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Abstract

Background: The cell type composition of heterogeneous tissue samples can be a critical variable in both clinical and
laboratory settings. However, current experimental methods of cell type quantification (e.g., cell flow cytometry) are costly,
time consuming and have potential to introduce bias. Computational approaches that use expression data to infer cell type
abundance offer an alternative solution. While these methods have gained popularity, most fail to produce accurate
predictions for the full range of platforms currently used by researchers or for the wide variety of tissue types often studied.
Results: We present the Gene Expression Deconvolution Interactive Tool (GEDIT), a flexible tool that utilizes gene
expression data to accurately predict cell type abundances. Using both simulated and experimental data, we extensively
evaluate the performance of GEDIT and demonstrate that it returns robust results under a wide variety of conditions. These
conditions include multiple platforms (microarray and RNA-seq), tissue types (blood and stromal), and species (human and
mouse). Finally, we provide reference data from 8 sources spanning a broad range of stromal and hematopoietic types in
both human and mouse. GEDIT also accepts user-submitted reference data, thus allowing the estimation of any cell type or
subtype, provided that reference data are available. Conclusions: GEDIT is a powerful method for evaluating the cell type
composition of tissue samples and provides excellent accuracy and versatility compared to similar tools. The reference
database provided here also allows users to obtain estimates for a wide variety of tissue samples without having to provide
their own data.
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Cell type composition is an important variable in biological and
medical research. In laboratory experiments, cell sample hetero-
geneity can act as a confounding variable. Observed changes in
gene expression may result from changes in the abundance of
underlying cell populations, rather than changes in expression
of any particular cell type [1]. In clinical applications, the cell
type composition of tissue biopsies can inform treatment. For
example, in cancer, the number and type of infiltrating immune
cells has been shown to correlate highly with prognosis ([2, 3, 4]).
Moreover, patients with a large number of infiltrating T cells are
more likely to respond positively to immunotherapy [5].

For many years, cell flow cytometry via fluorescence-
activated cell sorting (FACS) has been the standard method of
cell type quantification. More recently, single-cell RNA sequenc-
ing (scRNA-seq) methods such as 10x Chromium, Drop-Seq, and
Seq-Well have become available [6, 7]. However, both approaches
are hindered by significant limitations. FACS is cumbersome
and expensive, and some sample types require hours of highly
skilled labor to generate data. Similarly, scRNA-seq methods re-
main expensive for large sample studies. Additionally, cell types
such as neurons, myocytes, and adipocytes are difficult for these
technologies to capture owing to cell size and morphology.

Both FACS and single-cell methods have the potential to in-
troduce bias because these technologies require that tissue sam-
ples be dissociated into single-cell suspensions. Many stromal
cell types are tightly connected to one another in extracellu-
lar matrices. The procedures necessary to create single-cell sus-
pensions can damage some cells, while others remain in larger
clusters that are not captured or sequenced. Consequently, sub-
tle differences in sample preparation can produce dramatically
different results [8, 9]. While FACS and single-cell methods can
produce pure samples of each cell type, the observed cell counts
may not accurately represent the cell type abundances in the
original sample. Tools like SCDC and MuSiC use single-cell refer-
ence data to perform bulk deconvolution but require that multi-
subject single-cell data be available for all the cell types of inter-
est, which is not always the case [10, 11].

During the past several years, digital means of cell type quan-
tification, often referred to as cell type deconvolution or de-
composition, have become a popular complement to FACS and
single-cell approaches. However, these methods are still devel-
oping and are often hindered by limitations. For example, the
tools MCP-Counter and xCell allow for deconvolution of a set of
predefined cell types but do not support the inclusion of addi-
tional cell types or subtypes in a user-friendly manner [12, 13].
CIBERSORT is slow to run on large datasets, particularly if sig-
nature genes are not specified, and provides reference data only
for hematopoietic cell types [14].

To overcome some of the limitations of existing cell abun-
dance estimation tools, we present the Gene Expression Decon-
volution Interactive Tool (GEDIT). GEDIT uses gene expression
data to accurately predict cell type composition of tissue sam-
ples. We have assembled a library of reference data from 11
distinct sources and use these data to generate thousands of
synthetic mixtures. To produce optimal results, these synthetic
mixtures are used to test and refine the approaches and parame-
ters used by GEDIT. We compare the performance of GEDIT rela-
tive to other tools using 3 sets of mixtures containing known cell
type proportions: 12 in vitro mixtures of immune cells sequenced
on microarrays, 6 RNA-seq samples collected from ovarian can-
cer ascites, and 8 RNA-seq samples collected from blood. We
also use GEDIT to deconvolute 2 sets of human tissue samples:

21 skin samples from patients with skin diseases and 17,382
samples of varied tissues from the Genotype-Tissue Expression
(GTEx) database. Last, we apply GEDIT to the Mouse Body Atlas, a
collection of samples collected from various mouse tissues and
cell types. We find that GEDIT compares favorably to other cell
type deconvolution tools and is effective across a broad range of
datasets and conditions.

Reference data profiling the expression of purified cell types is
a requirement for reference-based deconvolution. Methods that
do not directly require reference data, such as non-negative ma-
trix factorization, still require knowledge of expression profiles
or marker genes to infer the identity of the predicted compo-
nents. For the present study, we have assembled or downloaded
a set of 11 reference matrices, each containing the expression
profiles of 8-29 cell types (Table 1). These data sources span mul-
tiple platforms, including bulk RNA-seq, microarray, and scRNA-
seq. Complete details on the sources and assembly of these ma-
trices are described in the Methods [14-24].

GEDIT requires as input 2 matrices of expression values. The
first contains expression data that are collected from the mix-
tures that will be deconvoluted; each column represents 1 mix-
ture, and each row corresponds to a gene. The second matrix
contains reference data, with each column representing a puri-
fied reference profile and each row corresponding to a gene. In a
multi-step process, GEDIT uses the reference profiles to predict
the cell type proportions of each submitted mixture (Fig. 1).

We generated a large number of synthetic mixtures in silico to
test the efficacy of GEDIT and to assess how accuracy varies as
a function of 4 parameter choices (SigMeth, NumSigs, MinSigs,
RowScale, described in Table 2). We produced a total of 10,000
simulated mixtures of known proportions using data from 4 ref-
erence matrices: BLUEPRINT, the Human Primary Cell Atlas, 10x
Single Cell, and Skin Signatures. We then ran GEDIT on these
simulated mixtures and evaluated its performance while vary-
ing4 parameter settings (Fig. 2) and other design choices. For this
reason, these synthetic mixtures were not used to evaluate the
performance of GEDIT relative to other tools. Instead, separate
datasets were used for that purpose, as described in the section
“Performance comparison to other deconvolution tools.” On the
basis of these results, we selected default values for each param-
eter (SigMeth = Entropy, NumSigs = 50, MinSigs = 50, RowScale
= 0). Full details on the generation of these simulations are de-
scribed in the “Synthetic Mixture Generation” section of Supple-
mentary Materials and Methods (See.

The first step in the GEDIT pipeline is to render the 2 matrices
comparable. This is done by first excluding all genes that are
not shared between the 2 matrices. Genes that have no detected
expression in any reference cell type are also excluded because
they contain no useful information for deconvolution. Both ma-
trices are then quantile normalized, such that each column fol-
lows the same distribution as every other; this target distribu-
tion is the starting distribution of the entire reference matrix.



Table 1. Library of reference data
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No. of Cell
Matrix Species Reference Platform types Cell types
Human Skin Signatures Human [15] Multi-Microarray 21 Immune
Human Body Atlas Human [16] Affymetrix U133A/GNF1H 13 Immune
Human Primary Cell Atlas ~ Human [17] Affymetrix U133 Plus 2.0 26 Immune and stromal
BLUEPRINT® Human [18] Bulk RNA-Seq 8 Immune
ENCODE? Human [19] Bulk RNA-Seq 29 Mostly stromal
LM22 Human [14] Affymetrix Microarray 22 Immune
10x Single Cell Dataset® Human [20] scRNA-seq 9 Immune
ImmunoStates Human [21] Multi-Microarray 20 Immune
Tabula Muris Mouse [22] scRNA-seq 12 Immune and stromal
Mouse Body Atlas Mouse [23] Affymetrix Mouse Genome 20 Immune and stromal
430 2.0 Array
ImmGen Mouse [24] Affymetrix Gene 1.0 ST 137 Immune with many

subtypes

aMatrices assembled from source data as part of this project. All matrices are compatible with GEDIT and available on the GitHub repository [40].
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Figure 1: The GEDIT pipeline. The input matrices are quantile normalized then reduced to matrices containing only signature genes. Next, a row-scaling step serves
to control for the dominating effect of highly expressed genes. Last, linear regression is performed, and predictions of cell type abundances are reported to the user.

Signature gene selection

GEDIT next identifies signature genes. Gene expression experi-
ments can simultaneously measure tens of thousands of genes,
but many of these genes are uninformative for deconvolution.
Specifically, genes with similar expression levels across all cell

types are of little use because observed expression values in the
mixtures offer no insight into cell frequencies. Genes that are
highly expressed in a subset of cell types are more informative,
and we refer to these as signature genes. By using only signature
genes rather than the entire expression matrix, the problem of
deconvolution becomes more tractable and less computation-



Table 2: GEDIT inputs include 2 matrices and 4 parameter settings

Input Description

RefMat Matrix of purified cell types

MixMat Matrix of mixtures to be deconvoluted
SigMeth Method of signature gene selection

NumSigs Mean number of signature genes per cell type
MinSigs Minimum number of signatures per cell type
RowScale Extent of per-row normalization

Allowed values Default Value
N x M matrix; N is number of genes, M is NA
number of cell types
N x P matrix; N is number of genes, P is NA
number of mixtures
Entropy, MeanRat, MeanDiff, ZScore, fsRat, Entropy
fsDiff

[1, 10,000] 50

[1, NumsSigs] =NumSigs
[0, 1.0] 0

RefMat is an expression matrix documenting the expression profiles of each cell type to be estimated. MixMat is an expression matrix documenting expression values
for each sample to be deconvoluted. SigMeth determines the method by which signature genes are selected. NumSigs determines the total number of signature genes,
whereas MinSigs sets the minimum number of signature genes for each cell type. RowScale refers to the extent to which expression vectors are transformed to lessen
the dominating effect of highly expressed genes, with a value of 0 representing the most extreme transformation. Default values were determined by evaluating

performance on a set of synthetic mixtures (Fig. 2). NA: not applicable.
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Figure 2: Effect of GEDIT parameter choices on accuracy of predictions in simulated experiments. A total of 10,000 simulated mixtures were generated, each using
1 of 4 reference matrices, with either 4, 5, 6, or 10 cell types being simulated. Boxplots display median error (central bar), the first and third quartiles (lower and
upper boundaries of boxes), and outliers beyond 1.5 times the interquartile range (dots and whiskers). Violins display density of observations for each error value.
Deconvolution was performed using a separate expression matrix than the one used to generate the mixtures. When not otherwise noted, we use the following
parameters: signature selection method = entropy; number of signatures = 50; row scaling = 0; and number of fixed genes = number of signatures.

ally intensive. Moreover, identification of signature genes can be
valuable to researchers for other applications (e.g., cell type as-
signment for scRNA-seq data).

To identify the best signature genes in a given reference ma-
trix, GEDIT calculates a signature score for each gene. By default,
this score is computed using the concept of information entropy.
Information entropy quantifies the amount of information in a
probability distribution, with highly uniform distributions hav-
ing the highest entropy. The expression vector for each gene (i.e.,
the set of expression values across all cell types in the reference)
is divided by its sum, such that the entries can be interpreted as
probabilities. Information entropy is then calculated according
to its mathematical definition (see Methods), and genes with the
lowest entropy are selected as signature genes. Entropy is min-

imized when expression is detected only in a single cell type
and maximized when expression values are equal across all cell
types. Thus, by selecting genes with low entropy, we favor genes
that are expressed in a cell type-specific manner. By default, 50
signature genes are selected for each cell type in the reference
matrix. We chose 50 signature genes, and entropy as our scoring
method, because it returned optimal results when run on 10,000
synthetic mixtures (see Fig. 2A and B).

We also evaluated the effect of accepting more signature
genes for some cell types than others, depending on how many
genes have low entropy. In this scheme, on average 50 signa-
ture genes are used per cell type. However, a fourth parameter is
used, which specifies the minimum number of signature genes
per cell type. After these have been selected, remaining signa-



ture genes are added based only on lowest entropy, regardless
of cell type of maximal expression. We found that this param-
eter had minimal effect on accuracy when applied to synthetic
mixtures (Fig. 2C). Therefore, this option is not used by default,
although it can be specified by the user.

One complication in the application of linear regression to gene
expression data is the drastically different scale at which some
genes are expressed. For example, CD14 and THEMIS (Fig. 3) have
both been identified as signature genes: CD14 for monocytes and
THEMIS for CD4-positive (CD4") T cells. However, CD14 is ex-
pressed at much higher levels in most cell types and will have
a larger impact on the estimation of cell type composition, rel-
ative to THEMIS. In other words, the possible penalty resulting
from a poor fit of CD14 is much larger than the penalty from a
poor fit of THEMIS.

To equalize the effect of each signature gene on the linear
regression, we implement a transformation that we term “row
scaling.” Specifically, the range of all observed values for a par-
ticular gene (including reference cell types and samples) is ad-
justed such that the maximum value is 1.0 and the minimum
value is 0. As a result, all genes have a comparable influence
on the calculation of the linear regression solution, regardless
of overall magnitude of expression. This transformation can be
modulated by adjusting the row scaling parameter. By default,
the value of this parameter is 0, and the transformation is ap-
plied as described above. Values between 0 and 1.0 are also
allowed, which reduces the extent of the transformation (see
Methods for details). Linear regression is then performed in R
using the glmnet package, as described in the Methods.

To assess the performance of GEDIT relative to other tools, we
perform an experiment comparing GEDIT to 4 other decon-
volution tools on datasets of known cell type content (CIBER-
SORT, DeconRNASeq, dtangle, and xCell [13, 14, 25, 26]). Non-
deconvolution tools like MCP-counter, SAVANT, and the DCQ al-
gorithm are excluded from this study because they do not pre-
dict cell type fractions [12, 27, 28]. Tools that require single-cell
data, such as MuSiC and CPM, are also excluded because this
study is limited to tools that operate on bulk expression data
[11, 29]. See Table 3 for a summary of current bulk deconvolu-
tion methods.

To perform this study, we use 3 datasets for which cell type
fractions have been estimated using orthogonal methods. Two
of these datasets were used in a recent benchmarking study
[30]. Both are profiled using RNA-seq, and represent samples col-
lected from either human cancer ascites or human blood [31, 32].
In both cases, cell type fractions have been evaluated by FACS.
The final dataset was prepared in vitro and consists of 6 cell types
that were physically mixed together (in known proportions) to
prepare 12 mixtures. These mixtures were then profiled using
an Illumina HT12 BeadChip microarray. Adding to the previous
benchmarking study, we also explore the effect of using 4 sepa-
rate reference datasets: The Human Primary Cell Atlas, LM22,
ImmunoStates, and a reference constructed from BLUEPRINT
data. For each dataset, all tools (except xCell) were run 4 times,
each time using a different reference matrix.

The optimal choice of reference matrix varies greatly de-
pending on the exact combination of tool, dataset, and cell type.
While using LM22 often produces the most accurate results,

there are many exceptions. For instance, DeconRNASeq and
GEDIT produce their best results for the blood dataset when us-
ing the BLUEPRINT reference. For the ascites data, several tools
prefer ImmunoStates as the optimal reference choice. The best
choice of reference is highly dependent on the nature of the in-
put data and on the tool being used. In practice, researchers may
wish to perform deconvolution multiple times—in each case us-
ing a separate reference matrix—and compare results for consis-
tency.

Compared to the other tools, GEDIT produced robust and
consistently accurate results (Fig. 4, Supplementary Figs S1 and
S2). For many tools, the quality of predictions varies greatly de-
pending on the cell type, dataset, or choice of reference ma-
trix. When results are averaged across the 4 possible reference
choices, GEDIT produces the minimum error and maximum cor-
relation for all 3 datasets. This result suggests that GEDIT is a
strong choice when researchers are using novel references ma-
trices that have not been curated or tested.

Last, we perform an evaluation of runtime required for each
tool. We randomly select batches of 100, 200, 500, 1,000, and
2,000 samples from the GTEx database, and measure CPU time
required to deconvolute these batches for each tool. The run-
times of GEDIT, dtangle, and DeconRNASeq scale well with in-
creasing input size, taking <20 minutes (Supplementary Fig. S3).
For larger input sizes, CIBERSORT can take >1 hour.

We also compare GEDIT to 2 contemporary deconvolution tools
that use single-cell data as their reference, namely, SCDC and
MusSiC [10, 11]. We reproduce the steps provided by the SCDC
authors to generate 2 sets of 100 simulated pancreatic mixtures.
These data are created in silico using single-cell data from 2 re-
cent studies, and contain randomized mixtures of «-, 8-, y-, and
§-cells from pancreatic islets [33, 34]. Data from a third study
were used as a reference for all 3 tools, and similarly contain a-,
B-, v-, and §-cells [35]. In the case of SCDC and MuSiC, these data
are used in their original single-cell form. For GEDIT, pseudo-
bulk expression profiles for each of the 4 cell types were created
by averaging the expression values of each member cell (e.g., ex-
pression of all «-cells were averaged to create an a-cell reference
profile).

The results of GEDIT compare favorably to the 2 single-cell
tools (Fig. 5). GEDIT produces the lowest error on the 2 sets of
simulated mixtures by a substantial margin. Based on the met-
ric of correlation between predicted and actual fractions, GEDIT
produces results comparable to SCDC, and either comparable or
superior to MuSiC, depending on the set of mixtures (Fig. 5c, Sup-
plementary Fig. S4). Thus, by using the methodology of averag-
ing cell clusters in the reference dataset, GEDIT can be applied to
datasets suitable for SCDC or MuSiC. We also apply 3 other bulk
deconvolution tools to this same dataset and show that GEDIT
provides the best performance of the 4 (Supplementary Fig. S5).

We further validate GEDIT by using it to deconvolve a set of skin
biopsies from humans with a variety of skin diseases [13]. The
exact cell type composition of these samples is unknown, but we
have reasonable expectations based on skin and disease biology.
For example, macrophages are known to be abundant in gran-
ulomas of leprosy lesions, and Stevens-Johnson syndrome pro-
duces blisters that fill with large numbers of monocytes [36, 37].
We find that, in all cases, predictions made by GEDIT conform
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Cell Type Monocytes Neutrophils B Cells NK Cells CD4+ Tcells Macrophages Mixture 1 Mixture 2
CD14 338.4 163.9 18.9 16.9 19.2 105.9 22.3 95.0
THEMIS 9.7 1.6 8.4 13.2 52.0 8.7 50.3 20.3

Row Scaling Transformation

Cell Type Monocytes Neutrophils B Cells NK Cells CD4+ Tcells Macrophages Mixture 1 Mixture 2
CD14 1.0 0.46 0.01 0 0.01 0.28 0.02 0.24
THEMIS 0.03 0.07 0 0.11 1.0 0.01 0.96 0.27

Figure 3: The “row scaling” transformation, as implemented by GEDIT. CD14 and THEMIS are 2 examples of signature genes with drastically different magnitudes of
expression. CD14 is a signature gene for monocytes, and THEMIS, for CD4" T cells. The original expression vectors are transformed, such that all values fall between
0 and 1.0, equalizing the effect of genes with varying magnitudes of expression.
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Figure 4: Performance of 5 deconvolution tools when applied to a set of 26 physical samples from 3 sources. Actual cell type fractions are either known due to controlled
cell mixing (Cell Mix) or estimated by FACS (Ascites and Blood). In each instance, we calculate the correlation between actual cell type fractions and those predicted
by deconvolution; deeper blues represent higher correlations (A). We similarly calculate mean error, with deeper reds representing higher error (B). We test 4 different
reference datasets for each tool, and averaged correlations across these 5 cases are shown in boxes. We calculate correlations for each cell type (right 5 columns), for
each of the 3 mixtures (middle 3 columns), and for all predictions regardless of cell type or data source.

well with these biological expectations. Keratinocytes are highly Application of GEDIT to mouse data
predicted in most cases, as one would expect with skin sam-

ples (Fig. 6). Deviations from this pattern correspond with dis- GEE_)IT can be used to decomPose data from any organism for
case biology. Monocytes are highly predicted in Stevens-johnson which reference data are av.aﬂable. Here, we demonstrate the
syndrome, as are macrophages in the 3 leprosy samples, and efﬁc.acy of .GEDIT when applied to the Mouse Body Atlrfls, a col-
T cells in the mycosis fungoides (T-cell lymphoma) sample. lection of tissue and cell type samples collected from mice (F}EO:
Three other deconvolution tools were also applied to this GSE10246) [23]. ,AS r.eference data, we assembled a maan of
dataset, and predictions follow similar patterns (Supplementary 12 cell types using Slngle—Fell d.ata from.the Tabula Mu1"1s [22].
Fig. S6). GEDIT correctly infers the identity of purified cell types, includ-

ing 6 samples that consist of either pure NK cells, B cells, T cells,
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or granulocytes (Fig. 7). An entry for macrophages is not available
in the reference used, but most macrophage samples are identi-
fied as monocytes, which is the most similar cell type present in
the reference matrix. For more complex tissues, GEDIT predicts
cell type fractions that correspond to the biology of the sam-
ples. Hepatocytes are predicted to be highly prevalent in the liver
sample (84%) and are not predicted in any other sample (<5% in
all cases). Similar patterns hold for keratinocytes in the epider-
mis, epithelial cells in 2 intestinal samples, and cardiac muscle
cells in heart and muscle samples. Three other deconvolution
tools were also applied to this dataset, and predictions follow
similar patterns (Supplementary Fig. S7).

To assess the use of GEDIT across very large datasets, we applied
the tool to 17,382 GTEx RNA-seq samples collected from vari-
ous tissues and accessed via the GTEx portal [38]. However, no
single reference contained all cell types expected to be present
and combining references from separate experiments and plat-
forms is problematic (Supplementary Figs S8-S10). Therefore, we
took an alternate approach by performing deconvolution 3 times
using 3 separate references (BlueCode, Human Primary Cell At-
las, Skin Signatures). We then combine these outputs by taking
their median value; after normalization, we treat this median
value as a final cell type estimate (see “Deconvolution of GTEx
Database” section in Supplementary Materials and Methods for
more details). While this approach did enable predictions span-
ning a larger number of cell types than are present in any 1 ref-
erence matrix, it must be noted that it is not a proper substitute
for a single unified reference (Fig. 8).

These predictions largely conform to biological expectations.
For example, immune cells are predicted to have high abun-
dance in blood and spleen, adipocytes in adipose tissue, Shwann
cells in nerve and heart, and keratinocytes in skin. Each of these
patterns matches expectations of which cell types should be
present in these tissues. However, neither cardiac myocytes nor
smooth muscle are highly abundant in GTEx muscle samples.
This is likely because the GTEx samples are collected from skele-
tal muscle, which is known to have an expression profile that is
distinct from that of cardiac and smooth muscle.

GEDIT can be run online and source code, associated data, and
relevant files are available via GitHub [40]. We provide access to
the tool, a set of varied reference data, and 2 sample mixture
matrices. The website automatically produces a heat map of pre-
dicted proportions for the user, as well as a .tsv file. The user also
has access to the parameter choices of GEDIT (signature gene se-
lection method, number of signature genes, row scaling).

Signature gene selection

During signature gene selection, we automatically exclude
genes with zero detected expression in half or more of cell types.
Observed expression values of exactly zero are often the re-
sult of either technical artifacts or resolution issues. Using such
genes as signatures can result in inaccurate and highly unsta-
ble results, particularly when working with scRNA-seq derived
data. As an additional safeguard, we treat all remaining expres-

sion values of zero as the lowest observed non-zero value in the
matrix. Implementing this change has minimal effect on most
genes but prevents genes with resolution issues from achieving
artificially high scores. We consider this transformation valid be-
cause values of zero generally do not represent zero expression
but rather an expression level below the detection limit of the
technology used.

For any given gene, a scoring method takes as input the vec-
tor of the expression values across all reference cell types, and
outputs a score. A gene is considered a potential signature gene
in cell type X if it is expressed more highly in X than any other
cell type. For each cell type, we keep only the N genes with the
highest scores, where N is the NumSigs parameter.

Information entropy (H) is calculated using the following for-
mula:

H= =Y n (). &

where p; is the probability of the ith observation. To apply this
to expression values, we convert the vector of expression val-
ues into a vector of probabilities by dividing by its sum. In an
equal mixture of each cell type, the ith probability can be inter-
preted as the fraction of transcripts originating from the ith cell

type.

Row scaling

During this step, we apply a transformation on the expression
values for each gene. Each gene has measured expression in N
purified cell types and M samples. Each of these values, Xq4, is
transformed according to the following formula:

Xnew = (Xoida — Min)/ (Max — Min) * MaxP?, 2

where Min is the minimum of all M + N original values, Max
is the maximum of those values, and p is a tunable parameter
with natural range p € [0, 1.0]. This procedure produces values
between the range of 0 and Max?.

Linear regression

Non-negative linear regression was performed using the glmnet
package in R. The glmnet function is used with lower.limits = 0,
o =0, » = 0, intercept = FALSE. These settings perform a linear
regression where all coefficients are non-negative, and with no
regularization and no intercept term.

A total of 35 gene counts files were downloaded from the
BLUEPRINT database, all collected from venous blood [18]. This
included entries for CD14%, CD16-negative (CD167) classical
monocytes (5 samples), CD38~ naive B cells (1), CD4", a-B T cells
(8), central memory CD4+, «-g T cells (2), cytotoxic CD56-dim NK
cells (2), macrophages (4), mature neutrophils (10), and memory
B cells (1). When 2 or more transcripts appeared for a single gene,
the transcript with the highest average expression was selected
and others were excluded. Genes with no detected expression
in any sample were also excluded, and then each sample was
quantile normalized. Samples generally clustered by cell type,
but we excluded 1 CD4" «-8 T cell. Replicates for each cell type
were then collapsed into a single entry by taking the median
value for each gene.
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Figure 7: GEDIT predictions on 30 samples collected from various mouse tissues and cell types (Mouse Body Atlas [23]). Predictions largely conform with tissue and

cell biology.

ENCODE reference dataset

A total of 106 transcript quantification files were downloaded
from the Encyclopedia of DNA Elements (ENCODE) database [19].
These included all RNA-seq experiments collected from adult
primary cells, excluding 4 with warnings. Warnings indicated
that 3 samples were hindered by low replicate concordance and
1 sample by low read depth, and these samples were excluded.
All samples were processed by the Gingeras Lab at Cold Spring
Harbor and mapped to GRCH38.

The samples were quantile normalized and clustered. In
cases where multiple transcripts were measured for a single
gene, the expression of that gene was calculated as the sum
of all transcripts. At this time, 18 additional samples were ex-
cluded because they did not cluster with their replicates. On the
basis of sample descriptions and data clustering, we found that
the remaining 88 samples represented 28 unique cell types. We
produced an expression profile for each cell type by merging all
samples of that cell type via median average. For example, a
cluster of 19 samples were labeled as endothelial cells (collected
from various body locations) and were merged into a single en-
try termed canonical endothelial cells. This dataset spans a wide

range of stromal cell types (e.g., smooth muscle, fibroblast, ep-
ithelial) but contains only a single entry for blood cells, which
are labeled mononuclear cells.

We also combined the ENCODE and BLUEPRINT reference
matrices into a single reference matrix, which we call BlueCode.
We combined, then quantile normalized, the columns of both
matrices. Possible batch effects in this combined matrix have
not been fully evaluated.

10x Genomics Reference dataset

We obtained single-cell expression data for 9 varieties of im-
mune cells from the 10x Genomics website [20]. This included
>2,446 cells for each cell type, and >7,566 cells for all cells other
than CD14"monocytes. For each cell type, expression values for
all cells were mean averaged to form an expression profile.

Tabula Muris reference dataset

We downloaded from the Tabula Muris single-cell data for 12
clusters of mouse cell types. For each cluster, we averaged all
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Figure 8: GEDIT cell type predictions when applied to 17,382 samples from the GTEx database. Here, predictions have been averaged for each tissue of origin (see

Supplementary Methods for additional details).

cells of that cluster to produce a reference profile for the corre-
sponding cell type.

Other reference datasets

Other datasets used in this project were obtained from their cor-
responding publications or GEO repositories. This includes a ref-
erence matrix of human skin signatures, the Human Body Atlas,
the Human Primary Cell Atlas, LM22, ImmunoStates, the Mouse
Body Atlas, and ImmGen [14-17, 21, 23, 24].

Skin disease data

We obtained expression data from 21 skin biopsies, collected
from human patients with a variety of skin diseases. These data
originally came from a wide range of sources and platforms and
were compiled into a single dataset by previous work [39].

GTEx data

GTEx data for 17,382 samples were obtained from the GTEx por-
tal [38]. We ran GEDIT on all samples 3 times, each time using
a different reference matrix (BlueCode, the Human Primary Cell
Atlas, and Skin Signatures). For each cell type, we calculated our
initial estimate as the median estimate across the 3 sets of pre-
dictions (or fewer, if that cell type is missing 1 of 2 of the refer-
ence matrices). Last, for each sample we divided the vector of
predictions by its sum, such that the final predictions sum to
100%.

Multi-Tool Performance Evaluation
In vitro immune cell mixture
Combinations of 6 immune cells (neutrophils, monocytes, NK

cells, B cells, and CD4" and CD8" T cells) were mixed together
and sequenced using an Affymetrix array. Whole-blood samples

from healthy human donors were supplied with informed con-
sent through a sample-sharing agreement with the UCLA/CFAR
Virology Core Lab. CD4" T cells, CD8" T cells, B cells, and NK
cells were isolated using Stem Cell Technologies (Vancouver,
BC, Canada) RosetteSep negative selection. Neutrophils were
positively selected through the EasySep approach, according
to the manufacturer’s specifications. Cells were then counted
by hemocytometer and added at defined percentages to a to-
tal cell count of 2 million cells to create 6 different mixtures.
Subsequently cells were processed for RNA isolation by All-
Prep DNA/RNA. Illumina HT12 BeadChip microarray was per-
formed by the UCLA Neuroscience Genomics Core. Data were
normalized by quantile normalization through the R “normal-
ize.quantiles” function.

RNA-seq mixtures used for tool evaluation

We also obtained 2 datasets used in a recent benchmarking
study [30]. The first dataset is composed of 3 RNA-seq sam-
ples, each with 2 technical replicates that represent biopsies of
ovarian cancer ascites [32]. The second dataset is composed of
RNA-seq collected from the blood of healthy individuals, some
of whom had recently received an influenza vaccine [31]. These
data were downloaded from the GitHub site for the benchmark-
ing paper, which also contained FACS estimates for 6 cell types
for the ascites data (B cells, dendritic cells, NK cells, T cells,
macrophages, neutrophils) and 5 cell types for the blood data (B
cells, dendritic cells, T cells, monocytes, NK cells) [30]. However,
because dendritic cells were never present at >3.5% abundance,
we did not evaluate performance for this cell type.

Tools

We installed and ran GEDIT, CIBERSORT, DeconRNASeq, and
dtangle on the hoffman2 computational cluster at UCLA. xCell
was run using the online interface [13]. The default choice for
gene signatures (xCell = 64) was used. The RNA-seq option was



selected for the 2 RNA-seq datasets (blood and ascites) but not
for the in vitro dataset, which was sequenced on microarray.

xCell produces 67 output scores, 7 of which were used in this
study. These were the entries labeled “B-Cells,” “Macrophages,”
“Monocytes,” “NK cells,” “Neutrophils,” “CD4+ T cells,” and
“CD8+ T Cells.” As suggested by the xCell authors, the outputs
for CD4* and CD8* T-cell subtypes were summed to produce a
final output for total T cells.

We evaluated the performance of the 4 reference-based tools
(GEDIT, CIBERSORT, DeconRNASeq, and dtangle) using each of 4
choices of reference matrix (LM22, ImmunoStates, BLUEPRINT,
and the Human Primary Cell Atlas). The BLUEPRINT and Human
Primary Cell Atlas reference matrices differ from ImmunoStates
and LM22 in that they contain tens of thousands of genes, many
of which should not be considered signature genes. This con-
trasts to ImmunoStates and LM22; each reference matrix con-
tains <600 genes, which have been specifically identified as sig-
nature genes by previous work [14, 21]. We include both forms of
reference matrices in order to evaluate the input requirements
of the tools studied.

Depending on the choice of reference matrix, reference-
based tools often produce multiple outputs for some cell types,
each representing a cell subtype. This includes B cells (naive and
memory), monocytes (CD14 and CD16), NK cells (resting and ac-
tive), and T cells (many subtypes including varieties of CD4 and
CDS8). In each case, the outputs for each subtype were summed
to produce a total score for each greater cell type.

GEDIT is an expression-based cell type quantification tool that
offers unique flexibility and accuracy in a wide variety of con-
texts. Using both simulated and experimental data, we demon-
strate that GEDIT produces high-quality predictions for multiple
platforms, species, and a diverse range of cell types, outperform-
ing other tools in many cases. We include in the software pack-
age a comprehensive library of reference data, which facilitates
application of GEDIT to a wide range of tissue types in both hu-
man and mouse. GEDIT can also accept reference data supplied
by the user, which can be derived from bulk RNA-seq, scRNA-
seq, or microarray experiments. GEDIT represents a competitive
addition to the suite of existing tissue decomposition tools while
maintaining flexibility and performance robustness.

As part of this project, we performed a study in which we
compared the performance of several deconvolution tools us-
ing multiple metrics. Unlike previous evaluation studies, we ex-
plored the effect of reference choice by running tools multiple
times with reference data from different sources. Choice of op-
timal reference has a large impact on the accuracy of many tools,
but GEDIT provided robust performance and accurate estimates
for many possible reference choices. While all efforts were taken
to perform this comparison in an unbiased manner, we note that
development of the tool was still underway when the first com-
parisons were made. All code and inputs used to reproduce this
study are included in the GitHub repository [40], with the excep-
tion of CIBERSORT code, which is limited by copyright.

The high performance of GEDIT is due to 2 key innovations.
First, signature gene selection by information entropy serves to
select genes that are the most informative for deconvolution.
Second, the row scaling step aims to equally weight all signature
genes into the final estimate, even those with comparatively low

expression. In addition, the flexibility of GEDIT and the diverse
set of reference matrices that we provide allows GEDIT to be eas-
ily applied in a wide range of circumstances.

The output of GEDIT represents the fraction of mRNA origi-
nating from each cell type. This is an effective measure of the
transcriptional contribution of each cell type in a mixture. How-
ever, in cases where some cell types consistently produce more
or less mRNA per cell, this measure may not represent cell
counts. Data capturing the average mRNA content per cell is be-
coming more widely available in the form of single-cell exper-
iments and could in principle be used to convert our fractions
into cell counts.

When extensively applied to several large public datasets,
GEDIT produces predicted cell type fractions that conform with
biological expectations. When used to decompose skin biopsies,
GEDIT finds keratinocytes to be the most abundant cell type.
Variations in the abundance of other cell types conform to ex-
pected immune responses across diseases. Similarly, cell type
predictions of GTEx samples are concordant with our expecta-
tions of the dominant cell types across tissues. Schwann cells,
keratinocytes, adipose cells, and immune cells are found to be
most abundant in nerve, skin, adipose tissue, and blood, respec-
tively.

Single-cell RNA-seq is an emerging approach to study the
composition of cell types within a sample. Owing to biases as-
sociated with the capture of different cell types, these methods
are not always capable of accurately quantifying cell type pop-
ulations [8]. However, the pure reference profiles produced by
existing methods can be used by GEDIT to generate accurate es-
timates of cell type populations. Thus, GEDIT circumvents some
of the biases associated with the preparation of samples for both
scRNA-seq and FACS. GEDIT is freely available and therefore an
economical option for researchers, particularly those who pro-
file expression data for other purposes.

GEDIT produces accurate results when tested on mixtures of
human immune cells. Compared to other tools, GEDIT produces
the lowest error in the majority of scenarios in the studied mix-
tures. GEDIT provides increased flexibility over previously devel-
oped tools, as we provide a set of reference matrices for varied
cell types for both mouse and human datasets.

GEDIT provides unique advantages to researchers, especially
in terms of cell type, species, and platform flexibility, and con-
stitutes a useful addition to the existing set of tools for tissue
decomposition. Our efficient decomposition methodology has
been extensively optimized, and we find that it performs ro-
bustly across a broad range of tissues in both mouse and hu-
man datasets. Our future work will extend reference matrices
to facilitate application of GEDIT on varied bulk gene expression
datasets.

® Project name: GEDIT

* Project home page: https://github.com/BNadel/GEDIT
* Programming languages: Python 2.0, R

¢ Other requirements: numpy, glmnet

® Operating systems: Linux

® License: MIT

All data used in this article are freely available on GitHub [40],
as well as their original sources. Code for DeconRNASeq was
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obtained as an R package from the CRAN repository. Code for
CIBERSORT was obtained by requesting it via the web portal [14],
and code for dtangle from the project’s GitHub page [26].

Reference data are also available from their original sources.
Most datasets can be found on project website pages or from
public databases. These include BLUEPRINT [18], ENCODE [19],
the Human Primary Cell Atlas [17], LM22 [14], 10x Genomics [20],
Tabula Muris [22], the Mouse Body Atlas [23], and ImmGen [24].
Some reference matrices were obtained as supplementary files
from the publications listed in Table 1.

Expression values for the blood and ascites RNA-seq datasets
were obtained from the GitHub repository and are also available
at GEO: GSE64655. The in vitro mixture of immune cells was pre-
pared by our laboratory and is available on our GitHub page. All
supporting data and materials are available in the GigaScience Gi-
gaDB database [41].

Supplementary Materials and Figures. Further details regarding
synthetic mixture generation, deconvolution tool comparisons,
and applications to the skin, mouse, and GTEx datasets.
Supplementary Table S1. Pairs of reference matrices used to gen-
erate synthetic mixtures.

Supplementary Figure S1. Error and correlation values when
benchmarking is performed on 3 datasets (ascites, Hoek, and in
vitro cell mixtures) using each of 5 tools (CIBERSORT, DeconR-
NASeq, dtangle, GEDIT, and xCell) and each of 4 possible refer-
ence matrices (BLUEPRINT, HPCA, ImmunoStates, LM22)
Supplementary Figure S2. Distribution of error values between
predicted and actual fractions when deconvolution is applied to
a set of 100 simulated pancreatic samples. Simulated samples
are created using data single cell data from human pancreas,
and separate single cell data is used to create a bulk reference
matrix.

Supplementary Figure S3. CPU time for deconvolution tasks to
complete when applied to inputs of varying size. Inputs are cre-
ated by selecting varying numbers of samples from the GTEx
database. For each input size, samples were randomly selected
six times and deconvolution performed a total of 24 times, once
for each of 4 tools. The LM22 matrix is used as a reference profile.
Supplementary Figure S4. Predicted cell type fractions for 21 skin
samples using each of 4 tools. Samples represent microarray ex-
pression data from 21 biopsies of skin diseases, and the Skin Sig-
natures matrix is used as a reference.

Supplementary Figure S5. Predicted cell type composition of 30
samples from the Mouse Body Atlas[6]. Samples were profiled
using an Affymetrix U133A/GNF1H microarray. Single cell data
from the Tabula Muris was averaged for each cell type to create
a bulk reference.

Supplementary Figure S6. Cell types present in the 3 reference
matrices used to predict cell type fractions of GTEX samples
Supplementary Figure S7. Clusters formed when the BluePrint,
ENCODE, and Human Primary Cell Atlas (HPCA) matrices are
combined, quantile normalized, then clustered. HPCA cell types
do not cluster with similar cell types in BluePrint or ENCODE,
and instead form an external cluster of only HPCA profiles. This
is likely due to batch or platform specific effects. We explored us-
ing this combined reference to produce predictions for the GTEx
database (see Supplementary Figure S8), but instead took a dif-
ferent approach, as described in the main paper.
Supplementary Figure S8. Results of GEDIT when applied to the
GTEx database when using a combined reference from the Hu-

man Primary Cell Atlas, BluePrint, and ENCODE. Six reference
profiles from the HPCA were added to the BlueCode reference
matrix, then all profiles were quantile normalized. GEDIT was
run on the 17,382 samples from the GTEx database. Predicted
cell type composition is averaged for all samples of the same
tissue (right side of graph).

CPM: Cell Population Mapping; DCQ: Digital Cell Quantifier;
ENCODE: Encyclopedia of DNA Elements; FACS: fluorescence-
activated cell sorting; GEDIT: Gene Expression Deconvolution In-
teractive Tool; GEO: Gene Expression Omnibus; GTEx: Genotype-
Tissue Expression; MCP-Counter: microenvironment cell pop-
ulation counter; mRNA: messenger RNA; MuSiC: Multi-subject
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