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Abstract

Interpreting rare variants remains a challenge in personal genomics, especially for disorders

with several causal genes and for genes that cause multiple disorders. ZNF423 encodes a

transcriptional regulatory protein that intersects several developmental pathways. ZNF423

has been implicated in rare neurodevelopmental disorders, consistent with midline brain

defects in Zfp423-mutant mice, but pathogenic potential of most patient variants remains

uncertain. We engineered ~50 patient-derived and small deletion variants into the highly-

conserved mouse ortholog and examined neuroanatomical measures for 791 littermate

pairs. Three substitutions previously asserted pathogenic appeared benign, while a fourth

was effectively null. Heterozygous premature termination codon (PTC) variants showed

mild haploabnormality, consistent with loss-of-function intolerance inferred from human pop-

ulation data. In-frame deletions of specific zinc fingers showed mild to moderate abnormali-

ties, as did low-expression variants. These results affirm the need for functional validation of

rare variants in biological context and demonstrate cost-effective modeling of neuroanatomi-

cal abnormalities in mice.

Author summary

Gene identification in rare disorders is typically supported by finding different mutations

of the same gene in multiple families with the same disorder. However, causal evidence

for any specific mutation found in one or a few related individuals is weaker, especially if

the disorder can be caused by any of several genes and the functional effect of the muta-

tion is not certain. Experimental models can be helpful in testing causal effects, but only
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to the extent that the model is validated to recapitulate one or more aspects of the disor-

der. We used CRISPR/Cas9-based genome engineering to create a wide range of muta-

tions in mouse Zfp423, whose human cognate is implicated in neurodevelopmental

disorders, especially cerebellar vermis hypoplasia and Joubert syndrome. This large collec-

tion of animal models shows that both reduced Zfp423 expression, including heterozygos-

ity for loss-of-function mutations, and normally-expressed domain deletions, including

specific zinc finger domains, produce measureable abnormalities in midline development.

Despite this high level of validation, most patient-derived amino acid substitution variants

tested did not produce measureable effects. The single exception is a substitution,

H1277Y, that destroys a structural element in the last zinc finger domain and results in

dramatic loss of steady-state Zfp423 protein level.

Introduction

Variant effect prediction remains a challenge in medical genomics [1, 2]. Progress from large

reference databases such as ExAC [3], gnomAD [4], and UK Biobank [5] allows powerful sta-

tistical evidence against pathogenicity, based on allele frequency [6] for rare variants that had

appeared unique to patients in smaller samples. Recessive phenotypes, low or context-depen-

dent penetrance, effects on pre-term viability, and demography, however, may create excep-

tions often enough to be relevant to patients with rare disorders. Population frequencies also

provide limited guidance for singleton and de novo variants. Predictive algorithms based on

evolutionary constraint, physico-chemical similarity between residues, or average replacement

effects in deep mutational scanning data continue to improve, but these constraints are neither

necessary nor sufficient for disease association as loss of human-specific traits may present as

disease while evolution selects on subtler variation than disease presentation. Attempts to

model prediction accuracy can suffer where ground truth is not available and clinical variant

databases in current use include assertions often based on limited evidence. The problem can

be particularly acute for disorders where a substantial number of genes are mutable to overlap-

ping phenotypes, including ciliopathies such as Joubert syndrome and related disorders

(JSRD). For example, ZNF423 mutations have been reported as pathogenic in JSRD patients

[7] and other neurodevelopmental disorders [8], but most patient variants have uncertain sig-

nificance and even those asserted pathogenic in public databases rely on very limited data.

This is true for many rare disorders.

Mice can be a useful model for ZNF423 function. The ZNF423 orthology group is highly

constrained across vertebrates [9]; after accounting for annotation differences in alternative 5’

exons, mouse Zfp423 and human ZNF423 share>98% amino acid identity (99% in zinc finger

domains). Most human variants will therefore be in sequence contexts that are similarly con-

strained in mice. Null mutations in mouse Zfp423 have defects in midline brain development

similar to human JSRD, including anterior rotation of the cerebellar hemispheres and hypo-

plasia or agenesis of the cerebellar vermis with more modest effects on forebrain structures

[10–12]. Roof plate defects in Zfp423 mutant mice also impact development of hindbrain cho-

roid plexus [10, 13]. Other work in mice showed notable effects of Zfp423 on olfactory neuro-

genesis [14], neocortex development [15], adipogenesis [16–18], and wound healing [19].

Gene-trap alleles that reduced expression of an otherwise normal Zfp423 protein showed

hypomorphic phenotypes, indicating a graded response to genetic function [10]. In cerebel-

lum, loss of Zfp423 prevents or limits response to SHH by granule precursor cells ex vivo, con-

sistent with a functional abnormality in the cilium [20]. ZNF423 homologs interact with a
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diverse set of lineage-determining or signal-dependent transcription factors in alternate and

potentially competing complexes [7, 21–26] and mutational effect will likely depend on which

if any of these contacts is altered [27]. Cell-based models may afford screening of all potential

variants in a protein [28–30], but the limited context of cells ex vivo could miss key features of

ZNF423 function as its expression is dynamic across communicating cell types during devel-

opment, including both germinal zones in the cerebellum. Whether (or to what extent) all

ZNF423 interactions and functions are required in any one cell type is not clear. With the abil-

ity to multiplex germline editing at high efficiency and specificity, mouse brain development

might therefore be the simplest robust assay for impact of ZNF423 variants on human brain

development, allowing quantitative assessment of variant effects on brain development at a

scale commensurate with ascertainment of rare disease patient alleles while being agnostic to

developmental stage or cell types in which specific functions are compromised.

Here we developed simple, quantitative measures with good statistical power to assess

structural brain abnormalities in ~50 mouse strains with Zfp423 mutations created by genome

editing. This extensive set of comparisons allowed us to show differences in sensitivity among

phenotypes, test pathogenic potential of patient-derived and other variants, and identify previ-

ously unreported haploabnormality in null allele heterozygotes. Among patient-derived substi-

tution alleles, H1277Y, at a zinc-coordinating histidine in the last of 30 C2H2 zinc fingers, was

effectively null. By contrast, three other patient variants asserted pathogenic or likely patho-

genic based on single patients and algorithmic predictions (R89H, P913L, and E1124K)

appeared benign. Premature truncation variants, including humanized alleles that encode pro-

tein tails to model patient frame-shift variants, were predominantly null with no evidence for

dominant negative activity. An early frame-shift variant in exon 3 was an exception, evading

nonsense-mediated decay to produce a partial protein at reduced abundance and a partial

loss-of-function phenotype. Null allele heterozygotes showed slightly lower weight, smaller

cerebellar vermis, and shorter stride length than control littermates, providing functional evi-

dence for loss-of-function intolerance observed in human population data. In-frame deletions

had a range of domain-specific effects. Deletions that remove zinc finger 1, zinc fingers that

bind BMP-dependent SMAD proteins, or a non-motif region containing two CXXC sites, and

deletions that reduced overall protein expression showed measureable effects, while deletion of

zinc finger 12 did not.

Results

Induction of patient-derived variants and collateral mutations

We developed an editing pipeline using standard CRISPR/Cas9 tools. We prioritized 13

ZNF423 amino acid substitution variants and two frame-shifting alleles from patients (S1

Table). Four substitution alleles and one frameshift were published [7, 8] and reported in Clin-

Var [31] as pathogenic or likely pathogenic; a second frameshift allele was reported in

MyGene2 [32]. Other substitution alleles were patient variants of uncertain significance com-

municated by Drs. Joseph Gleeson and Friedhelm Hildebrandt. Targets were selected to

include a range of predicted effects in commonly used variant effect algorithms (Table 1) and

to include a range of allele frequencies in databases depleted for close relatives and patients

with Mendelian disorders [3, 4]. We edited FVB/NJ embryos because this strain background

improved both postnatal viability of the Zfp423nur12 null mutation and heterozygote breeding

performance relative to C57BL/6J, without compromising penetrance of severe ataxia among

surviving homozygotes [33]. For most variants, we co-injected two or more alternative repair

template oligonucleotides (S2 Table) to create silent substitution controls or edit adjacent sites

in a single injection series.
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We recovered 12 out of 15 designed mutations–10 of 13 intended substitution alleles and

each of two patient frame-shift variants with humanized codons–as well as designed silent con-

trol edits and a large number of collateral mutations (Fig 1A, S3 Table) and verified transmis-

sion by genotyping (S4 Table). Substitution alleles included sites that are highly conserved

among vertebrates, including seven that were invariant among 165 curated orthologs [9]. Most

lie in or adjacent to zinc finger (ZF) domains (Fig 1B) or a non-motif region containing a quar-

tet of conserved cysteine residues with potential to form a C4-class zinc finger and for which

common annotation tools showed wide disagreement on functional predictions (Table 1). Col-

lateral variants included predicted loss of function (pLOF) alleles at several positions in the

coding sequence and in-frame deletions that allowed observations of protein stability and

domain-specific function in vivo. We included several variants that remove specific zinc fin-

gers or conserved regions between zinc fingers in subsequent analyses. A simple measure of

cerebellar vermis width from surface views of the brain was sensitive to heterozygosity for pre-

sumed null alleles and specific to variants that removed critical residues or decreased protein

abundance, while comparison among non-mutant littermate pairs suggested high sensitivity

and power to detect modest differences in 10–15 sample pairs (Fig 1C, S5 Table, and results

below). Importantly, none of the variant effect predictions (Table 1) correctly predicted out-

comes with respect to disease-relevant phenotypes (Fig 1C and below).

Table 1. Effect predictions for ZNF423 substitution variants modeled in this study. Variant (domain) shows position relative to NP_ 055884.2, single-letter amino acid

codes, and position relative to C2H2 zinc fingers (ZF). Column hg38 shows nucleotide position in the hg38 reference assembly with reference/variant nucleotide. For the

gnomAD database (v2), allele count and minor allele frequency (MAF) are given. ClinVar assertions were current at time of writing. Categorical calls and scores are shown

for 8 variant effect predictors.

Variant

(domain)

hg38 gnomAD

(MAF)

ClinVar

2019

PolyPhen2

(HVAR)

SIFT

(Score)

PROVEAN Mutation Taster

(rankscore)

Mutation

Assessor

(rankscore)

VEST3

Rank

score

CADD

PHRED

Envision

R89H

(ZF1)

16:49730782

C/T

18 (6.4 e-

5)

Likely

pathogenic

Benign

(0.001)

Tolerated

(0.282)

Neutral

(0.19)

Polymorphism

(0.261)

Neutral

(0.016)

0.126 19.16 0.99

G132V

(ZF1-2

linker)

16:49638757

C/A

0 - Damaging

(1)

Damaging

(0.002)

Deleterious

(-2.67)

Disease causing

(0.81)

Low (0.225) 0.883 25.6 0.85

S382P

(ZF8-9

linker)

16:49638008

A/G

215 (7.6 e-

4)

Uncertain

significance

Possibly

damaging

(0.72)

Tolerated

(0.254)

Neutral

(-1.65)

Disease causing

(0.345)

Low (0.498) 0.682 24.4 0.92

R760C

(ZF18)

16:49636874

G/A

11 (3.8 e-

5)

- Probably

damaging

(0.82)

Damaging

(0.001)

Deleterious

(-4.83)

Disease causing

(0.588)

Low (0.304) 0.904 28.9 0.74

P913L

(ZF21)

16:49636414

G/A

47 (1.7e-4) Pathogenic Probably

damaging

(0.92)

Damaging

(0.010)

Deleterious

(-3.87)

Disease causing

(0.81)

Medium

(0.833)

0.842 28.5 0.89

Q1008H

(ZF24)

16:49636128

C/G

7 (2.8e-5) - Probably

damaging

(0.88)

Damaging

(0.000)

Deleterious

(-3.61)

Disease causing

(0.457)

Medium

(0.53)

0.848 25.3 0.93

Y1064C

(C4)

16:49635961

T/C

1 (4.2e-6) - Probably

damaging

(0.75)

Damaging

(0.031)

Deleterious

(-5.02)

Disease causing

(0.548)

Low (0.246) 0.815 28.1 0.74

K1071Q

(C4)

16:49635941

T/G

0 - Probably

damaging

(0.65)

Damaging

(0.036)

Neutral

(-1.52)

Disease causing

(0.465)

Low (0.246) 0.577 28.5 0.92

E1124K

(ZF26)

16:49635782

C/T

8 (3.2e-5) Likely

pathogenic

Possibly

damaging

(0.54)

Tolerated

(0.092)

Neutral

(-1.64)

Disease causing

(0.548)

Medium

(0.562)

0.883 23.6 0.98

H1277Y

(ZF30)

16:49491301

G/A

0 Pathogenic Benign

(0.04)

Damaging

(0.002)

Deleterious

(-3.93)

Disease causing

(0.53)

Medium

(0.924)

0.951 24.5 0.92

https://doi.org/10.1371/journal.pgen.1009017.t001

PLOS GENETICS ZNF423 patient variants, truncations, and deletions in mice

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009017 September 14, 2020 4 / 25

https://doi.org/10.1371/journal.pgen.1009017.t001
https://doi.org/10.1371/journal.pgen.1009017


Simple measures are highly sensitive to Zfp423 variants

To test variants for pathogenic potential at moderate to large scale, we looked for phenotypes

that were easily obtained and robust across trials. We observed home cage behavior and video-

graphed mice walking across an open stage to assess gross locomotor activity for each variant

subjectively (S1–S4 Videos). We quantified viability, weight, and anatomical parameters of

brains in both surface view and block face photographs as quantitative phenotypes (S6 Table).

A subset of null-allele heterozygotes was tested in more detail for locomotor behaviors (S7

Fig 1. Zfp423 mutations induced by genome editing affect vermis size. (A) Locations of specific variants are indicated relative to ZNF423 RefSeq protein NP_055884

(dark grey), C2H2 zinc fingers (light grey), and reported binding activities. Frame-shift PTC variants show relative length of altered reading frame (pink bars).

N507Tfs�43 and N1056Qfs�29 were humanized to encode the same frame-shifted peptide as reported patient variants. For in-frame deletions (green bars), the number

of deleted base pairs is shown. (B) Schematic of a C2H2 zinc finger shows relative positions of patient substitution alleles relative to consensus hydrophobic (blue)

residues and required zinc-coordinating residues (grey background). (C) Ratio of mutant to control vermis width measured from surface views of same-sex littermate

pairs. Each dot represents one littermate pair. Female pairs, red, male pairs, blue. A few pairs were measured as freshly dissected, unfixed material (open circles), which

did not noticeably affect the relative measure. PTC heterozygous, H1277Y homozygotes, homozygotes for each in-frame deletion except N507d111, and all PTC

homozygous variants were significantly different from both the expected null model and empirical wild-type:wild-type comparisons.

https://doi.org/10.1371/journal.pgen.1009017.g001
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Table). To avoid potential confounding effects of age, sex, maternal care, or other factors that

might vary across a large colony, all tests were conducted on co-housed, same-sex littermates

and scored as mutant/control ratio (anatomy) or differences (behavioral latencies). Variants

were studied concurrently by investigators blinded to genotypes.

Each measure showed large effects of Zfp423 premature termination codon (PTC) alleles in

homozygotes, with gross ataxia and cerebellar vermis hypoplasia showing complete pene-

trance. Predicted null variants had no detectable Zfp423 protein on Western blots, with a

detection limit�5% of control littermate levels, except D70Vfs�6, which showed a reduced

level of a lower molecular weight protein unique to that allele (Fig 2A and S1 Fig). For protein-

null alleles (PTC variants except D70Vfs�6), homozygotes were recovered at reduced fre-

quency and several null animals identified at P10-P15 died prior to assessment, showing a rela-

tively broad window for lethal events (Fig 2B). Among survivors, locomotor disability was

severe and never overlapped controls (S1 Video). None of 72 Zfp423-null brains had measure-

able vermis in surface photographs (Fig 1C). Nearly half of those with mid-sagittal block face

views (30/66) showed a small amount of cerebellar tissue, largely due to compression of lateral

hemispheres toward the midline (Fig 2C and 2D). Midline fiber tract (corpus callosum and

anterior commissure) and cortical thickness measures distinguished mutant from control

groups, but with smaller relative magnitude and incomplete penetrance (Fig 2E–2J). Among

forebrain phenotypes, corpus callosum had the largest effect and highest penetrance, while

anterior commissure effects were only evident across a larger population of animals. PTC

homozygotes were smaller than littermates, with lower weight at sacrifice (Fig 2K and 2L).

These results generalized findings from earlier studies and put quantitative parameters on

magnitude and penetrance for hindbrain, forebrain, and weight measures.

Loss of function heterozygotes showed reduced vermis, weight, and stride

without evidence for dominant negative activity

Having a large set of protein-negative PTC alleles across the full of the coding sequence

allowed us to compare presumptive null alleles and distinguish potential haploabnormalities

from dominant negative effects. PTC variants whose RNAs escape nonsense-mediated decay

often enough to produce detectable levels of variant protein can have dominant negative

genetic properties, by decoupling functional domains relative to the non-mutant protein [34].

Early PTCs can result in protein translation from an alternative initiation codon [35, 36] or

exon skipping, while late PTCs could produce truncated proteins if they escape nonsense-

mediated decay (NMD). Zfp423 has a highly unusual gene structure, including 4-kb internal

coding exon (Fig 1) and variant effects in situ might differ from assays performed in cell cul-

ture on compact gene structures according to the proposed “long exon rule” [36, 37]. In Chaki

et al. [7], one of us (B.A.H.) speculated that JBTS19 patients carrying one PTC variant hetero-

zygous to an apparently normal allele might have dominant negative activity, supported by

transfection assays with a corresponding cDNA in a human cell line. To test this in vivo and to

learn more about how PTC variants behave in the context of a very large exon structure, we

examined 16 mouse lines carrying different PTC variants at distinct positions relative to exon

boundaries and encoded protein domains.

Heterozygotes for PTC variants that do not produce detectable protein should also be a

good test of sensitivity, since multiple labs previously reported only recessive phenotypes from

several alleles [10–12, 27]. Physical measures were slightly decreased on average in heterozy-

gotes compared to sex-matched littermates across PTC variants for which homozygotes were

protein-negative. Vermis width (Fig 3A) and weight at sacrifice (Fig 3B) each had a ~3–4%

decrease with strong statistical support (p<10−6), while anterior commissure measure had a
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Fig 2. Zfp423 frameshift and nonsense mutations are effectively null, except D70Vfs�6. (A) Western blots detected full length Zfp423 in

perinatal cerebellum of control samples. Among PTC homozygotes, D70Vfs�6 and a deletion of terminal exon 8 showed altered-size proteins at

reduced levels. No consistent evidence for residual protein was seen for any other PTC variants, detection threshold�5% wild-type level. N-

terminal, Bethyl A304-017A. C-terminal, Millipore ABN410. Cross-reacting background bands were independent of PTC position. (B) Reduced

frequency of homozygotes for each PTC at biopsy (P10-P20) from breeding records. Summary chi-square is for protein-null alleles (excluding
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1.4% decrease with nominal support (p = 0.046 after Benjamini-Hochberg correction for false

discovery). In contrast, average thickness of cortex (p = 0.11) and corpus callosum (p = 0.38)

D70Vfs�6). (C) Mid-sagittal images showed variable amount of midline cerebellar tissue in mutants, with residual tissue attributable to

hemispheres. (D) Ratio of midline cerebellum area (mutant/control) from block face images. Coronal block face images showed abnormal

forebrains, including (E, F) disrupted or reduced corpus callosum (cc), (G, H) reduced anterior commissure (ac), and (I, J) reduced cortical

thickness, measured as the average radial distance at 15˚, 30˚ and 45˚ from midline (black lines). (K) Representative surface views. Vermis width as

plotted in Fig 1 is indicated (black line). (L) PTC mutants had reduced body weight at sacrifice. (D, F, H, J, L) Averages and Wilcoxon signed-rank

test p-values for ratio = 1 for combined data from all PTC alleles excluding D70Vfs�6 are shown. Female pairs red, male blue. Scale bars, 1 mm.

https://doi.org/10.1371/journal.pgen.1009017.g002

Fig 3. PTC heterozygotes have mild haploabnormalities. (A) Vermis width in heterozygotes for individual protein-negative PTC variants relative to control

littermates. Y-axis was shifted relative to Figs 1 and 2 to emphasize distribution within the range of observed values. Bottom right corner, mean and p-value for all PTC

heterozygotes, combined N = 165, one-sample t-test for true ratio = 1. (B) Weight at sacrifice, combined N = 163. (C) Western blots showed reduced steady-state level of

Zfp423 protein in neonatal cerebellum of PTC heterozygotes relative to reference littermate. (D) Normalized values among PTC heterozygotes with independent

antibodies showed typical values between 0.5 and 1 relative to control littermates in neonatal cerebellum. (E-H) Behavioral tests for locomotor coordination on

littermate pairs for two PTC heterozygotes, H503Qfs�11 (N = 18) and N1056Qfs�29 (N = 24), either coisogenic on FVB (filled circles) or as B6xFVB F1 hybrids (open

circles). (E) Hanging wire task performance scores and fall latencies. Wilcoxon signed rank test, N = 43. (F) Elevated beam escape task. (G) Rotating rod fall latencies

across six successive trials per pair and average ratio across all six trials. P-value is one-sample t-test for average difference being 0. (H) Footprint analysis for stride

length in each paw and width between left and right paws. FL front left, FR front right, BL back left, BR back right, FW front paw stride width, BW back paw stride

width. P-values for one-sample t-tests for average differences equal to 0.

https://doi.org/10.1371/journal.pgen.1009017.g003
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showed little evidence for heterozygote effects, perhaps due to the modest effect size on cortex

even in null animals and the comparatively high variance on corpus callosum measures.

Infrared fluorescence Western Blots from neonatal cerebellum (Fig 3C and S2A Fig) sup-

ported average expression ratios between 0.56–0.73 with two different antibodies (N = 29 com-

parisons for A304, 26 for ABN410), albeit with substantial variation across experiments (Fig

3D). Expression ratio greater than 0.5 is consistent with a proposed negative autoregulatory

activity of Zfp423 [38]; it may also reflect changes in tissue composition of cell types and states,

although the strongest source perinatally should be granule cell precursors, which decrease in

mutant animals [10, 20]. With these caveats, identification of mild phenotypes in null hetero-

zygotes places limits on the degree of protein functional deficit required to produce pheno-

types relevant to disease modeling for structural abnormalities.

Quantified measures of locomotor function, performed by a core facility blind to genotype

and experimental goals, supported a modest difference only in stride length for PTC heterozy-

gotes. Joint analysis of two heterozygous variants, H503Tfs�11 (N = 18 littermate pairs) and

N1056Qfs�29 (N = 24 littermate pairs), did not identify significant differences by genotype on

a hanging wire task for grip strength and coordination (Fig 3E), elevated beam escape (Fig 3F),

nor accelerating rotating rod (Fig 3G) tasks for locomotor coordination. Footprint analysis for

gait parameters showed ~5% reduced stride length that was independently significant for each

variant, although potentially confounded by animal size as assessed by weight, with no

detected difference in front or back stride width (Fig 3H). These data supported better sensitiv-

ity and cost effectiveness of anatomical measures than simple behavioral measures to perturba-

tions in Zfp423 function in mice.

Differential effects near either end of the open reading frame

Despite being created on the more sensitive B6 background, D70Vfs�6 showed milder pheno-

types than all other PTC variants, while a 91-bp deletion that removed just the nine terminal

residues encoded by exon 8 on the FVB background appeared similar to null variants. Western

blots showed that D70Vfs�6 produced a detectable pool of lower-molecular weight Zfp423 pro-

tein (Fig 4A and S2B Fig), presumably by translational initiation after the introduced stop

codon at position 72 in its first open reading frame. The next available in-frame AUG is at

position 118, between ZF1 and ZF2, and would include each of the previously annotated bind-

ing domains. The exon 8 deletion produced a protein of near-normal size, but one that must

lack both histidine residues from ZF30, which is required for binding EBF proteins [26, 39]

and at substantially reduced steady-state level (Fig 4B and S2C Fig). D70Vfs�6 homozygotes

have mild to moderate ataxia and hypomorphic anatomical features, most notably vermis

hypoplasia (Fig 4C and 4E). In contrast loss of exon 8 had severe anatomical abnormalities,

including nearly complete loss of vermis and corpus callosum in all six animals assessed (Fig

4D and 4E). Each of these mutations had significantly reduced frequency of homozygote off-

spring from heterozygote crosses (Fig 4F). These two mutations showed somewhat unexpected

features of Zfp423 functional organization and reinforced the need for empirical testing of pre-

dicted variant effects.

H1277Y is pathogenic in mice, three other asserted mutations and six VUS

are not

We assessed 10 patient-derived substitution alleles: four asserted pathogenic in ClinVar and

six rare variants of uncertain significance spanning a range of allele frequencies in public data-

bases from zero to 7.6 x 10−4 (Table 1 and Fig 1). Each position is highly conserved across ver-

tebrates, except R89H. Eight lie in or adjacent to C2H2 zinc fingers (Fig 1B) or a putative C4
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zinc finger [9]. Among these ten, only H1277Y showed a severe disease-related abnormality

while none of the others was distinguishable from control littermates in our assays.

H1277Y was identified in a patient with cerebellar vermis hypoplasia, nephronophthisis,

and perinatal breathing abnormalities [7]. By replacing a zinc-coordinating histidine with

tyrosine, H1277Y should disrupt the structure of ZF30, which is required for interaction with

EBF family proteins [26, 39]. Mice homozygous for the H1277Y variant showed many features

of null alleles, including gross ataxia (S2 Video and S3 Video), vermis agenesis, reduced corti-

cal thickness, and incomplete corpus callosum (Fig 5A) while a silent control edit was indistin-

guishable from control littermates (Fig 5B). Zfp423 H1277Y protein had substantially reduced

Fig 4. D70Vfs�6 is hypomorphic while deleting exon 8 is approximately null. (A) Western blots from neonatal cerebellum from independent trios with two different

antibodies against Zfp423 showed a reduced amount of lower molecular weight protein derived from the D70Vfs�6 mutation. (B) Similar blots from two trios for

deletion of exon 8, encoding the final nine amino acids of ZF30, showed reduced level of near-full length protein. (C) D70Vfs�6 anatomical phenotypes included

reduced cerebellum size. Scale bars, 1 mm. (D) Exon 8 deletion phenotypes approximate those of null alleles despite persistent protein. Scale bars, 1 mm. (E)

Quantification of anatomical measures from D70Vfs�6 (Δ59) and exon 8 deletion (Δ91) homozygote and control littermate pairs. (F) P-values from one-sample t-test (t)

or non-parametric Wilcoxon Signed Rank test (np) for anatomical measures. (G) Both D70Vfs and exon 8 deletion showed reduced frequencies of homozygotes in

crosses.

https://doi.org/10.1371/journal.pgen.1009017.g004
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abundance in neonatal cerebellum, similar to the exon 8 deletion and consistent with struc-

tural destabilization of the terminal zinc finger (Fig 5C and S2D Fig). Quantitative measures

from multiple same-sex littermate pairs show full penetrance of severe defects in surviving

mutants of both sexes for cerebellar vermis hypoplasia, loss of corpus callosum at the midline,

cortical thickness, and body weight (Fig 5D). Retrospective analysis of breeding records

showed reduced frequency of homozygotes for H1277Y, but not the silent substitution control

allele (Fig 5E). These results confirm the pathogenic nature of H1277Y for structural brain

abnormalities.

The other three asserted pathogenic variants were not sufficient to induce JSRD-like or

other obvious phenotypes, nor were any of the tested VUS alleles. P913L was identified by

homozygosity in a consanguineous patient with cerebellar vermis hypoplasia, nephronophthi-

sis, and situs inversus [7]. R89H and E1124K were found together in a patient with macroce-

phaly, extended subarachnoid spaces, and thin corpus callosum [8]. Each of these variants was

absent in contemporaneous control subjects. Each was later found in new and larger public

databases, but only at low allele frequencies (1.8 x 10−4 to 3.2 x 10−5, Table 1) and only as het-

erozygotes. Using a minimum 10 replicate sample pairs in mice, we did not identify any defect

in vermis, midline forebrain phenotypes, or gait for P913L (S3 Fig, S4 Video), nor for R89H or

E1124K homozygous mice, nor for R89H/E1124K compound heterozygous mice (S4 Fig).

Substitution variants heterozygous to a null allele did not show any effect in smaller sample

Fig 5. H1277Y is pathogenic and has reduced protein abundance. (A) Surface and block face views of same-sex littermates show H1277Y midline defects similar to

null alleles, including complete loss of vermis, loss of corpus callosum crossing, and reduced cortical thickness. Scale bars, 1 mm. (B) Silent substitution H1277H is

indistinguishable from control littermates. (C) Western blots with antibodies to amino-terminal (top) or carboxy-terminal (bottom) domains show dramatic loss of

Zfp423 protein abundance. Results from two distinct trios shown. (D) Ratios relative to control same-sex littermates quantify loss of vermis, midline corpus callosum,

cortex thickness, and body weight for H1277Y, but not H1277H. (E) Breeding records show reduced frequency of H1277Y, but not H1277H, homozygotes from

heterozygote crosses.

https://doi.org/10.1371/journal.pgen.1009017.g005
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sizes. For P913L, we created the same mutation on the more sensitive B6 background, again

with no evidence for an effect on brain structures typically affected in Zfp423 mutants nor

reduction in protein level (S1C Fig, S2E Fig, S3 Fig). Pooling all substitution variants except

H1277Y and its silent control H1277H to test for a generalized substitution effect at high

power (N = 179 littermate pairs) did not produce statistical support for abnormality in any

measure before correction for multiple tests (p>0.15 all tests). These data confirmed the path-

ogenic nature of H1277Y, but supported a more benign interpretation of all other non-synony-

mous substitutions tested.

Deletions that remove SMAD-binding fingers or a potential C4-ZF domain

produce intermediate alleles

We examined several in-frame deletions (Fig 1A) for Zfp423 protein abundance and brain

phenotypes. Recovered examples included distinct Zfp423 functional domains (Fig 6A), sev-

eral of which had notable reductions in cerebellar vermis (Fig 6B). Several variants with strong

phenotypes also significantly affected protein level (Fig 6C, S1C Fig, and S5 Fig) and we could

therefore not distinguish between functional requirement for a domain and destabilization of

the protein due to awkward breakpoints, although comparison to null heterozygotes suggested

that strong phenotypes associated with>75% of control expression levels probably indicates a

sequence-specific function.

Cerebellar vermis was the most sensitive anatomic measure to in-frame deletions as a class

(Figs 1C and 6D). Impact of intermediate alleles on corpus callosum measures had high vari-

ance that limited power after correction for multiple tests (Fig 6E) and lacked effect magnitude

for simple measures of cortical thickness (Fig 6F). As a group, in-frame deletions slightly

decreased body weight (Fig 6G).

Mutations that substantially reduced protein level also had the strongest effects on vermis

measures. Overlapping deletions in ZF15 (E675Δ18A, E675Δ18B) and ZF24 (M995Δ9,

M995Δ15), and a single small deletion in ZF18 (R760Δ18), each of which is predicted to desta-

bilize the C2H2 structure by removing critical residues, all reduced protein expression level

and reduced cerebellar vermis midline area by approximately half.

Four mutations removed significant protein-coding sequences without reducing measured

protein level: G132Δ18 p.del(Leu125-Glu130), which removes 6 amino acids in the sequence

between ZF1 and ZF2; N507Δ111 p.del(Arg500-Ile536), which removes ZF12 in the BRE-bind-

ing region; R760Δ261 p.del(E675-K761), which fuses ZF15 to ZF18 while deleting ZF16-ZF17

in the SMAD-binding region (R760Δ147 and Δ75 also delete fingers within the SMAD region);

and N1056Δ210 p.del(Thr1032-Gly1102)>Arg, which removes part of ZF25 and all of the C4

ZF-like sequence. Surprisingly, deletion of ZF12 (N507Δ111) in the annotated BRE-binding

region had no measurable effect. The small deletion between ZF1 and ZF2 (G132Δ18) had a

nominal effect (mean = 0.97, p = 0.035, one-sample t-test, N = 12). However, deletions in the

SMAD-binding region that did not disrupt C2H2 structural elements and retained near-nor-

mal protein levels (R760Δ261, R760Δ147, and R760Δ75) each showed a strong intermediate

phenotype, consistent with independent SMAD-domain deletions reported by Casoni et al.

[27]. Deletion of ZF25 and putative C4 ZF (N1056Δ210) showed a similar degree of vermis

hypoplasia, providing the first evidence for organic function of these domains. These results

showed that Zfp423 brain structural phenotypes were sensitive to most in-frame deletions,

often including reduced protein levels, and that different ZF domains or clusters had different

degrees of sensitivity. That in-frame deletions were hypomorphic rather than effectively null

reinforced the idea that Zfp423 coordinates activities among its interaction partners rather

than being an essential component of one pathway.
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Fig 6. In-frame deletions that remove critical regions or reduce protein abundance are hypomorphic. (A) Schematic as in Fig 1 shows the locations relative

to 30 C2H2 zinc fingers and known binding regions of in-frame deletions with example data below. (B) Surface views, coronal, and sagittal block face

preparations of brains from typical control and in-frame deletions G132Δ18, N507Δ111, R760Δ261, R760Δ147, T951Δ12, M995Δ9, and N1056Δ210. Scale bars,

1 mm. (C) Western blots show Zfp423 proteins in newborn cerebellum for control, heterozygote, and mutant littermates for each variant. (D) Cerebellum

midline area, (E) Corpus callosum midline thickness, (F) Cortex thickness as the average of three points at 15˚, 30˚, and 45˚ from midline, and (G) Weight at

sacrifice each expressed as the ratio of mutant to wild-type same-sex littermate controls for 15 in-frame deletion mutations.

https://doi.org/10.1371/journal.pgen.1009017.g006
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ZF1 deletion has a reproducibly mild phenotype

The D70Vfs�6 long open reading frame lacks N-terminal residues including the first zinc fin-

ger. To determine how much of this phenotype is attributable to loss of ZF1 rather than other

N-terminal residues or reduced Zfp423 protein level, we examined three distinct deletions that

remove ZF1. One in-frame deletion recovered in the course of modeling patient substitution

variants on the FVB background removed all of exon 3 (R89 d345, Fig 1A and 1C), including

ZF1 and ~40 other residues. To test the requirement for ZF1 specifically we constructed two

smaller deletions (Δ57, Δ63) targeting just the ZF domain in the more sensitive B6 background

(Fig 7A). Both targeted alleles expressed Zfp423 protein at levels similar to control littermates

(Fig 7B and 7C) and differed only slightly in deletion breakpoints relative to the coding

sequence (Fig 7D). All three mutations resulted in slightly smaller cerebellar vermis (Fig 7A

and 7E), but less severe than D70Vfs�6 and comparable to reductions seen in null allele hetero-

zygotes. This showed that while ZF1 contributed to Zfp423 function in hindbrain develop-

ment, it had a smaller effect size than features required for protein production and stability or

SMAD binding.

Discussion

Genomic medicine for rare disorders is often limited by the ability to interpret rare variants.

Databases such as ClinVar catalog clinical variants from multiple sources, but report patho-

genic assertions based on varied, evolving, and sometimes unclear standards of evidence. Algo-

rithmic predictions and cell models have many benefits, including potential to score all

possible single variants, but are prone to errors if the input-output relationships of the assess-

ment do not scale with the impact protein function on the relevant organ system. Attempts to

validate effect predictions using clinical variant databases may be somewhat circular if the clin-

ical variants were classified in part on the same criteria as the classifier, such as evolutionary

constraint or physico-chemical properties of the substituted residue. Here we showed that cur-

rent variant effect predictors failed to predict major outcomes for patient ZNF423 variants

accurately. While a minority of variant effect predictors (VEST3, Mutation Assessor) correctly

ranked H1277Y as the most likely to be deleterious, neither of these categorically separated

this from more benign variants. In contrast, we showed that simple quantitative phenotypes

based on domain expertise of a small team can rapidly assess a large array of variants in whole-

animal models in a cost-effective manner.

We confirmed H1277Y as a pathogenic variant, while providing evidence against three

other variants previously asserted pathogenic or likely pathogenic and six rare/singleton VUSs

(Table 1). The quantification of heterozygote phenotypes, as well as inclusion of collateral vari-

ants that remove domains or reduce protein abundance, demonstrated sensitivity of simple

assays based on prior genetic analyses to relatively modest genetic perturbation. Simple mea-

sures with low variance, such as vermis width, allowed adequate sampling for high statistical

power and detection of structural changes less than 5% of mean values in the brains in hetero-

zygous animals. This strengthens the interpretation that substitution alleles with no abnormal-

ity are benign with respect to major brain phenotypes. By examining in-frame deletion

variants, we confirmed the importance of the SMAD-binding ZF cluster, showed that deletion

of ZF25 plus a conserved non-motif segment with potential to form a C4-class zinc finger in a

region previously implicated in ZNF423 protein self-association is sufficient to cause interme-

diate decrease in vermis size, and that ZF1 had detectable, but limited, impact on studied phe-

notypes despite strong conservation across species. Surprisingly, deletion of ZF12 in the BRE-

interacting zinc finger cluster had no detectable effect in any of our outcome measures.
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Limitations

While ZNF423-homologous proteins are 98.5% identical in amino acid sequence and previous

studies from several laboratories established strong homology between mouse Zfp423 and

human JSRD phenotypes, the degree of sensitivity to mutation could be non-linear. Human

and mouse brains, while homologous in structure, develop on different physical and temporal

scales. Amino acid substitutions that alter a binding surface could potentially have differential

effects depending on conservation of specific binding partners, although this seems unlikely

given strong homology of known partners. In order to test many variants rapidly at high

power, we focused on simple and less-expensive measures. It is possible that more intensive

studies on any specific variant might identify a phenotype, but these are unlikely to be severe

in the context of laboratory mice. We also have not examined impacts on other systems, such

as olfactory epithelium and adipose tissue, where Zfp423 null mutants have known pheno-

types. While acknowledging these caveats in principle, we nonetheless found high sensitivity

of the mouse brain models to even modest genetic perturbation, including heterozygosity for

loss-of-function alleles.

Prospects

Well-powered results from experimental models should inform and modify clinical interpreta-

tion of rare alleles. Previous studies identified several variants studied here as pathogenic or

likely pathogenic in subjects with JSRD or other neurodevelopmental abnormalities based on

being rare variants in a gene with known phenotypic overlap and other properties typically

associated with causal variants. However, new evidence should update our expectations and

interpretations. For example, P913L was proposed as causal based on its being homozygous in

an affected child from a consanguineous pairing, not detected in a control population, and

conserved across available vertebrate sequences. Subsequent studies, however, found this allele

at modest frequency in the general population, which should reduce confidence in a patho-

genic role. In our models, we see no evidence, even on the most sensitive genetic background,

for pathogenic consequences of this allele, which should further reduce confidence in a patho-

genic interpretation. This variant should now be regarded as likely benign. Similarly, R89H

(which is not highly conserved) and E1124K (which is) were reported as likely pathogenic

based on being rare or novel in humans and found together in a rare patient. Neither allele

when homozygous, nor the two together in trans, nor E1124K in trans to a null allele showed

any significant effect on anatomical measures. Interpretation of these variants should also now

be modified to likely benign. In contrast, H1277Y, which was strongly predicted to destroy a

critical structural residue in the final C2H2 domain, both reduced protein abundance and

showed essentially null phenotypes. Interpretation of this variant should now be updated to

experimentally supported pathogenic.

More generally, the ability of a single research team to harness domain-specific knowledge

to test multiple variants in parallel should improve model-based evidence for causal variants.

Our results reinforce the idea that evolutionary constraint is sensitive to much smaller effect

sizes than Mendelian disorders and predictions based primarily on constraint are likely prone

Fig 7. ZF1 deletions had modest, but measureable impact. (A) Surface views and block face views from control and mutant same-sex littermate

pairs for in-frame deletions removing 345 bp (Δexon3) or smaller fragments within exon 3 (Δ57, Δ63) on FVB or B6 coisogenic backgrounds. Scale

bars, 1 mm. (B, C) Western blots show similar levels of Zfp423 protein in control, heterozygote, and mutant newborn cerebellum for Δ57 and Δ63

mutations. (D) Peptide sequence encoded by exon 3, with zinc finger 1 schematized and deletion boundaries indicated in light orange (Δ57) or red

(Δ63). Structural hydrophobic residues are blue as in Fig 1B. (E) Ratios between mutant and same-sex littermate controls for vermis width (redrawn

from Fig 1C), vermis midline area, corpus callosum midline thickness, average cortical thickness, and weight at sacrifice are shown. P-values are

shown for one-sample t-test (t) or non-parametric Wilcoxon signed rank test (np).

https://doi.org/10.1371/journal.pgen.1009017.g007
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to false positive calls. Indeed, seven of ten missense positions studied here were otherwise

invariant across 165 diverse vertebrates [9]. Pathogenic variant H1277Y was unique among

these in removing a structural requirement for its C2H2 domain, which also reduced protein

abundance. A similar logic may limit the predictive value of bulk replacement data from muta-

tional scanning experiments. Incorporating domain-level constraints, like zinc-coordinating

residues in zinc fingers, might improve the specificity of useful algorithms. While animal mod-

els do not scale sufficiently to test all possible variants, we showed here that mouse models can

scale adequately to test plausible variants identified in patients for a rare disorder in order to

refine molecular diagnoses. In addition, features that distinguish model-pathogenic from non-

pathogenic variants may add to predictive power for untested variants.

Materials and methods

Genome editing

All editing experiments used CRISPR/Cas9 ribonucleoproteins (RNPs) based on S. pyogenes
Cas9. Guide sequences were selected for limited off-target potential using public, web-based

tools [40, 41]. Modified (AltR) crRNA guides and tracrRNA were purchased from IDT. Stan-

dard and Hi-Fi variant Cas9 proteins were purchased from IDT and New England Biolabs.

Single-stranded oligonucleotide donors for homology-dependent repair (Ultramers and

Megamers) were purchased from IDT. Injections of FVB/NJ and C57BL/6N one-cell stage

embryos were performed in the Rebecca and John Moores UCSD Cancer Center Transgenic

Mouse Shared Resource. Guide sequences, predicted scores, RNP assembly conditions, and

editing results are given in S1 Table and S2 Table.

Mutation discovery and validation

Pups derived from injected embryos were screened for developmentally early mutations by

PCR-based Sanger sequencing of 500-bp to 700-bp PCR products from crude tail tip lysis

DNA preparations. Screening primer sequences are given in S3 Table. Transmission to F1 off-

spring was confirmed by allele-specific PCR and/or additional DNA sequencing (S4 Table).

For mutations with large effects, predicted off-target sites were sequenced to reduce potential

for false-positive effects. All variants were also studied across multiple lines and/or backcross

generations to further guard against undetected collateral variants by segregation.

Variant effect prediction

PolyPhen2 [42], SIFT [43], PROVEAN [44], MutationTaster [45], MutationAssessor [46],

VEST3 [47], CADD [48], and others were run on VCF files for studied patient variants using

wANNOVAR [49] from its web interface (http://wannovar.wglab.org/). A subset of predic-

tions were re-run through their stand-alone web pages for validation. Envision scores [50]

were obtained from the Envision web site (https://envision.gs.washington.edu/shiny/

envision_new/). Categorical calls (if any) and scores are listed in Table 1. Scales differ across

algorithms; original references should be consulted for interpretation.

Stock maintenance

Mice were maintained by backcross to FVB/NJ or C57BL/6J and by intercrosses to obtain

desired genotypes. Mice were maintained in a specific pathogen free (SPF) facility on 12 h

light, 12 h dark cycle in high-density racks with HEPA-filtered air and ad libitum access to

water and food (LabDiet 5P06).
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Western blots

Cerebellums were manually dissected from young litters (P0-P4) and individually frozen prior

to genotyping. Samples from littermate pairs and trios with desired genotypes were homoge-

nized in RIPA buffer supplemented with protease inhibitors (Millipore Sigma P8340) using a

small glass dounce (20 strokes). Protein extracts were quantified with BCA assays. 52 μg sam-

ples run through Laemmli SDS-PAGE gels before transfer to nitrocellulose membranes (Bio-

Rad 1620112). A subset of blots were incubated with Ponceau-S to visualize protein transfer

and subjected to image analysis to quantify bulk protein per lane as a reference for subsequent

measures. Zfp423 protein was detected using an antibody to residues 250–300 (A304-017A,

Bethyl Labs) or residues near the carboxylterminal end of the protein (ABN410, Millipore)

with IR-700 conjugated goat anti-rabbit secondary antibody (Rockland 611130122) and detec-

tion on a LiCor Odyssey fluorescence imaging station. Processed blots were reprocessed with a

cocktail of anti-phosphoprotein antibodies (Millipore Sigma, P3430, P3300, and P3555; with

an IR-800 conjugated secondary antibody) as a proxy for total protein. Gel images were quan-

tified in ImageJ and measurements were recorded as background-corrected Zfp423 signal nor-

malized to either Ponceau-S or phosphoproteins.

Anatomical measures

Samples were prepared, photographed, and measured by an investigator blinded to genotypes.

For fixed preparations, deeply anesthetized animals were perfused with phosphate buffered

saline followed by 4% paraformaldehyde and brains were removed into fresh 4% paraformal-

dehyde at 4˚C for 12–24 h and 15–30% sucrose for 24–48 h. Brains were imaged through a dis-

secting microscope (Zeiss Stemi 2000-C) with a digital camera (Nikon DS-Fi1) using

standardized zoom and distance settings and a standard ruler in frame to verify scale. Paired

samples were processed together and imaged consecutively. Anatomical features were mea-

sured in ImageJ (v1.52a). For surface images, brains were aligned on a swivel-mount platform

and photographed dorsal side up. Vermis width was measured at the middle of the folium-

tuber lobule (VII). Cerebellar hemisphere height was measured as a vertical line drawn from

the dorsal-most point of the simple lobule. Coronal and sagittal block face preparations were

made using a standard mouse brain matrix (Zinc Instrument) with the sample aligned anteri-

orly. Coronal cuts were made at the rostral end of the optic chiasm, through the striatum. Sag-

ittal cuts were made at the midline. Cut brains were mounted on a rotating platform to hold

each surface perpendicular to the lens. For cortical thickness, three lines were drawn using the

ImageJ ROI Manager, one each at 15 degrees, 30 degrees, and 45 degrees counter-clockwise

from vertical, starting at a point where the line would be perpendicular to the angle of the

brain surface, and ending at the dorsal side of the corpus callosum; the average of these three

measurements was used for each animal. The thickness of the corpus callosum and anterior

commissure were measured with vertical lines at the midline and the width of the brain was

measured with a horizontal line across the coronal surface at its widest point. Vermis area was

measured from midline sagittal block face image using the polygon selections tool in ImageJ to

manually define the region of interest.

Locomotor assays

Gross locomotor function was assessed in home cages and by allowing each test animal and

same-sex littermate control to walk freely across a small stage with video recordings for a mini-

mum of three crossings. Rotating rod, footprint pattern, hanging wire, and beam walking tests

were performed on same-sex littermate pairs in the Scripps Research Institute Animal Models

Core Facility by staff blinded to genotype and hypothesis and following standard protocols.
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Animals included roughly equal numbers of male pairs and female pairs for each genotype

tested.

Rotating rod test. Latency to fall from an accelerating rotating rod assessed a combina-

tion of proprioceptive, vestibular, fine motor, and motor learning capabilities required to

avoid falling [51]. Animals were placed on the apparatus (Roto-rod Series 8, IITC Life Sci-

ences, Woodland Hills, CA) prior to acceleration. Latency to fall was recorded by sensing plat-

forms below the rotating rod. Mice were tested in two sets of 3 trials separated by 2 hours.

Footprint pattern test. Footprint pattern analysis assessed basic gait parameters [51–53].

Non-toxic paint was applied to each paw, with front and back paws distinguished by color.

Each mouse was placed at one end of a runway covered in paper and allowed to walk until

their paws no longer left marks. Forelimb and hindlimb stride lengths (left and right) and

front and back leg stride widths were measured the average of three full strides was used for

each mouse’s values. Mice that did not make 3 measurable strides were excluded.

Hanging wire test. The hanging wire test assessed grip strength and coordination [54,

55]. Mice were held so that only their forelimbs contact an elevated metal bar (2 mm diameter,

45 cm long, 37 cm above the floor) parallel to the ground and released to hang. Each mouse

had three trials separated by 30 seconds. Each trial was scored 0 (mouse fell off), 1 (hung onto

the wire by two forepaws), 2 (hung onto the wire by two forepaws and attempted to climb

onto the wire), 3 (hung onto the wire by two forepaws plus one or both hindpaws), 4 (hung

onto the wire by all four paws plus tail wrapped), or 5 (escaped to the ring stand holding the

bar or climbed down the stand to the table). Latency to falling off was measured up to a maxi-

mum of 30 s.

Elevated beam test. Escape latency and observed foot slips during escape on a narrow

beam further assessed locomotor coordination [51]. Three successive trials were recorded.

Average escape time and total number of slips were compared between genotypes.

Statistical analyses

Target samples sizes were estimated from literature and refined according to power calcula-

tions based on the observed standard deviations for wild-type littermate pairs as an empirical

null model. Retrospective analysis was performed in the R package pwr (v1.2–2, https://github.

com/heliosdrm/pwr) or stand-alone software G�power (v3.1.9.2, [56]). Hypothesis tests were

performed in R (v3.5.1 [57]). A one-sample t-test was performed for same-sex littermate

ratios = 1, or the non-parametric Wilcoxon Signed Rank test if the data distribution showed

significant departure from normality by the Shapiro-Wilk test. Multiplicity corrections for

family-wise error rate and false discovery rate with mutant classes and false discovery rate

across all genotypes are given in S5 Table. Graphical output was in R base graphics or ggplot2

(v3.1.0 [58]) with ggbeeswarm (v0.6.0 https://github.com/eclarke/ggbeeswarm).

To estimate statistical power, we first analyzed non-mutant same-sex littermate pairs, for

which data accumulated more quickly than for any specific variant. Vermis width and cortical

thickness measures both showed paired sample ratios with low variance and approximately

normal distribution. Power calculation for a one-sample t-test estimated 90% power to detect

a 10% difference with 5–6 paired samples for a nominal alpha = 0.05 or 10–12 samples after

Bonferroni correction for ~50 variants tested for each measure. Other measured values had

larger variance (and in some cases incomplete penetrance) and required transformation to

meet normality. Vermis width was also the most sensitive measure for variants with any effect

(see above). Based on these observations, we set vermis as the primary outcome and 10 sex-

matched littermate pairs as a target minimum sample size for testing quantitative effects of

Zfp423 variants.
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Ethics statement

All animal experiments were approved by the University of California San Diego Institutional

Animal Care and Use Committee (UCSD-IACUC) under protocol S00291.

Supporting information

S1 Table. Embryo injections and recovered mutations. Cas9 editing formulations and fre-

quency of recovered founders are given.

(XLSX)

S2 Table. Single-stranded donors used for homology-dependent repair (HDR). Ultramer

and Megamer sequences. Essential variants are shown in red, silent substitutions intended to

bias repair or improve genotyping in blue.

(XLSX)

S3 Table. Screening primers. Cas9 guide sequences, target sites, and PCR primers used for

screening and sequencing potential founders.

(XLSX)

S4 Table. Genotyping assays and strains deposited to MMRRC. Primers sequences, restric-

tion enzymes if needed, product sizes, and gel conditions for all variants analyzed. MMRRC

stock numbers are included for nine strains accepted by the repository.

(XLSX)

S5 Table. Nominal and corrected p-values for each genotype. One-sample tests of mutant/

control ratios for each mutation and seven phenotypes. Family-wise error rate (FWER) and

false discovery rate (FDR) corrections are listed within each mutational class (i.e., substitu-

tions, in-frame deletions, premature termination codons) for each phenotype. False discovery

rate across all genotypes for a phenotype are also listed.

(XLSX)

S6 Table. Physical measures of sex-matched littermate pairs. Primary physical measures for

each tested animal, organized by littermate pair.

(XLSX)

S7 Table. Locomotor measures sex-matched littermate pairs. Primary behavioral measures

for each tested animal, organized by littermate pair.

(XLSX)

S1 Fig. Related to Fig 2. Western blot loading controls and quantification. (A) Full images

for N-terminal blots in Fig 2A. A304-017A antibody detects Zfp423 (black arrowhead) and a

variable conformational isomer (gray arrowhead) in control samples as well as a

D70Vfs�6-specific protein (purple arrowhead). Molecular weight (kDa) of size marker bands

is shown to the left. Membranes re-probed with a cocktail of antibodies againt phosphoserine,

phosphothreonine, and phosphotyrosine show approximately even loading. The major band

difference in D70Vfs sample was shown in other blots to be a difference between B6 and FVB

strain backgrounds. Ponceau-S staining of the membrane before antibody application also

shows approximately equal loading. (B) Western blots and stained membranes used for C-ter-

minal antibody ABN410. (C) Approximate quantification by infrared imaging of all blots in

this work. All measures adjusted to loading controls and plotted as ratio to wild-type control

sample on the same membrane. Dots are measure from A304-017A, crosses from ABN410.

Colors indicate genotypes with non-mutant controls in black, heterozygotes in brown and
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homozygous mutants in red.

(TIF)

S2 Fig. Related to Figs 3–5. Western blots and loading controls. Full blots and Ponceau-S

stained membranes for blots shown in Fig 3C (A), Fig 4A (B), Fig 4B (C), 5C (D) and S3C Fig.

Size marker molecular weight in kDa is shown to the left. Position of the primary Zfp423 band

is indicated by a black arrowhead to the right of the blot and the inconsistent conformational

isomer by a gray and any consistently observed mutant specific band is indicated by a purple

arrowhead.

(TIF)

S3 Fig. Related to Fig 5. P913L is not pathogenic in mice. (A) Surface views of brains from

control and mutant same-sex littermate pairs shows grossly normal brains for P913L substitu-

tion allele edited independently on FVB/NJ and C57BL/6 (B6) strain backgrounds. (B) Fore-

brain images show apparently normal structure for P913L mutant on both backgrounds, while

highlighting different extent of lateral ventricles between strains at this place of section. (C)

Western blots for FVB-P913L (top) or B6-P913L (bottom) with antibody against residues 250–

300 (A304-017A) show normal Zfp423 protein abundance. Results from two distinct trios

shown. Ratios between same-sex littermates for (D) vermis area at midline, corpus callosum

thickness at midline, average cortical thickness at 15˚, 30˚ and 45˚ from midline, and body

weight fail to identify defects in P913L homozygotes. Scale bars, 1 mm.

(TIF)

S4 Fig. Related to Fig 5. R89H and E1124K are not pathogenic in mice. (A) Dorsal surface,

coronal forebrain, and sagittal hindbrain views from control and mutant same-sex littermate

pairs showed grossly normal brains for R89H homozygous, E1124K homozygous, or R89H/

E1124K compound (trans) heterozygous animals on FVB/NJ background. Ratios between

same-sex littermates for (B) vermis midline area, (C) average cortical thickness, (D) midline

corpus callosum thickness, and (E) weight at sacrifice fail to identify significant deviations for

any of these genotypes. Scale bars, 1 mm.

(TIF)

S5 Fig. Related to Fig 6. Western blots and loading controls. Full blots and loading control

images for in-frame deletion variants G132Δ18 (A), N507Δ111 (B), R760Δ147 and R760Δ261

(C), M995Δ9 (D), T951Δ12 (E), and N1056Δ210 (F). Size marker molecular weight in kDa is

shown to the left. Position of the primary Zfp423 band is indicated by a black arrowhead to the

right of the blot and the inconsistent conformational isomer by a gray and any consistently

observed mutant specific band is indicated by a purple arrowhead.

(TIF)

S6 Fig. Related to Fig 7. Western blots and loading controls. Full blots and loading control

images for 57-bp (A) and 63-bp (B) in-frame deletions of zinc finger 1. Size marker molecular

weight in kDa is shown to the left. Position of the primary Zfp423 band is indicated by a black

arrowhead to the right of the blot and the inconsistent conformational isomer by a gray and

any consistently observed mutant specific band is indicated by a purple arrowhead.

(TIF)

S1 Video. Ataxic gait in N1056Qfs�29 homozygote compared with sex-matched littermate

control.

(MP4)
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S2 Video. Ataxic gait in H1277Y homozygote compared with sex-matched littermate con-

trol.

(MP4)

S3 Video. Normal gait in H1277H control mutant compared with sex-matched littermate

control.

(MP4)

S4 Video. Normal gait in P913L homozygote compared with sex-matched littermate con-

trol.

(MP4)
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human exomes and genomes reveals the spectrum of loss-of-function intolerance across human pro-

tein-coding genes. bioRxiv. 2019:531210. https://doi.org/10.1101/531210

5. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide genetic data on

~500,000 UK Biobank participants. bioRxiv. 2017:166298. https://doi.org/10.1101/166298

6. Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, et al. Reassessment of Mendelian

gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med.

2017; 19(2):192–203. https://doi.org/10.1038/gim.2016.90 PMID: 27532257; PubMed Central PMCID:

PMC5116235.

7. Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, et al. Exome capture reveals ZNF423 and

CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012; 150

(3):533–48. https://doi.org/10.1016/j.cell.2012.06.028 PMID: 22863007; PubMed Central PMCID:

PMC3433835.

8. Karaca E, Harel T, Pehlivan D, Jhangiani SN, Gambin T, Coban Akdemir Z, et al. Genes that Affect

Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease.

Neuron. 2015; 88(3):499–513. https://doi.org/10.1016/j.neuron.2015.09.048 PMID: 26539891; PubMed

Central PMCID: PMC4824012.

9. Hamilton BA. ZNF423 orthologs are highly constrained in vertebrates but show domain-level plasticity

across invertebrate lineages. bioRxiv. 2020:2020.03.09.984518. https://doi.org/10.1101/2020.03.09.

984518

10. Alcaraz WA, Gold DA, Raponi E, Gent PM, Concepcion D, Hamilton BA. Zfp423 controls proliferation

and differentiation of neural precursors in cerebellar vermis formation. Proc Natl Acad Sci U S A. 2006;

103(51):19424–9. https://doi.org/10.1073/pnas.0609184103 PMID: 17151198; PubMed Central

PMCID: PMC1748242.

11. Cheng LE, Zhang J, Reed RR. The transcription factor Zfp423/OAZ is required for cerebellar develop-

ment and CNS midline patterning. Dev Biol. 2007; 307(1):43–52. https://doi.org/10.1016/j.ydbio.2007.

04.005 PMID: 17524391; PubMed Central PMCID: PMC2866529.

12. Warming S, Rachel RA, Jenkins NA, Copeland NG. Zfp423 is required for normal cerebellar develop-

ment. Mol Cell Biol. 2006; 26(18):6913–22. https://doi.org/10.1128/MCB.02255-05 PMID: 16943432;

PubMed Central PMCID: PMC1592861.

13. Casoni F, Croci L, Vincenti F, Podini P, Massimino L, Cremona O, et al. ZFP423 regulates early pattern-

ing and multiciliogenesis in the hindbrain choroid plexus. bioRxiv. 2020:2020.03.04.975573. https://doi.

org/10.1101/2020.03.04.975573

14. Cheng LE, Reed RR. Zfp423/OAZ participates in a developmental switch during olfactory neurogen-

esis. Neuron. 2007; 54(4):547–57. https://doi.org/10.1016/j.neuron.2007.04.029 PMID: 17521568;

PubMed Central PMCID: PMC2866517.

15. Massimino L, Flores-Garcia L, Di Stefano B, Colasante G, Icoresi-Mazzeo C, Zaghi M, et al. TBR2

antagonizes retinoic acid dependent neuronal differentiation by repressing Zfp423 during corticogen-

esis. Dev Biol. 2018; 434(2):231–48. https://doi.org/10.1016/j.ydbio.2017.12.020 PMID: 29305158.

16. Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, et al. Transcriptional control of preadipocyte

determination by Zfp423. Nature. 2010; 464(7288):619–23. https://doi.org/10.1038/nature08816 PMID:

20200519; PubMed Central PMCID: PMC2845731.

17. Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, Cohen P, et al. Zfp423 expression identifies

committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 2012;

15(2):230–9. https://doi.org/10.1016/j.cmet.2012.01.010 PMID: 22326224; PubMed Central PMCID:

PMC3366493.

18. Shao M, Hepler C, Vishvanath L, MacPherson KA, Busbuso NC, Gupta RK. Fetal development of sub-

cutaneous white adipose tissue is dependent on Zfp423. Mol Metab. 2017; 6(1):111–24. https://doi.org/

10.1016/j.molmet.2016.11.009 PMID: 28123942; PubMed Central PMCID: PMC5220400.

19. Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y, et al. Regeneration of fat cells from

myofibroblasts during wound healing. Science. 2017; 355(6326):748–52. https://doi.org/10.1126/

science.aai8792 PMID: 28059714; PubMed Central PMCID: PMC5464786.

20. Hong CJ, Hamilton BA. Zfp423 Regulates Sonic Hedgehog Signaling via Primary Cilium Function.

PLoS Genet. 2016; 12(10):e1006357. https://doi.org/10.1371/journal.pgen.1006357 PMID: 27727273;

PubMed Central PMCID: PMC5065120.

PLOS GENETICS ZNF423 patient variants, truncations, and deletions in mice

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009017 September 14, 2020 23 / 25

https://doi.org/10.1038/nature19057
https://doi.org/10.1038/nature19057
http://www.ncbi.nlm.nih.gov/pubmed/27535533
https://doi.org/10.1101/531210
https://doi.org/10.1101/166298
https://doi.org/10.1038/gim.2016.90
http://www.ncbi.nlm.nih.gov/pubmed/27532257
https://doi.org/10.1016/j.cell.2012.06.028
http://www.ncbi.nlm.nih.gov/pubmed/22863007
https://doi.org/10.1016/j.neuron.2015.09.048
http://www.ncbi.nlm.nih.gov/pubmed/26539891
https://doi.org/10.1101/2020.03.09.984518
https://doi.org/10.1101/2020.03.09.984518
https://doi.org/10.1073/pnas.0609184103
http://www.ncbi.nlm.nih.gov/pubmed/17151198
https://doi.org/10.1016/j.ydbio.2007.04.005
https://doi.org/10.1016/j.ydbio.2007.04.005
http://www.ncbi.nlm.nih.gov/pubmed/17524391
https://doi.org/10.1128/MCB.02255-05
http://www.ncbi.nlm.nih.gov/pubmed/16943432
https://doi.org/10.1101/2020.03.04.975573
https://doi.org/10.1101/2020.03.04.975573
https://doi.org/10.1016/j.neuron.2007.04.029
http://www.ncbi.nlm.nih.gov/pubmed/17521568
https://doi.org/10.1016/j.ydbio.2017.12.020
http://www.ncbi.nlm.nih.gov/pubmed/29305158
https://doi.org/10.1038/nature08816
http://www.ncbi.nlm.nih.gov/pubmed/20200519
https://doi.org/10.1016/j.cmet.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22326224
https://doi.org/10.1016/j.molmet.2016.11.009
https://doi.org/10.1016/j.molmet.2016.11.009
http://www.ncbi.nlm.nih.gov/pubmed/28123942
https://doi.org/10.1126/science.aai8792
https://doi.org/10.1126/science.aai8792
http://www.ncbi.nlm.nih.gov/pubmed/28059714
https://doi.org/10.1371/journal.pgen.1006357
http://www.ncbi.nlm.nih.gov/pubmed/27727273
https://doi.org/10.1371/journal.pgen.1009017


21. Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A, Massague J. OAZ uses distinct DNA-

and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell. 2000; 100

(2):229–40. https://doi.org/10.1016/s0092-8674(00)81561-5 PMID: 10660046.

22. Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA, et al. ZNF423 is critically required

for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell. 2009;

15(4):328–40. https://doi.org/10.1016/j.ccr.2009.02.023 PMID: 19345331; PubMed Central PMCID:

PMC2693316.

23. Ku M, Howard S, Ni W, Lagna G, Hata A. OAZ regulates bone morphogenetic protein signaling through

Smad6 activation. J Biol Chem. 2006; 281(8):5277–87. https://doi.org/10.1074/jbc.M510004200 PMID:

16373339.

24. Masserdotti G, Badaloni A, Green YS, Croci L, Barili V, Bergamini G, et al. ZFP423 coordinates Notch

and bone morphogenetic protein signaling, selectively up-regulating Hes5 gene expression. J Biol

Chem. 2010; 285(40):30814–24. https://doi.org/10.1074/jbc.M110.142869 PMID: 20547764; PubMed

Central PMCID: PMC2945575.

25. Signaroldi E, Laise P, Cristofanon S, Brancaccio A, Reisoli E, Atashpaz S, et al. Polycomb dysregula-

tion in gliomagenesis targets a Zfp423-dependent differentiation network. Nat Commun. 2016; 7:10753.

https://doi.org/10.1038/ncomms10753 PMID: 26923714; PubMed Central PMCID: PMC4773478.

26. Tsai RY, Reed RR. Cloning and functional characterization of Roaz, a zinc finger protein that interacts

with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J Neurosci.

1997; 17(11):4159–69. https://doi.org/10.1523/JNEUROSCI.17-11-04159.1997 PMID: 9151733.

27. Casoni F, Croci L, Bosone C, D’Ambrosio R, Badaloni A, Gaudesi D, et al. Zfp423/ZNF423 regulates

cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron pro-

genitors. Development. 2017; 144(20):3686–97. https://doi.org/10.1242/dev.155077 PMID: 28893945;

PubMed Central PMCID: PMC5675449.

28. Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D, et al. High-resolution mapping

of protein sequence-function relationships. Nat Methods. 2010; 7(9):741–6. https://doi.org/10.1038/

nmeth.1492 PMID: 20711194; PubMed Central PMCID: PMC2938879.

29. Fowler DM, Fields S. Deep mutational scanning: a new style of protein science. Nat Methods. 2014; 11

(8):801–7. https://doi.org/10.1038/nmeth.3027 PMID: 25075907; PubMed Central PMCID:

PMC4410700.

30. Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, et al. Prospective functional

classification of all possible missense variants in PPARG. Nat Genet. 2016; 48(12):1570–5. https://doi.

org/10.1038/ng.3700 PMID: 27749844; PubMed Central PMCID: PMC5131844.

31. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to

variant interpretations and supporting evidence. Nucleic Acids Res. 2018; 46(D1):D1062–D7. https://

doi.org/10.1093/nar/gkx1153 PMID: 29165669; PubMed Central PMCID: PMC5753237.

32. Chong JX, Yu JH, Lorentzen P, Park KM, Jamal SM, Tabor HK, et al. Gene discovery for Mendelian

conditions via social networking: de novo variants in KDM1A cause developmental delay and distinctive

facial features. Genet Med. 2016; 18(8):788–95. https://doi.org/10.1038/gim.2015.161 PMID:

26656649; PubMed Central PMCID: PMC4902791.

33. Alcaraz WA, Liu Z, Valdes P, Chen E, Valdovino Gonzalez AG, Wade S, et al. Strain-dependent modi-

fier genes determine survival in Zfp423 mice. bioRxiv. 2020:2020.05.12.091629. https://doi.org/10.

1101/2020.05.12.091629

34. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987; 329

(6136):219–22. https://doi.org/10.1038/329219a0 PMID: 2442619.

35. Cohen S, Kramarski L, Levi S, Deshe N, Ben David O, Arbely E. Nonsense mutation-dependent reinitia-

tion of translation in mammalian cells. Nucleic Acids Res. 2019; 47(12):6330–8. https://doi.org/10.1093/

nar/gkz319 PMID: 31045216; PubMed Central PMCID: PMC6614817.

36. Lindeboom RG, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in

human cancers. Nat Genet. 2016; 48(10):1112–8. https://doi.org/10.1038/ng.3664 PMID: 27618451;

PubMed Central PMCID: PMC5045715.

37. Hoek TA, Khuperkar D, Lindeboom RGH, Sonneveld S, Verhagen BMP, Boersma S, et al. Single-Mole-

cule Imaging Uncovers Rules Governing Nonsense-Mediated mRNA Decay. Mol Cell. 2019; 75

(2):324–39 e11. https://doi.org/10.1016/j.molcel.2019.05.008 PMID: 31155380; PubMed Central

PMCID: PMC6675935.

38. Cho YW, Hong CJ, Hou A, Gent PM, Zhang K, Won KJ, et al. Zfp423 binds autoregulatory sites in P19

cell culture model. PLoS One. 2013; 8(6):e66514. https://doi.org/10.1371/journal.pone.0066514 PMID:

23762491; PubMed Central PMCID: PMC3675209.

PLOS GENETICS ZNF423 patient variants, truncations, and deletions in mice

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009017 September 14, 2020 24 / 25

https://doi.org/10.1016/s0092-8674%2800%2981561-5
http://www.ncbi.nlm.nih.gov/pubmed/10660046
https://doi.org/10.1016/j.ccr.2009.02.023
http://www.ncbi.nlm.nih.gov/pubmed/19345331
https://doi.org/10.1074/jbc.M510004200
http://www.ncbi.nlm.nih.gov/pubmed/16373339
https://doi.org/10.1074/jbc.M110.142869
http://www.ncbi.nlm.nih.gov/pubmed/20547764
https://doi.org/10.1038/ncomms10753
http://www.ncbi.nlm.nih.gov/pubmed/26923714
https://doi.org/10.1523/JNEUROSCI.17-11-04159.1997
http://www.ncbi.nlm.nih.gov/pubmed/9151733
https://doi.org/10.1242/dev.155077
http://www.ncbi.nlm.nih.gov/pubmed/28893945
https://doi.org/10.1038/nmeth.1492
https://doi.org/10.1038/nmeth.1492
http://www.ncbi.nlm.nih.gov/pubmed/20711194
https://doi.org/10.1038/nmeth.3027
http://www.ncbi.nlm.nih.gov/pubmed/25075907
https://doi.org/10.1038/ng.3700
https://doi.org/10.1038/ng.3700
http://www.ncbi.nlm.nih.gov/pubmed/27749844
https://doi.org/10.1093/nar/gkx1153
https://doi.org/10.1093/nar/gkx1153
http://www.ncbi.nlm.nih.gov/pubmed/29165669
https://doi.org/10.1038/gim.2015.161
http://www.ncbi.nlm.nih.gov/pubmed/26656649
https://doi.org/10.1101/2020.05.12.091629
https://doi.org/10.1101/2020.05.12.091629
https://doi.org/10.1038/329219a0
http://www.ncbi.nlm.nih.gov/pubmed/2442619
https://doi.org/10.1093/nar/gkz319
https://doi.org/10.1093/nar/gkz319
http://www.ncbi.nlm.nih.gov/pubmed/31045216
https://doi.org/10.1038/ng.3664
http://www.ncbi.nlm.nih.gov/pubmed/27618451
https://doi.org/10.1016/j.molcel.2019.05.008
http://www.ncbi.nlm.nih.gov/pubmed/31155380
https://doi.org/10.1371/journal.pone.0066514
http://www.ncbi.nlm.nih.gov/pubmed/23762491
https://doi.org/10.1371/journal.pgen.1009017


39. Tsai RY, Reed RR. Identification of DNA recognition sequences and protein interaction domains of the

multiple-Zn-finger protein Roaz. Mol Cell Biol. 1998; 18(11):6447–56. https://doi.org/10.1128/mcb.18.

11.6447 PMID: 9774661; PubMed Central PMCID: PMC109231.

40. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, et al. Evaluation of off-target

and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome

Biol. 2016; 17(1):148. https://doi.org/10.1186/s13059-016-1012-2 PMID: 27380939; PubMed Central

PMCID: PMC4934014.

41. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next gen-

eration of CRISPR genome engineering. Nucleic Acids Res. 2016; 44(W1):W272–6. https://doi.org/10.

1093/nar/gkw398 PMID: 27185894; PubMed Central PMCID: PMC4987937.

42. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server

for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248–9. https://doi.org/10.1038/

nmeth0410-248 PMID: 20354512; PubMed Central PMCID: PMC2855889.

43. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino

acid substitutions on proteins. Nucleic Acids Res. 2012; 40(Web Server issue):W452–7. https://doi.org/

10.1093/nar/gks539 PMID: 22689647; PubMed Central PMCID: PMC3394338.

44. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitu-

tions and indels. PLoS One. 2012; 7(10):e46688. https://doi.org/10.1371/journal.pone.0046688 PMID:

23056405; PubMed Central PMCID: PMC3466303.

45. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-

sequencing age. Nat Methods. 2014; 11(4):361–2. https://doi.org/10.1038/nmeth.2890 PMID:

24681721.

46. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer

genomics. Nucleic Acids Res. 2011; 39(17):e118. https://doi.org/10.1093/nar/gkr407 PMID: 21727090;

PubMed Central PMCID: PMC3177186.

47. Carter H, Douville C, Stenson PD, Cooper DN, Karchin R. Identifying Mendelian disease genes with the

variant effect scoring tool. BMC Genomics. 2013; 14 Suppl 3:S3. https://doi.org/10.1186/1471-2164-

14-S3-S3 PMID: 23819870; PubMed Central PMCID: PMC3665549.

48. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of

variants throughout the human genome. Nucleic Acids Res. 2019; 47(D1):D886–D94. https://doi.org/

10.1093/nar/gky1016 PMID: 30371827; PubMed Central PMCID: PMC6323892.

49. Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat

Protoc. 2015; 10(10):1556–66. https://doi.org/10.1038/nprot.2015.105 PMID: 26379229; PubMed Cen-

tral PMCID: PMC4718734.

50. Gray VE, Hause RJ, Luebeck J, Shendure J, Fowler DM. Quantitative Missense Variant Effect Predic-

tion Using Large-Scale Mutagenesis Data. Cell Syst. 2018; 6(1):116–24 e3. https://doi.org/10.1016/j.

cels.2017.11.003 PMID: 29226803; PubMed Central PMCID: PMC5799033.

51. Carter RJ, Morton J, Dunnett SB. Motor coordination and balance in rodents. Curr Protoc Neurosci.

2001;Chapter 8:Unit 8 12. https://doi.org/10.1002/0471142301.ns0812s15 PMID: 18428540.

52. Crawley JN, Paylor R. A proposed test battery and constellations of specific behavioral paradigms to

investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav. 1997; 31(3):197–

211. https://doi.org/10.1006/hbeh.1997.1382 PMID: 9213134.

53. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degenera-

tion in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994; 264

(5166):1772–5. https://doi.org/10.1126/science.8209258 PMID: 8209258.

54. Crawley JN. Behavioral phenotyping of transgenic and knockout mice: experimental design and evalua-

tion of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 1999;

835(1):18–26. https://doi.org/10.1016/s0006-8993(98)01258-x PMID: 10448192.

55. Freitag S, Schachner M, Morellini F. Behavioral alterations in mice deficient for the extracellular matrix

glycoprotein tenascin-R. Behav Brain Res. 2003; 145(1–2):189–207. https://doi.org/10.1016/s0166-

4328(03)00109-8 PMID: 14529817.

56. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for corre-

lation and regression analyses. Behav Res Methods. 2009; 41(4):1149–60. https://doi.org/10.3758/

BRM.41.4.1149 PMID: 19897823.

57. R Core Team. R: A language and environment for statistical computing.: R Foundation for Statistical

Computing; 2017. Available from: https://www.R-project.org/.

58. Wickham H. ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag New York; 2016.

PLOS GENETICS ZNF423 patient variants, truncations, and deletions in mice

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009017 September 14, 2020 25 / 25

https://doi.org/10.1128/mcb.18.11.6447
https://doi.org/10.1128/mcb.18.11.6447
http://www.ncbi.nlm.nih.gov/pubmed/9774661
https://doi.org/10.1186/s13059-016-1012-2
http://www.ncbi.nlm.nih.gov/pubmed/27380939
https://doi.org/10.1093/nar/gkw398
https://doi.org/10.1093/nar/gkw398
http://www.ncbi.nlm.nih.gov/pubmed/27185894
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/nmeth0410-248
http://www.ncbi.nlm.nih.gov/pubmed/20354512
https://doi.org/10.1093/nar/gks539
https://doi.org/10.1093/nar/gks539
http://www.ncbi.nlm.nih.gov/pubmed/22689647
https://doi.org/10.1371/journal.pone.0046688
http://www.ncbi.nlm.nih.gov/pubmed/23056405
https://doi.org/10.1038/nmeth.2890
http://www.ncbi.nlm.nih.gov/pubmed/24681721
https://doi.org/10.1093/nar/gkr407
http://www.ncbi.nlm.nih.gov/pubmed/21727090
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.1186/1471-2164-14-S3-S3
http://www.ncbi.nlm.nih.gov/pubmed/23819870
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/nar/gky1016
http://www.ncbi.nlm.nih.gov/pubmed/30371827
https://doi.org/10.1038/nprot.2015.105
http://www.ncbi.nlm.nih.gov/pubmed/26379229
https://doi.org/10.1016/j.cels.2017.11.003
https://doi.org/10.1016/j.cels.2017.11.003
http://www.ncbi.nlm.nih.gov/pubmed/29226803
https://doi.org/10.1002/0471142301.ns0812s15
http://www.ncbi.nlm.nih.gov/pubmed/18428540
https://doi.org/10.1006/hbeh.1997.1382
http://www.ncbi.nlm.nih.gov/pubmed/9213134
https://doi.org/10.1126/science.8209258
http://www.ncbi.nlm.nih.gov/pubmed/8209258
https://doi.org/10.1016/s0006-8993%2898%2901258-x
http://www.ncbi.nlm.nih.gov/pubmed/10448192
https://doi.org/10.1016/s0166-4328%2803%2900109-8
https://doi.org/10.1016/s0166-4328%2803%2900109-8
http://www.ncbi.nlm.nih.gov/pubmed/14529817
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3758/BRM.41.4.1149
http://www.ncbi.nlm.nih.gov/pubmed/19897823
https://www.R-project.org/
https://doi.org/10.1371/journal.pgen.1009017

