nomenclature of the rat connectome project is available in the Swanson space (SwS) 

(Swanson, 2004) and anatomical connectivity between regions is directly given in matrix 

form, that is, no Analyze or NIfTI images are provided. On the other hand, to the best of our 

knowledge, the most complete atlas available in Analyze format (easily converted to NIfTI 

format) is that developed by Schwarz et al. (2006), where brain areas are given in the 

Paxinos&Watson space (PWS) (Paxinos and Watson, 1998). Therefore, the first task before 

carrying out network analysis was to establish a correspondence of brain regions between 

both spaces with the aim of aligning functional correlation matrices with the anatomical 

network. To this end, we carefully inspected both atlases as follows: (1) a particular 

reference brain region from SwS was localized in its corresponding coronal plane; (2) we 

sought the coronal slice/s in PWS containing the previous region, and (3) by taking into 

account the spatial distribution of surrounding areas as well as the relative anterior and 

posterior planes, we identified which region or group of regions from PWS matched with the 

reference region.

Since not all of the original structures contained in the RCAMs matrix were available in the 

NIfTI atlas as a single mask, some of them were grouped to cover the whole brain cortex 

(Supplementary Fig. 2 schematizes the process carried out for computing these new 

connections). Thus, we created a new pattern of cortical connections for the secondary 

visual area (VISs), which was composed of the original anterior latero-lateral area (VISlla), 

anterolateral area (VISal), rostrolateral area (VISrl), intermediolateral area (VISli), 

laterolateral area (VISll), mediolateral area (VISlm), posterolateral area (VISpl), and 

anteromedial area (VISam). The tenia tecta cortical region (TT) was composed of the dorsal 
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and ventral parts (TTd and TTv, respectively). Interactions of the retrosplenial area ventral 

part (RSPv) with other areas were obtained from the original ventral part (RSPv), ventral 

part zone a (RSPv-a), and ventral part zone b/c (RSPv). The hippocampal region was 

partitioned into dorsal and ventral parts as follows. The dorsal part of the hippocampal 

region (HIPd) was composed of CA1 dorsal part (CA1d), CA3 dorsal part (CA3d), CA2 

dorsal part (CA2d), dentate gyrus dorsal part (DGd), and induseum griseum (IG). Whereas 

the ventral part of the hippocampal region (HIPv) was composed of CA1 ventral part 

(CA1v), CA3 ventral part (CA3v), CA2 ventral part (CA2v), and dentate gyrus ventral part 

(DGv). Note that the current RCAMs matrix does not distinguish between dorsal and ventral 

parts for CA2, CA3 and DG. To overcome this limitation, and with the aim of including the 

whole hippocampal region in our analysis, structural patterns contained in the rat 

connectome for CA2, CA3 and DG were assumed to be equal for both ventral and dorsal 

parts. Categorical weight for the same region in different parts (e.g., between CA2d and 

CA2v) were assumed to be very strong. A new pattern of structural connections was also 

created for the cortical amygdalar nucleus (COA), which was formed from the anterior part 

(COAa), posterolateral part (COApl), and posteromedial part (COApm). The secondary 

auditory areas (AUDs) was composed of the ventral and dorsal auditory areas (AUDd and 

AUDv, respectively). The medio-ventral part of the orbital area (ORBmv) included the 

ventral and medial parts (ORBv and ORBm, respectively). The presubiculum (PRE) and 

parasubiculum (PAR) were grouped to form the PreParaSubiculum region (PREPAR). The 

basolateral amygdalar nucleus (BLA) was composed of the anterior and posterior parts 

(BLAa and BLAp, respectively). Finally, structural interactions between the basomedial 

amygdalar nucleus (BMA) and the rest of nodes were obtained from the anterior and 

posterior parts (BMAa and BMAp, respectively).

Definition of nodes is a very important step for brain network analysis. In this work, two 

different brain parcellations were used, which were based on the information available in the 

NIfTI atlas. Table 1 presents the 50 brain regions from SwS and their counterpart regions 

from PWS used for simulations (see subsection 2.8). Robust BOLD signals were not 

consistently available for the above 50 ROIs in our dataset due to variations in the field of 

view across rats. Thus, a second parcellation was used in which a reduced set of 32 ROIs 

(Table 1) were selected for the comparison of empirical and simulated FC, as well as to 

investigate intra- and between-module structural patterns.

2.4. Construction of functional networks

The mean time courses within each of the 32 regions of interest (ROIs) were extracted and 

converted to z-scores (i.e. fMRI BOLD time series were centered and scaled to have zero 

mean and unit variance). Since the collation process of cortical associations in the current 

RCAMs ((Bota et al., 2015)) do not differentiate between hemispheres, voxels within ROIs 

were also combined across hemispheres (Supplementary Figs. 3, 4 and 5 present seed-based 

correlations analysis in three different brain regions uncovering bilateral networks in the 

dataset). That is, the time course from a given region, say the primary somatomotor area, 

was obtained as the average between signals from right and left primary somatomotor areas. 

Importantly, to create a homogeneous parcellation by ensuring that all regions had the same 

size, we adopted the procedure carried out in (Alexander-Bloch et al., 2012), where ROIs 
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were eroded until all of them were exactly the same volume, 1 mm3 here (0.5 mm3 in each 

hemisphere). Before computing functional interactions, time samples marked during 

preprocessing were “scrubbed”. Functional networks were then estimated for each single run 

by computing the Pearson correlation coefficient. Next, raw correlations were converted to 

Fisher’s z-values and connectivity matrices of each run were averaged within subject. 

Finally, FC matrices across the 14 subjects were averaged and a group network was obtained 

and then used for comparative analysis with the RCAM matrix and simulated FC matrices.

2.5. Modularity

Community structure detection involves the partition of a network into “modules” or 

“clusters” wherein nodes are highly connected to each other and only sparsely connected 

with nodes of different modules (Newman and Girvan, 2004). In neuroscience applications, 

community detection allows the grouping of neural elements (e.g. brain regions) in both 

anatomical and functional networks into distinct modules (Sporns and Betzel, 2016). Despite 

the fact that community detection is conceptually straightforward, its application is 

methodologically challenging as indicated by the large number of algorithms and 

approaches dealing with it (Fortunato, 2010; Fortunato and Hric, 2016). Whereas it is also 

possible to perform graph partition with overlapping modules, we only consider in this work 

the detection of non-overlapping modules.

One popular approach for community detection attempts to maximize a quality function Q 
commonly known as the modularity function. Let W be the functional matrix, then the 

problem of community detection can be formalized as:

In the previous expression, Wij represents the actual weight of the connection between node 

i and j, whereas Pij refers to a specified null network model so that nodes within 

communities are internally more connected than expected by chance. The term σi ∈ [1, …, 

K] stands for the assignment of the node i to the kth module, and the Kronecker function 

δ(σi, σj) is equal to unity when node i and j belong to the same community, σi = σj, and zero 

otherwise. Thus, only nodes belonging to the same community contribute to maximize Q. 

The modularity function is typically modified by including a constant factor before 

summation with the aim of setting the maximum of the quality function to one. This last step 

has no influence on the final partition.

The precise value of the null model Pij relies strongly on the nature of the network being 

analyzed. Traditionally, the most popular null model is the so-called configuration model, 

represented by the following expression:

(1)
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with  and . However, it has recently been shown that approaches 

using Eq. (1) can lead to biased results when correlation matrices are considered (Bazzi et 

al., 2016; MacMahon and Garlaschelli, 2015). We therefore made use of a different null 

model known as the constant Potts model (Traag et al., 2011). This approach is named 

constant because the weight matrix in expression (1) is compared to a tunable parameter 

gamma γ:

By varying gamma, one is able to reveal community structure at different scales (given by 

the number of communities and their size), hence mitigating the problem known as the 

resolution limit (Fortunato and Barthélemy, 2007).

In this work, we used 109 different gamma values ranging linearly from −0.02 to 0.25 in 

increments of 0.0025 and, for each of them, we ran the Louvain algorithm 10,000 times 

(Blondel et al., 2008). After optimizing Q, we computed the mutual similarity (as quantified 

by using the z-score of the rand index, or z-Rand) over all pairs of partitions within a given 

setting of γ (Traud et al., 2011). We then obtained a consensus partition for each γ (Bassett 

et al., 2013; Lancichinetti and Fortunato, 2012).

2.6. Reciprocity

Link reciprocity is a network measure that allow assessing the tendency of node pairs to 

form mutual connections between each other, and whose definition has been extended for 

weighted networks (Squartini et al., 2013). Briefly, a real-world network can be decomposed 

into a symmetric (reciprocated) part and an asymmetric (non reciprocated) part. The 

weighted reciprocity, r, is then computed as the ratio between the total reciprocity weight 

and the total weight of the network. Afterwards, this quantity is scaled relative to the average 

weighted reciprocity derived from a random null model, mean(rnull), as follows:

Thus, ρ indicates the tendency of the network to reciprocate (ρ > 0) or to avoid reciprocation 

(ρ < 0). In this work, ρ was computed by generating 5000 random networks preserving the 

in- and out-degree sequences as well as the total strength of the real network. As our main 

interest was to compare weighted intra-modular (a)symmetries compared to those taking 

place between modules, the measure ρ was computed separately for each type of links. Put 

simply, by imposing the partition of functional modules on the weighted anatomical matrix, 

we could study whether modularity obtained from rs-fMRI data showed differences in link 

reciprocity between intra- and inter-modular projections.

2.7. Network motifs

The dynamic behavior of a complex system relies critically on the underlying 

interconnections and how nodes are linked to form specific subgraphs or network motifs 
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(Milo et al., 2002). The existence of these “building blocks” can be recognized in many 

directed real-world networks such as biological and technological networks, as compared 

with randomized networks. Motif analysis has been applied in a variety of brain networks to 

identify motifs that are significantly increased in frequency over various null models (Sporns 

and Kötter, 2004; van den Heuvel et al., 2012; Varshney et al., 2011). In contrast to link 

reciprocity, which is a measured quantifying second-order topological properties, networks 

motifs examine higher-order connectivity patterns.

The total number of different subgraphs or network motifs depends on the number of nodes 

being considered. For instance, for structural motifs of size M = 3 (third-order topological 

properties) there are 13 different possible alternatives or classes through which three nodes 

can be linked (Table 2). Previous studies have addressed the problem of modularity by 

clustering subgraphs or higher-order connectivity patterns (Arenas et al., 2008; Benson et 

al., 2016), rather than considering dyadic interactions. Interestingly, this framework, wherein 

community structure detection and network motif approaches are related, can reveal new 

insights into the topological organization of complex networks. In this work, we were 

interested in the higher-order structural organization within functionally defined modules. 

Based on the so-called motif modularity (Arenas et al., 2008), we calculated the ratio of the 

number of occurrences (summarized in the motif frequency spectrum) for a given motif class 

i restricted to within communities, fwmi, to the motif frequency spectrum computed over the 

whole network for the same class, fi:

We calculated the normalized motif frequency spectrum for structural motifs of size M = 3. 

In this way, we could study whether modules obtained from functional data are associated 

with a specific pattern of intra-modular anatomical connections. Binary motif analysis was 

performed for three connectivity levels of SC: (1) keeping all connections, (2) removing 

very weak links, and (3) removing both very weak and weak/moderate links.

The observed value Fi was statistically compared against an ensemble of random networks 

(5000 samples) preserving the number of incoming edges, outgoing edges and mutual edges 

of each node of the actual network (Milo et al., 2002). Generating null models preserving 

mutual edges allows us to ascertain that higher-order patterns does not simply emerge as a 

result of lower-order properties (e.g., link reciprocity), but the abundance of networks motifs 

inside communities is a feature of real-world networks. Thus, we calculated Fi_null for each 

reference network, and we eventually obtained a null distribution that allowed us to 

statistically evaluate the fraction of every motif class within communities using the z − 

scorei:
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2.8. Simulations with The Virtual Brain

Finally, to investigate further the degree to which rat structural connectivity can predict 

functional connectivity, simulations of rat spontaneous neural dynamics were performed 

using the open-source neuroinformatics platform The Virtual Brain (TVB). TVB, amongst 

other features, allows for the modelling of the dynamics of large-scale brain networks by 

giving users access to a library of Python-based models, which range from complex models 

based on nonlinear differential equations with dozens of parameters to simpler linear or 

oscillatory models. TVB simulations take structural data about a brain - structural 

connectivity, spatial coordinates of ROIs, and tract length distances between ROIs - and 

output simulated neural activity time series for each ROI, using a given model type and set 

of simulation parameter values (Sanz-Leon et al., 2015). Raw simulated activity time series 

were passed through a Balloon-Windkessel model to generate synthetic BOLD responses; 

the period of the BOLD monitor was set to 2000 ms, reflecting the TR of fMRI data (Friston 

et al., 2000; Sanz Leon et al., 2013). The BOLD hemodynamic response function was 

created using a Volterra kernel with the default parameters supplied by TVB. Numerical 

integration during the simulations was performed with a stochastic variant of Heun’s method 

with a step size of 0.1 ms, with a noise term drawn randomly from a Gaussian distribution 

added. The standard deviation of the Gaussian was determined by the noise parameter, and 

was never more than 1% of the state variables to which it was added in each integration step. 

Raw BOLD time series were subjected to global signal regression to match the processing 

steps carried out on the empirical time series.

In order to take advantage of as much available structural information as possible, while 

keeping the simulation results in the same parcellation scheme as the empirical FC results, 

the full structural network based on the 50-region SwS atlas was used as input for the 

simulations. Once a simulation was complete, a 50-region simulated resting state FC matrix 

was calculated based on the Pearson correlation between the simulated BOLD time-series 

for each ROI pair. Comparison with the empirical FC matrix (using raw Pearson 

correlations) was carried out only considering the 32 regions that were common in the 

empirical and simulated data by computing the pairwise Pearson correlation between the 

upper triangular portions of the two matrices.

In order to test the stability of simulation results, multiple runs of simulations with the same 

parameters and structural data were performed while varying the initial random seed. FC 

matrices derived from 40 simulations of length 10 s with identical parameters but varying 

random seeds never had pairwise correlations lower than 0.96, and variability declined with 

length of the simulations - 10 simulations of length 180 s all had pairwise correlations above 

0.99.

2.8.1. Parameter space exploration—In order to maximize the similarity between the 

functional connectivity matrix derived from simulated time series and the empirical FC 

matrix, two model parameters were optimized: one scaled global coupling, and another 

represented the axonal conduction velocity, which controls the time delay of signals between 

regions. To automate the exploration of the parameter space of multiple TVB models, we 

adapted the open-source Python utility “Distributed Evolutionary Algorithms in Python” 
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(DEAP) (Fortin et al., 2012), which allows for the implementation of evolutionary 

optimization algorithms. We used the package to optimize the values of simulation 

parameters within given ranges. This approach was inspired by BluePyOpt, an open-source 

software created by members of the BlueBrain project team which implements DEAP to 

optimize model parameters; however, BluePyOpt is most useful in, and primarily intended 

for, the optimization of neuron-level models, so using DEAP itself as opposed to BluePyOpt 

proved simpler for TVB simulations (Van Geit et al., 2016). DEAP implementation allowed 

us to stochastically search a specified parameter space for any given model, with the aim of 

finding parameter values that allow TVB models to generate realistic simulated FC as 

measured by pairwise correlation.

DEAP optimization was performed on all available TVB models, with the exception of two 

models designed to simulate epileptic activity. Initial parameter ranges were derived from 

the TVB source code. The evolutionary algorithm implemented using DEAP operated as 

follows. For each model type, a collection of 600 different combinations of values for each 

of the global (model and coupling) parameters being optimized were initialized by randomly 

selecting values within a given range for each parameter - these combinations are analogous 

to a population of individuals. Individuals with high fitness, i.e. whose parameter value 

combinations produced simulated FC matrixes with high similarity to the empirical FC 

matrix, were copied, parameters were randomly swapped between individuals, and some 

individuals had their parameter values reassigned to random values within that parameter’s 

range – processes analogous to natural selection, mating, and mutation respectively. One 

iteration of selection, mating and mutation of the various individuals collectively forms a 

“generation”. Optimization was performed over the course of 36 successive generations, and 

the simulated time period of every simulation corresponded to 15 min of real time.

3. Results

3.1. Characterization of SC and rs-fMRI-derived FC

Categorical weights of the RCAMs matrix (Bota et al., 2015) were encoded between 0 (not 
present) and 7 (very strong) (Fig. 1a, left panel). Out of the 32 selected regions defined for 

the cortex, 49.8% of the possible pair-wise structural connections were not present, 7.2% 

were very weak, 8.6% weak, 6.7% weak/moderate, 10.2% moderate, 5.9% moderate/strong, 

8.8% strong, and only 2.8% very strong (Fig. 1a, middle panel). These values confirmed the 

overall sparsity of the anatomical network. We next derived the FC within the same set of 

anatomical regions, computed as the correlation between the average BOLD signals in each 

of the 32 cortical regions (Fig. 1b, left panel). As expected, pair-wise functional interactions 

between the 32 regions included negative correlations, with FC values following a slightly 

right skewed and unimodal distribution with a pronounced peak around zero (Fig. 1b, middle 

panel).

Although different studies have revealed that wiring minimization itself cannot account for 

all topological features of anatomical and functional networks (Betzel et al., 2016; Véertes et 

al., 2012), the essential role of physical distances between pairs of nodes is widely 

recognized. We plotted the pair-wise SC and FC values as a function of distance 
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(approximated as Euclidean distance) and found that both SC and FC values tend to be 

higher between brain regions separated by short distances (Fig. 1, right panels).

With the aim of investigating the relationship between the SC and the rs-fMRI-measured FC 

in the rat cortex, we first calculated the association between anatomical and functional 

matrices (Fig. 2). The Spearman correlation ρ quantified to what extent the strength of a 

structural connection predicted the corresponding functional connection between two 

regions. Using all possible value pairs in the SC connectome (i.e., present and not present 
connections) and the FC matrix, we obtained a Spearman (rank-order) correlation of ρ = 

0.48 (P < 2 × 10−29) between the structural and functional networks. The Spearman 

correlation did not vary after removing all node pairs for which an anatomical connection 

was found to be not present, ρ = 0.48 (P < 2 × 10−19). This result reveals a strong positive 

linear association between SC and FC matrices. In addition, we also calculated the 

association between both networks while controlling the effect of the Euclidean distance. In 

this case, the Spearman correlation dropped to ρ = 0.35 (P < 3 × 10−15) and ρ = 0.33 (P < 2 

× 10−9), relative to the total or zero weight-corrected SC matrix, respectively, supporting the 

role of geometric distances between region pairs in brain network organization. Functional 

connectivity patterns without global signal regression and the relationship with the SC 

matrix are shown in Supplementary Fig. 6.

3.2. Relationship between functional modules and structural network-level patterns

Partitioning a network or graph into components offers the ability to uncover modules at 

different spatial scales. Indeed, each module or component can be interpreted as a 

subnetwork itself. Fig. 3a shows the number of communities extracted from the functional 

data along with the value of the modularity function, which represents the quality of the 

obtained consensus partition, and the consistency of the partitions as measured by the 

similarity of the modules generated in 10,000 iterations of the partition algorithm (see 

subsection 2.5). Given that different community structures might be equally feasible and 

plausible, we investigated the distribution of motif classes within functionally define 

modules at different scales of resolution, rather than targeting a unique partition. We 

examined structural patterns at γ = −0.0125 (Fig. 3b), γ = 0.005 (Fig. 3c), and γ = 0.02 

(Fig. 3d); these parameter settings were selected for several reasons. First, these scales were 

located within intervals of γ values where the number of communities remained relatively 

constant, hence yielding partitions with two (γ = −0.0125), three (γ = 0.005) or five (γ = 

0.02) communities. Second, given a number of communities, the selected scales were the 

most stable partitions, as indicated by a high mean and a low variance of the z-Rand index. 

Finally, we did not explore functional partitions beyond γ = 0.02 because the resulting 

partitions yielded numerous modules of very small size, which makes motif analysis 

impractical. For example, at γ = 0.035, the cortex was partitioned into eight modules, with 

three modules of three nodes, one module of two nodes, and another singleton module.

At the most coarse scale (γ = −0.0125), the cortex was partitioned into two modules (Fig. 

3b). The wider module (M1) contained most regions of the sensory-motor cortex including 

the primary somatomotor (MOp), somatosensory (SSp, SSs), visceral sensory-motor (VISC, 

ILA), gustatory (GU), olfactory (AON, TT, PIR), auditory (AUDp, AUDs), and visual areas 
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(VISs, VISp). Association areas such as orbital (ORBmv, ORBvl), agranular insular (AId, 

AIv, AIp) and posterior parietal (PTLp), together with the cortical subplate, namely, 

claustrum (CLA) and the dorsal part of the endopiriform nucleus (EPd) were grouped in the 

same module. On the other hand, the second module (M2) brought together all parts of the 

hippocampal formation included in this analysis (HIPv, HIPd, SUBd, POST) as well as 

retrosplenial (RSPv, RSPagl, RSPd), prelimbic (PL), and anterior cingulate (ACAv, ACAd) 

areas. Along this association structures, only one sensory-motor region was included, 

namely, the secondary somatomotor region (MOs). As the resolution parameter was 

increased (γ = 0.005), the cortex was split into three functional modules (Fig. 3c). The 

previous module M1 was divided into two different modules, whereas M2 remained largely 

intact, with only the infralimbic area relocated from M1 into M2. Finally, at the finer scale 

(γ = 0.02), a total of five modules were obtained (Fig. 3d). In this case, the original module 

M1 was partitioned into three communities and M2 into two. Again, the infralimbic area was 

relocated with module M2.

The next part of our analysis focused on investigating structural connections and their 

relationship with functional modularity. Regardless of the resolution scale, both intra- and 

inter-modular links showed positive reciprocity, indicating that brain regions tend to be 

mutually connected within and between modules. However, when comparing reciprocity 

between both types of links, connections of the RCAMs matrix within communities showed 

a stronger reciprocity compared to projections connecting nodes from different modules: 

0.506 vs 0.275, 0.534 vs 0.304, and 0.575 vs 0.326 when the brain cortex was partitioned 

into two, three, and five modules, respectively.

We next investigated the density of each of the 13 potential motif classes associated with 

structural motifs of size 3 within functionally identified modules and for the selected scales 

(Fig. 4). We obtained a very high z – score for motif class 13 for all partitions and for all 

connectivity levels investigated (when keeping all connections, when removing very weak 
links, and when removing both very weak and weak/moderate links), indicating that this 

maximally densely connected structural motif is significantly enriched within functional 

communities. Comparable results were obtained for motif class 12 for scales 0.005 (Fig. 4b) 

and 0.02 (Fig. 4c), and for −0.0125 (Fig. 4a) after deletion of very weak links and of both 

very weak and weak/moderate links. A few other motif classes were significant at z > 3:7(P 
< 0.0001), for example motif class 10 and 11 for scales 0.005 and 0.02 and only when 

removing both very weak and weak/moderate links. Regardless of the considered scale and 

connectivity level, the significance level of all other motif classes was z ≤ 3:7.

3.3. Dynamic simulations based on the rat connectome

Simulations of spontaneous rat cortical activity produced patterns of simulated FC that were 

significantly correlated with empirical FC, reaffirming that the topology of the rat cortex SC 

predicts and shapes functional relationships. To achieve realistic model dynamics we 

identified optimal model parameters, in this case the conduction velocity and a global 

coupling parameter that scales the strength of structural connections. Optimal values were 

identified by conducting stochastic optimizations through an evolutionary algorithm 

powered by the DEAP python package (see subsection 2.8.1).
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We subjected a broad range of computational models available in TVB to joint optimization 

of their conduction velocity and global coupling parameters through DEAP. DEAP 

performed automatic parameter optimizations, with only parameter ranges as input. The 

highest performing model available in TVB, the Generic 2D Oscillator model, produced a 

simulated FC matrix with a Pearson correlation of ρ = 0.53 with the empirical FC matrix (P 
< 10−70) when the conduction velocity parameter was set to 3.06 m/s and the global 

coupling parameter had a value of 0.3734 (Fig. 5). These simulation results implementing a 

generative model for FC based on the network of structural connections and simple 

biophysical node dynamics demonstrate are consistent with the notion that a large proportion 

of the observed patterning of FC is shaped by the underlying SC matrix.

4. Discussion

The study of structure and function at the large-scale in rodent animals offer the possibility 

of understanding the mechanisms underlying psychiatric and neurological disorders for 

subsequent translation research (Gozzi and Schwarz, 2016; Jonckers et al., 2015). 

Nevertheless, knowing and describing the healthy rodent brain connectivity is the first step 

for that endeavor. The organizational principles of the rat and mouse structural networks 

have been previously described (Bota et al., 2015; Oh et al., 2014; Swanson et al., 2016; van 

den Heuvel et al., 2016b). Comparisons between the mouse connectome and rs-fMRI 

connectivity have revealed that both networks are intimately correlated (Sethi et al., 2017; 

Stafford et al., 2014). In this work, we have carried out comparisons between the cortical rat 

connectome (Bota et al., 2015) and the corresponding functional network obtained from rs-

fMRI data. The main findings of this study reveal that: (1) in agreement with previous 

studies in humans and various animal models, the level of functional interaction between 

two anatomically connected brain areas in resting-state is significantly predicted by the 

strength of the underlying structural connection; (2) fMRI BOLD signal fluctuations in rat 

brain cortex can be robustly partitioned into functional modules or clusters; (3) reciprocity 

of links connecting nodes from the same functionally defined modules is stronger than those 

linking regions from different modules; (4) within functional communities under a control 

condition and in resting-state, densely interconnected structural motifs (i.e. class 12 and 13 

for motifs of size M = 3) are significantly enriched; and (5) simulations of the intrinsic 

neural activity based on the rat connectome can reproduce much of the empirical functional 

patterns obtained empirically.

4.1. Role of higher-order patterns in shaping cortical functional modular organization

Comparing SC and FC without taking into account network-level effects only supplies a 

partial view of the inherent complexity of the brain. Therefore, network approaches are 

increasingly gaining prominence to understand the SC-FC coupling (Wang et al., 2015). 

Here, we have first shown that the 32 cortical brain regions considered in this work disclose 

a distinct community structure, partitioned into two, three or five communities, at γ = 

−0.0125, γ = 0.005 and γ = 0.02, respectively. Previous studies have investigated the 

modular structure of functional connections over the whole rat brain under different states of 

consciousness (D’Souza et al., 2014; Liang et al., 2012). Other authors have focused on 

specific resting-state networks (e.g. the default mode network), revealing functional 
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subcomponents and how interactions between and within these submodules can be 

modulated in age-related neurocognitive disorders (Hsu et al., 2016). Here, we have 

restricted our analysis to the brain cortex. Future work may address additional brain regions, 

for example including the association connectome of the rat cerebral nuclei (Swanson et al., 

2016).

After evaluating the modular organization of the cortex, we first observed a stronger 

weighted link reciprocity within functionally defined modules compare to inter-modular 

links. We then observed a high ratio of structural motif classes 12 and 13 within functional 

modules. These findings are consistent across resolution scales. In particular, whereas motif 

class 12 is overrepresented at scale −0.0125 after removing very weak links and both very 
weak and weak/moderate links, motif class 12 at scales 0.005 and 0.02, and motif class 13 at 

all resolution scales were strongly significant for all thresholds applied. This indicates that 

the functional coherence of FC communities may in part reflect an underlying aggregation 

of densely connected anatomical motifs. Note that motif analysis was carried out on three 

binarized versions of rat connectome since we were interested in the count of motif classes 

rather than in the strength of the connections. Additionally, the abundance of these 

anatomical subgraphs can not be trivially explained by lower-order features because the 

generated network null models also preserved the number of mutual edges of individual 

nodes (Milo et al., 2002). The important role of motifs in shaping the SC-FC coupling has 

been previously observed in the macaque cortex (Adachi et al., 2012). Nevertheless, whereas 

these authors computed motifs over the whole network, motif analysis in this work was 

restricted to within modules and to small motifs of size 3. For graphs with a greater size, a 

richer repertoire of larger structural motifs could be investigated (e.g., network motifs of size 

4 and higher (Sporns and Kötter, 2004)). There has been an increasing interest in detecting 

coherent groups of nodes forming specific network motifs (Arenas et al., 2008; Benson et 

al., 2016). In this framework, one can specify in advance a particular motif class of interest 

to guide the clustering process. When domain-specific knowledge is not available, it is also 

possible to analyze which type of motif organizes and shape the modular structure of 

complex networks.

The term “motif” is widely applied for describing and understanding recurring circuits of 

interactions that take place on real-world networks (Alon, 2007). For instance, in the context 

of large-scale brain networks, as in the present report, structural motifs consist of a set of 

nodes and potential pathways supporting communication, whereas functional motifs refer to 

specific combinations of connections that can be activated within structural motifs (Sporns 

and Kötter, 2004). That is, both structural and functional motifs are defined for directed 

anatomical networks (Table 2). In other settings, for example when approaching the 

functioning of the brain from a computational perspective (Turkheimer et al., 2015) or in the 

context of activation spreads recorded with different modalities (Frostig et al., 2008; 

Mohajerani et al., 2013), the concept of motif is related but not completely the same as that 

employed in this work. The common message behind this general concept is that the brain is 

a highly hierarchical and complex system wherein organizational principles are repeated 

across space and time (Turkheimer et al., 2015).
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4.2. Modelling how structure shapes function

The high levels of similarity between empirical FC and FC derived from simulations using 

multiple computational models lend additional support to the finding that structural 

connectivity both constrains and enables functional connectivity in mammalian brains 

(Honey et al., 2009). Structural connectivity data derived from tract tracing experiments is 

generally considered to more closely approximate “ground truth” than connectivity derived 

from DTI streamlines, with lower levels of both type I and type II errors (Chen et al., 2015; 

Dauguet et al., 2007). The high quality of the structural data, combined with the 

optimization of model parameters through DEAP, likely contributes to the high levels of FC 

prediction seen across different nonlinear models (max ρ = 0.53, 33.5% of variance 

explained). This level of correlation is somewhat higher than that typically achieved with 

nonlinear models using SC data derived from DTI images (Falcon et al., 2016; Messé et al., 

2015). Importantly, the structural network derived from tract tracing experiments is directed, 

in contrast with SC obtained from DTI, which may allow a neural mass model to produce a 

richer set of dynamics through asymmetric connections between regions and more 

accurately defined pathways of communication between regions (Knock et al., 2009). Our 

findings from the simulation model support the notion that a (simple) generative model 

based on structural connectivity and neural mass dynamics can account for a significant 

portion of the observed patterns in empirical FC.

There are several limitations to the simulation portion of this work. First, while the structural 

data used here is presumably of higher quality than DTI, it is incomplete in that many parts 

of the rat brain are not included. For example, the omission of sub-cortical structures such as 

the cerebral nuclei or the thalamus may limit the potential range of dynamics captured in the 

simulation. Furthermore, interhemispheric connections are not included in the SC matrix, 

which may be important for simulating more realistic neural dynamics. Second, our estimate 

of the anesthetized rat hemodynamic response function may not accurately represent rodent 

BOLD responses. The BOLD forward model available in TVB is intended for use with 

primate data, and does not incorporate possible regional variations in the hemodynamic 

response function (Sanz-Leon et al., 2015). Third, the stochastic nature of the DEAP based 

parameter optimization may result in the algorithm converging on local optima. These 

limitations can be addressed in future work as additional parts of the rat connectome become 

available (e.g. (Swanson et al., 2016)), with more detailed physiological recordings of rodent 

fMRI responses, and further improvements in simulation and optimization algorithms.

4.3. Construction of brain graphs

A very critical step for construction and analysis of brain network is that of dividing the 

brain into discrete regions. The absence of a well-established and accessible Swanson atlas 

in NIfTI format for parcellation of fMRI data required us to perform a manual matching 

procedure between cortical regions of Swanson space (SwS) (Swanson, 2004) and 

Paxinos&Watson (PWS) (Paxinos and Watson, 1998). This entails several caveats. First, 

although Swanson regions can also be expressed in stereotaxic coordinates to correspond to 

Paxinos & Watson regions, coronal planes from both spaces do not always exactly match 

with respect to bregma reference. Therefore, taking into account the spatial distribution of 

adjacent planes is fundamental to achieve an accurate alignment of brain regions between 
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different spaces. Second, a common problem when using different spaces or atlases (not 

only restricted to SwS and PWS) concerns nomenclature of brain regions, as different spaces 

may use different nomenclature to label the same brain regions. In this case, we have used 

the Swanson nomenclature after carefully inspecting both SwS and PWS (see subsection 2.3 

and Table 1). Finally, some cortical regions were not available in the NIfTI atlas as a single 

mask (e.g., CA1 and CA2). To overcome these limitations, several areas from the anatomical 

matrix were aggregated together by averaging the original categorical weight. In addition, 

some cortical regions were discarded to ensure a representative time course in each node 

from functional networks. All 32 ROI signals included in our analysis were averaged across 

hemispheres, had exactly the same volume (i.e., 1 mm3 in total, 0.5 mm3 in each 

hemisphere), and were extracted from exactly the same voxels across rats. The consequences 

of these methodological steps might inevitable mask relevant feature of individual nodes. 

For instance, parahippocampal regions, such as perirhinal and entorhinal cortices, were not 

included in our analysis and, however, these areas have shown to be critical for cortico-

hippocampal integration in mice (Bergmann et al., 2016). Despite these considerations, the 

main research goal of the present report was to assess the empirical SC-FC coupling in the 

rat brain cortex with a special emphasis in comparisons at regional scale (functional 

modularity and structural network motifs), rather than the analysis at more local scale 

(Ferezou et al., 2007; Kaiser, 2011).

4.4. Relevance of data preprocessing: global signal regression

An important issue in fMRI investigations is that of controlling for head motion and 

physiological artifacts (mainly those related with respiratory and cardiac cycles) when 

estimating functional interactions between brain areas, especially in task-free paradigms 

(Van Dijk et al., 2012; Yan et al., 2013). Even though anesthesia can reduce rough head 

movements, variance explained by motion parameters can substantially improve the 

specificity of FC in anesthetized rodents (Kalthoff et al., 2011). Numerous techniques have 

arisen with the aim of correcting or minimizing variations in the BOLD signal as a 

consequence of these artifacts: scrubbing (Power et al., 2012), spike regression 

(Satterthwaite et al., 2013), motion parameter regression (Friston et al., 1996), Independent 

Component Analysis (ICA) (Pruim et al., 2015), as well as its combined use with global 

signal regression (GSR). The inclusion of the global signal as a nuisance regressor is a 

widely used but controversial preprocessing step. How negative correlations should be 

interpreted after GSR is very challenging given the nature of the BOLD signals (Fox et al., 

2009; Murphy et al., 2009). In our dataset, Spearman correlation demonstrated a significant 

linear dependence between SC and empirical FC after controlling for the global signal. 

Whether or not other pre-processing steps would further increase the coupling between 

BOLD signals and the underlying SC is an open question that would require a separate study 

comparing the effects of different preprocessing pipelines (Ciric et al., 2017). The removal 

of global signal variance has also applied in a previous study relating structure and function 

in the mouse brain (Stafford et al., 2014). It is important to acknowledge that the application 

of GSR has shown to be effective to reduce the relationship between connectivity and 

motion, but accentuates distance-dependent effects. On the other hand, temporal censoring 

techniques (e.g., scrubbing or spike regression) do appear to be suitable to reduce distance-

dependent effects, but using additional degrees of freedom in return (Ciric et al., 2017). In 
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this work, we preprocessed rs-fMRI data combining these techniques and ensuring a 

minimum temporal window of 9 min to estimate functional interactions between node pairs.

4.5. Effect of anesthesia on functional connectivity

Another very important consideration when examining fMRI data in rodents, and other 

animal models, has to do with the effect of the anesthetic agent on brain physiology (Pan et 

al., 2015). Due to the multi-compartmental origin of fMRI signals (Moreno et al., 2013), 

interference of anesthetics on the neural computations, as well as on the neurovascular 

coupling itself are expected. Advantages and disadvantages of a number of anesthetic 

compounds, as well as mixtures of them, have been reported in the literature (Paasonen et 

al., 2016; Williams et al., 2016). It is well established that the degree of functional inter-

hemispheric coupling is dose-dependent, and previous studies have uncovered bilateral 

functional networks in the rodent brain in a variety of anesthetic agents at lower doses 

(Gozzi and Schwarz, 2016). For instance, whereas the use of urethane anesthesia at higher 

levels (1.5 g/Kg) has compromised functional inter-hemispheric coupling in mice, cortico-

cortical correlations improves when lower doses (1.2 g/Kg) are used (Grandjean et al., 

2014). In this work, where subjects were urethane-anesthetized at 1.2 g/Kg, BOLD signals 

from homotopic ROIs were averaged across hemispheres because bilateral networks were 

uncovered using different seeds (Supplementary Figs. 3, 4 and 5). We note, though, that for 

group studies where subtle inter-hemispheric differences could be of relevance, extraction of 

ROIs should be performed separately. Finally, it is important to highlight that the significant 

match found in our study between FC and SC could be favored by a decrease in the 

repertoire of functional configurations that the system can visit under anesthesia, as 

previously reported in monkeys (Barttfeld et al., 2015). Therefore, the remaining functional 

interactions under anesthesia would most likely reflect the strongest, hard-wired, 

connections in the brain, this is, the structural connectivity.

5. Conclusions

We have proved in this work the structure-function relationship at large-scale of the rat by 

directly comparing the structural and functional connections spanning the brain cortex 

(maximum Spearman rank-order correlation between was type of networks was 0.48), and 

relating second-order properties (reciprocity) and higher-order structural connectivity pattern 

(network motifs) with functional communities. We highlight here the importance of densely 

connected structural motifs in shaping the community structure of functional networks in 

resting-state. The accuracy of computational models of the spontaneous neural activity based 

on the rat structural connectome (maximum Pearson correlation between the empirical and 

functional FC was 0.53) further supports the idea that structural connectivity is coupled to 

and shapes functional connectivity in cortical networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structural and empirical functional networks of the rat cortex. (a) RCAMs matrix built from 

(Bota et al., 2015) (left panel), histogram of the weight distribution (middle panel), and 

structural connections as a function of the Euclidean distance between pairs of ROIs (right 

panel). Color scale represents the categorical weights of structural links (0, not present; 1, 

very weak; 2, weak; 3 weak/moderate; 4, moderate; 5, moderate/strong; 6, strong; 7, very 
strong). (b) Functional connectivity between pairs of ROI time courses (left panel), 

probability density estimate of the Fisher’s z-values (middle panel), and pair-wise functional 

connections as a function of the Euclidean distance between ROIs (right panel). Color scale 

represents the strength of functional interactions between pairs of nodes. The same color 

scale for structural and functional networks is used throughout the work. Each dot represents 

a particular functional connection between pairs of nodes. Euclidean distances are measured 

between centers of mass.
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Fig. 2. 
Pair-wise functional interactions as a function of the underlying structural connections. Box 

and whiskers plots representing the median (horizontal red line), first, Q1, and third, Q3, 

quartiles (blue box), as well as the lower and upper (black) whiskers of the functional 

connections. Those values greater than Q3 + 1.5*(Q3 − Q1) or lower than Q1 − 1.5*(Q3 − 

Q1) were considered as outliers (red crosses).
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Fig. 3. 
Community structure. (a) Different properties were computed at various γ levels (Louvain 

algorithm run 10,000 times): number of communities, modularity function (Q), measuring 

the quality of the obtained consensus partition, and mean and variance of the z-score of the 

rand indices (z-Rand), measuring the similarity over all pairs of partition within scales. 

Partitions below −0.015 and above 0.24 were unstable. For clarity, only scales in the range 

[−0.015, 0.15] are shown, and Q was rescaled between 0 and 10. (b) Functional partition 

obtained at γ = −0.0125 (two communities). (c) Functional partition obtained at γ = 0.005 

(three communities). (d) Functional partition obtained at γ = 0.02 (five communities).
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Fig. 4. 
Network motif analysis. Functionally obtained partitions are imposed over the RCAMs 

matrix (upper row). Statistical evaluation of each of the 13 structural motifs classes (lower 

row) is shown for different binarized versions of the RCAMs matrix, namely, when keeping 

all connections (threshold = 1), removing very weak links (threshold = 2), and removing 

both very weak and weak/moderate links (threshold = 3). (a) Motif analysis at γ = −0.0125. 

(b) Motif analysis at γ = 0.005. (c) Motif analysis at γ = 0.02.
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Fig. 5. 
Comparison between experimental and simulated functional connectivity (FC) matrices. (a) 

Simulated FC network. (b) Empirical FC network. (c) Probability density estimate of the 

simulated FC matrix. (d) Scatterplot showing the linear dependency between experimental 

and simulated FC matrices.
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Table 1

Cortical brain regions used as network nodes in this work. All regions listed were used for simulations, 

whereas those marked with an asterisk were removed for ensuring consistent extraction of BOLD signals 

across rats.

Swanson structure Abbreviation Paxinos&Watson structure Abbreviation

Primary somatomotor area MOp Primary motor cortex M1

Secondary somatomotor areas MOs Secondary motor cortex M2

Primary somatosensory area SSp - Primary somatosensory cortex S1

- Primary somatosensory cortex, barrel field S1BF

- Primary somatosensory cortex, dysgranural region S1DZ

- Primary somatosensory cortex, forelimb region S1FL

- Primary somatosensory cortex, hindlimb region S1HL

- Primary somatosensory cortex, jaw region S1J

- Primary somatosensory cortex, jaw region, oral surface S1JO

- Primary somatosensory cortex, trunk region S1Tr

- Primary somatosensory cortex, upper lip region S1ULp

Supplemental somatonsensory area SSs Secondary somatosensory cortex S2

Visceral area VISC Granular insular cortex GI

Infralimbic area ILA Infralimbic cortex IL

Gustatory area GU Dysgranular insular cortex DI

Main olfactory bulb* MOB - Glomerular layer of the olfactory bulb Gl

- Granular cell layer of the olfactory bulb GrO

- Internal plexiform layer of the olfactory bulb IPl

- Mitral cell layer of the olfactory bulb Mi

- External plexiform layer of the olfactory bulb EPl

Accessory olfactory bulb* AOB - Accessory olfactory bulb AOB

- External plexiform layer of the accessory olfactory bulb EPlA

- Glomerular layer of the accessory olfactory bulb GlA

- Granule cell layer of the accessory olfactory bulb GrA

- Mitral cell layer of the accessory olfactory bulb MiA

Anterior olfactory nucleus AON - Anterior olfactory nucleus, dorsal part AOD

- Anterior olfactory nucleus, external part AOE

- Anterior olfactory nucleus, lateral part AOL

- Anterior olfactory nucleus, medial part AOM

- Anterior olfactory nucleus, posterior part AOP

Tenita tecta TT - Tenia tecta, layer 1 TT1

- Tenia tecta, layer 2 TT2

- Tenia tecta, layer 3 TT3

Piriform area PIR - Piriform layer Pir

- Region external to piriform layer Pir/ext

- Region internal to piriform layer Pir/int

- Piriform cortex PirCtx
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Swanson structure Abbreviation Paxinos&Watson structure Abbreviation

- Cortex amygdala transition zone CxA

Postpiriform transition area* TR Amygdalopiriform transition area APir

Nucleus of lateral olfactory tract* NLOT - Nucleus of the lateral olfactory tract LOT

- Nucleus of the lateral olfactory tract, layer 1 LOT1

- Nucleus of the lateral olfactory tract, layer 2 LOT2

Cortical amygdalar nucleus* COA - Anterior cortical amygdaloid nucleus ACo

- Posterolateral cortical amygdaloid nucleus PLCo

- Posteromedial cortical amygdaloid nucleus PMCo

Primary auditory area AUDp Primary auditory cortex Au1

Secondary auditory areas AUDs - Secondary auditory cortex, dorsal area AuD

- Secondary auditory cortex, ventral area AuV

Secondary visual area VISs - Secondary visual cortex, lateral area V2L

- Secondary visual cortex, mediomedial area V2MM

- Secondary visual cortex, mediolateral area V2ML

Primary visual area VISp - Primary visual cortex, binocular area V1B

- Primary visual cortex, monocular area V1M

Anterior cingulate area, dorsal part ACAd Cingulate cortex, area 1 Cg1

Anterior cingulate area, ventral part ACAv Cingulate cortex, area 2 Cg2

Prelimbic area PL Prelimbic cortex PrL

Orbital area, lateral part* ORBl Dorsolateral orbital cortex DLO

Orbital area, medio-ventral part ORBmv - Medial orbital cortex MO

- Ventral orbital cortex VO

Orbital area, ventrolateral part ORBvl Lateral orbital cortex LO

Agranular insular area, dorsal part AId Agranular insular cortex, dorsal part AID

Agranular insular area, ventral part AIv Agranular insular cortex, ventral part AIV

Agranular insular area, posterior part AIp Agranular insular cortex, posterior part AIP

Retrosplenial area, dorsal part RSPd Retrosplenial granular B cortex RSGb

Retrosplenial area, lateral agranular part RSPagl Retrosplenial agranular cortex RSA

Retrosplenial area, ventral part RSPv Retrosplenial granular A cortex RSGa

Posterior parietal association areas PTLp Parietal association cortex PtA

Temporal association areas* TEa Temporal association cortex TeA

Ectorhinal area* ECT Ectorhinal cortex Ect

Perirhinal area* PERI Perirhinal cortex PRh

Entorhinal area, lateral part* ENTl Lateral entorhinal cortex LEnt

Entorhinal area, medial part, dorsal zone* ENTm Medial entorhinal cortex MEnt

PreParaSubiculum* PREPAR - Presubiculum PrS

- Parasubiculum PaS

Postsubiculum POST Postsubiculum Post

Subiculum, dorsal part SUBd Subiculum, dorsal part DS

Subiculum, ventral part* SUBv Subiculum, ventral part VS

Hippocampal region, dorsal part HIPd - Hippocampus posterior, dorsal part HCpd

- Hippocampus fronto dorsal HCfd
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Swanson structure Abbreviation Paxinos&Watson structure Abbreviation

- Dentate gyrus, dorsal part DGd

- Field CA3 of hippocampus, dorsal part CA3d

- Indusium griseum IG

Hippocampal region, ventral part HIPv - Hippocampus posterior, ventral part HCpv

- Field CA3 of hippocampus, ventral part CA3v

- Dentate gyrus, ventral part DGv

Claustrum CLA Claustrum Cl

Endopiriform nucleus, dorsal part EPd Dorsal endopiriform nucleus DEn

EPv Ventral endopiriform nucleus VEn

Endopiriform nucleus, ventral part*

Lateral amygdalar nucleus* LA - Lateral amygdaloid nucleus, dorsolateral part LaDL

- Lateral amygdaloid nucleus, ventrolateral part LaVL

- Lateral amygdaloid nucleus, ventromedial part LaVM

Basolateral amygdalar nucleus* BLA - Basolateral amygdaloid nucleus, anterior part BLA

- Basolateral amygdaloid nucleus, posterior part BLP

- Basolateral amygdaloid nucleus, ventral part BLV

Basomedial amygdalar nucleus* BMA - Basomedial amygdaloid nucleus, anterior part BMA

- Basomedial amygdaloid nucleus, posterior part BMP

Posterior amygdalar nucleus* PA - Amygdalohippocampal area, anterolateral part AHiAL

- Amygdalohippocampal area, posteromedial part AHiPM
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Table 2

The 13 different structural motif classes which can be obtained for motifs of size M = 3, along with the 

number of functional instances that each can generate.

Structural motif class Number of functional motifs Structural motif class Number of functional motifs

1 10

1 9

1 10

3 10

4 24

3 54

4
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