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Abstract

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-
based immunotherapies. Hence, we seek to genetically reprogram T cells to exploit a common tumor-
intrinsic evasion mechanism, whereby cancer cells suppress T cell function by generating a metabolically
unfavorable tumor microenvironment (TME). Specifically, we use an in silico screen to identify ADA and
PDK1 as metabolic regulators, in which gene overexpression (OE) enhances the cytolysis of CD19-specific
CD8 CAR-T cells against cognate leukemia cells, and conversely, ADA or PDK 1 deficiency dampens such
effect. ADA-OE in CAR-T cells improves cancer cytolysis under high concentrations of adenosine, the
ADA substrate and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and
metabolomics in these CAR-Ts reveal alterations of global gene expression and metabolic signatures in
both ADA- and PDK - engineered CAR-T cells. Functional and immunological analyses demonstrate that
ADA-OE increases proliferation and decreases exhaustion in a-CD19 and a-HER2 CAR-T cells. ADA-OE
improves tumor infiltration and clearance by a-HER2 CAR-T cells in an in vivo colorectal cancer model.
Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR-T cells,

and reveal potential targets for improving CAR-T based cell therapy.

Synopsis

The authors identify the adenosine deaminase gene (ADA) as a regulatory gene that reprograms T cell
metabolism. ADA-overexpression (OE) in a-CD19 and a-HER2 CAR-T cells increases proliferation,
cytotoxicity, memory, and decreases exhaustion, and ADA-OE a-HER2 CAR-T cells have enhanced

clearance of HT29 human colorectal cancer tumors in vivo.
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Introduction

Cancer cells have several mechanisms to suppress immune function, including the development,
recruitment, and activity modulation of suppressive immune cells. In addition, the tumor microenvironment
(TME) itself can suppress T cell function through the oxygen depletion (hypoxia), nutrient deprivation, and
production of immunosuppressive metabolites, including lactic acid and adenosine [1,2]. Cancer cells can
adapt to these unfavorable conditions through metabolic reprogramming, offering competitive advantage
over tumor-infiltrating T cells. Metabolic fitness is also a critical determinant of CTL cytotoxicity,
persistence, and exhaustion [3], which remain challenges for improving anti-cancer efforts of CTLs within
the TME. In addition, there is significant knowledge gap between the metabolism of T cells and chimeric
antigen receptor (CAR) T cells, patient-derived T cells that are reprogrammed to target specific cancer
antigens and reintroduced to patients as immunotherapy [4,5]. The metabolism of these cells may differ
because of the highly engineered chimeric antigen receptor and the rewired T cell signaling that is used by

the receptor [6].

Therefore, we hypothesize that we can improve CAR-T cell function through genetic manipulation of key
metabolism genes in T cells. In this study, we screened genes that potentially influence T cell metabolism
in the TME by a rational selection process through large databases, literature, and metabolic pathway
analyses to narrow down to a small number of candidates. Through gene editing, systems biology
approaches, and metabolomics experiments, (1) we revealed and validated key enzymes that modulate T
cell and CAR-T metabolism; (2) we characterized the transcriptomic, metabolomic, and functional changes
to T cell and CAR-T cell phenotypes; and (3) explored the anti-cancer efficacy of the reprogrammed CAR-

T cells, which demonstrated enhanced cytotoxic functions, increased memory, and decreased exhaustion.
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Materials and Methods

Institutional Approval

This study has received institutional regulatory approval. All recombinant DNA and biosafety work were
performed under the guidelines of Yale Environment, Health and Safety (EHS) Committee with an
approved protocol (Chen-rDNA-15-45; Chen-rDNA-18-45). All human sample work was performed under
the guidelines of Yale University Institutional Review Board (IRB) with an approved protocol
(HIC#2000020784). All animal work was performed under the guidelines of Yale University Institutional

Animal Care and Use Committee (IACUC) with approved protocols (Chen 2018-20068; 2021-20068).

Murine tumor models

NOD-SCID IL2Ry-null (NSG) mice were purchased from JAX and bred for in vivo tumor models. Briefly,
2e6 HT29-GFP-Luciferase (HT29-GL) cells were subcutaneously injected into the right flanks of mice, and
tumors were measured by caliper with volume = (0.5 x height x width x depth). After 10 days, tumors
reached an average volume > 75 mm3, and were treated with 3e6 CD3+ T cells, a-HER2 CAR-T, or ADA-
OE o-HER2 CAR-T cells via tail-vein injection (2 independent experiments of 4-5 mice per condition
group). Tumor volume measurements were then recorded every 2-3 days for the duration of the
experiments, after which, the tumors were extracted into PBS supplemented with 2 % FBS. The tissue was
macerated, incubated with collagenase IV for 1 hour at 37C, then transferred through a 40 um filter prior

to staining the cells for flow cytometry analysis.

Selection of metabolic regulatory genes
Metabolic regulatory genes were predicted using a multi-stage selection process starting with genes that
might have a potential role in T cell functions, which were pooled from three different gene-set catalogs,

including genes associated with tumor-immunity, autoimmunity, and human immune-related diseases
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(ImmunoBase; https://genetics.opentargets.org/immunobase; accessed: 11/2018). The pooled genes were
filtered for (1) an association with T cell metabolism, (2) enzymes that interacted with TME-related
metabolites, (3) enzymes with easily detected substrates based on published data, (4) genes that were
disrupted by CRISPR-RNP with any of three top gRNAs designed by the GPP web portal [7,8], and (5)
enzymes with detectable substrate changes (LC/MS) in HEK293FT treated with CRISPR-RNP gRNA
knockout vs NTCs. All gene lists and references used for the candidate gene selection process are detailed

in Supplementary Data 1.

Regular cell culture

HEK293FT cell lines were obtained from ThermoFisher and cultured in D10 media (DMEM (Gibco)
supplemented with 10 % FBS (Sigma-Aldrich) and 200 U / mL penicillin—streptomycin (Gibco)). NALM6
were obtained from American Type Culture Collection (ATCC) and cultured in cRPMI media (RPMI-1640
(Gibco) supplemented with 10 % FBS (Sigma-Aldrich), and 200 U / mL penicillin-streptomycin (Gibco).
NALMG6-GL (GFP and luciferase reporters) were produced via lentiviral infection using a GFP-luciferase

reporter vector, as previous described [9].

Cytotoxicity assays

The co-culture cytotoxicity assays were performed by seeding 96-well flat-bottom culture plates with
NALMO6-GL cells at 2e4 cells / well, and T cells were added at different concentrations for 48 h in X-
VIVO™ 15 media (Lonza) supplemented with 5 % human AB serum (Gemini Bio) and 30 U / mL
recombinant human IL-2 (BioLegend). The viability of NALM6-GL cells was then assessed by adding 150
ug / mL D-Luciferin (PerkinElmer) into each well for 10 mins at 37 °C, then measuring the relative

luciferase intensity via plate reader (PerkinElmer).

CDS8 T cell isolation and culture


https://doi.org/10.1101/2023.03.14.532663
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.14.532663; this version posted March 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
CAR-T metabolism ms

Human primary peripheral blood samples were derived from healthy donors (STEMCELL). CD8 T cells
were purified using the EasySep human CD8 T cell isolation kits (STEMCELL), as per manufacturer’s
instructions (STEMCELL). Cell culturing was performed in X-VIVO™ 15 media (Lonza), supplemented
with 5 % human AB serum (Gemini Bio) and 30 U / mL recombinant human IL-2 (BioLegend) [9], and
cells were activated for 16 h with anti-human CD3 / CD28 Dynabeads at 1:1 ratio, using manufacturer’s
instructions (Gibco). Subsequently, activated T cells were cultured for another 48 h before

ribonucleoprotein (RNP) electroporation or lentiviral infection, described below.

Gene editing via Cas9-crRNA:tracrRNA RNP electroporation

All guide RNAs (gRNAs) were designed using the Broad Genetic Purtubation Platform Web Portal [7,8]
and tractrRNA and crRNA were synthesized by Integrated DNA Technologies, Inc. For genetic editing,
human CD8 T cells were first activated with human anti-CD3 / CD28 Dynabeads as above. The T cells
were transfected using the Neon Transfection System (Invitrogen) and Neon Transfection System Kit
(Thermo-Fisher), as per manufacturer’s instructions. Briefly, gRNAs were made by annealing crRNA and
tracrRNA at a 1:1 ratio in a thermocycler, using the following settings: 95 °C for 5 min, slowly cool down
at -5 °C / min, then hold at 25 °C. Next, RNP were formed by incubating the gRNA and HiFi Cas9 Protein
v3 for 15 min at room temperature, then the RNP mixed with electroporation enhancer (Final concentration:
1.8 uM gRNA, 1.5 uM Cas9) and 2e6 T cells / 100 uL. The mixture was electroporated using the Neon
Transfection System with the setting of 1,600 V and 10 ms for 3 pulses, then subsequently transferred T

cells to pre-warmed supplemented X-VIVO™ 15 media for continued culturing.

Vector design
The anti-CD19 chimeric antigen receptor (CAR) construct is comprised of a leader sequence, a FLAG-tag
sequence (GATTACAAAGACGATGACGATAAG), a human antigen-binding domain of the FMC-63

single chain fragment variable (scFv) that targets CD19 (GenBank: HM852952), and a CD8 hinge and
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transmembrane domain linked to the 4-1BB (CD137) transactivation domain and CD3 zeta signaling
domain (Fig. 3a) [9,10]. The CAR constructs sequences were cloned into lentiviral plasmid backbone
pLYO41la (EFla-T2A-GFP-WPRE) where T2A-GFP was replaced with the CAR sequence. Additional
CAR constructs were created for the tandem expression of either ADA or PDKI cDNA, for which genes
were cloned from commercial cDNA plasmids (MHS6278-202829515 for ADA and OHS1770-202322779
for PDK1; Horizon Discovery Ltd) into a multi-cistronic vector, downstream of the CAR and a T2A self-

cleaving peptide sequence via the Gibson Assembly method [11].

Lentivirus production

Lentivirus particles were produced from HEK293FT cells, as previously described [12]. Briefly, the
HEK293FT cells were transfected in 15 cm culture dishes with a mixture of 20 pg target plasmid, 15 ug
psPAX2 (Addgene) packaging plasmid, 10 pg pMD2.G (Addgene) envelope plasmid and 130 pLL 1 pug/ mL
polyethylenimine (Sigma-Aldrich) in 450 uL Opti-MEM media (Lonza). The virus was collected at 48 h
and 72 h post-transfection, then concentrated with AmiconUltra-100kD Ultrafiltration centrifuge tubes
(Millipore). CD8 T cells were spin-infected with lentivirus at 900 x g, 32 °C for 60 min in 24-well tissue-
culture plates, with each well containing 200 uL lentivirus and 800 pL supplemented X-VIVO™ 15 media
including 2.4¢6 cells and polybrene. Following spin-infection, media was completely replaced 16 h later,

and cells were maintained at a density of 1-2e6 cells / mL.

Measurement of gene editing

Genetic perturbations from CRISPR-RNP were quantified from genomic DNA (gDNA) that was extracted
from T cells using QuickExtract Buffer (NEB) according to manufacturer’s recommendation. The genomic
regions targeted by CRISPR-RNP were amplified by PCR (95 °C / 3 min; 36 cycles: 95 °C /30 s, 60 °C /
30sand 72 °C/45s; 72 °C /4 min), 1 uL QuickExtract Buffer digested mixture was used as template in a

50 puL PCR reaction with DreamTaq Green 2X PCR Master Mix (Thermo Fisher Scientific) and 0.5 pM


https://doi.org/10.1101/2023.03.14.532663
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.14.532663; this version posted March 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
CAR-T metabolism ms

oligos. For T7 endonuclease I (T7el) assay [13], 200 ng of purified PCR product was denatured at 95 °C
for 5 min, then reannealed to form heteroduplexes (cooled to 25 °C at -5 °C / min), digested annealed DNA
with 10 U of T7el (NEB) at 37 °C for 45 min, then visualized on a 2 % agarose E-Gel with SYBR-Gold
(Invitrogen). DNA fragment sizes were quantified using an ImagelJ software [14], and cutting efficiencies
were calculated as the proportion of T7el-digested bands. For Nextera sequencing, 0.5 ng of PCR product
was used for tagmentation and subsequently barcoded, as per manufacturer’s instructions (Illumina). The
processed DNA was pooled, purified by 2 % agarose E-Gel electrophoresis, extracted from the gel via DNA
Gel Extraction kit (Qiagen), and the pooled DNA was sequenced by the Illumina Novaseq platform (100
bp paired-end; [llumina). For indel quantification, paired reads were mapped to the amplicon sequences
using BWA-MEM with default settings (BWA-v0.7.1) [15,16], sorted and indexed using Samtools [17],
variants were called using mpileup via Samtools with a max depth of 100000 [18,19], and indels were
quantified using Varscan pileup2indel command [20] and filtered (>= 2 indel reads, >=2 coverage at indel
locus, indel frequency > 0.00001). Cutting efficiency was reported as the proportion of indels detected with

a 75 bp window of the target cut site (Supplementary Data 2).

Quantitative RT-PCR and mRNA-seq

Total RNA was extracted by treating cells with TRIzol Reagent (Invitrogen), then isolating RNA with the
Qiagen RNA extraction kit, as per manufacturer’s instructions. For the qRT-PCR, the SuperScript™ IV
Reverse Transcriptase (Invitrogen) was used for cDNA synthesis, and target mRNA levels were quantified
relative to ACTB via qPCR with Tagman probes (Invitrogen) (Supplementary Data 2). For mRNA-seq,
library preparation was performed using the NEBNext® Poly(A) mRNA Magnetic Isolation module
(Illumina) and NEBNext® Ultra™ II Directional RNA Library Prep Kit (Illumina), per manufacturer’s
instruction. Briefly, all samples were normalized to 200 or 500 ng total RNA for fragmentation and cDNA
synthesis. Double-stranded cDNA was purified using oligo-dT Sample Purification Beads, adapters were

ligated to the cDNA, and samples were barcoded using the NEBNext® Multiplex Oligos for Illumina®
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(Index Primers Set 1) (NEB), listed in the Supplementary Data 1. Sample barcoding PCR conditions were
1 cycle of 98 °C for 30 s, 11 cycles of 98 °C for 10 s, 65 °C for 75 s, and one cycle of 65 °C for 5 min. The
barcoded library was then purified using NEBNext Sample Purification Beads then sequenced using the

Novaseq platform (Illumina).

Protein extraction and Western Blot

Cellular protein was extracted by treating 1e7 cells / mL in ice-cold 1 x RIPA buffer (Boston BioProducts),
containing protease inhibitors (Roche, Sigma) for 30 min on ice, pelleting cell debris for 15 min at 12,000
x g at 4 °C, then the protein-containing supernatant was collected, and concentrations were measured by
BCA assay (Abcam). Proteins were denatured in Laemmli loading buffer at 95 °C for 5 min, and 20 pg /
sample were loaded into 4 % - 20 % SDS-PAGE gel for electrophoresis at 80 V for 20 min then 120 V for
70 min. Proteins were transferred to PVDF membranes using a wet transfer at 320 mA for 70 min on ice.
Membranes were blocked at room temperature for 1 h using 3 % BSA in TBST buffer, transferred
membranes were incubated in 1:1000 diluted primary antibody in TBST buffer with 3 % BSA at 4 °C
overnight, then incubated with 1:5000 horseradish peroxidase (HRP)-conjugated secondary antibodies in
TBST buffer for 1 hr at room-temperature. The chemiluminescent substrate (Bio-Rad) was added to

membranes and immunoblots were imaged using an Amersham Imager 600 (GE Healthcare).

mRNA-seq data processing

mRNA sequencing data was aligned to the human transcriptome reference panel (GRCh38 Ensembl
Version 96) and quantified from raw FASTQ files using Kallisto with the quant function and 100 bootstraps
[21]. Differential expression analyses were performed using the Sleuth package for R [22], by fitting the
data, first to a full measurement error model then a secondary reduced error model, and lastly, data were
analyzed for differential expression and beta-values via the Wald test. Differentially expressed genes (q

value < 0.05 and beta-value fold-change > 1) were analyzed by the Database for Annotation, Visualization
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and Integrated Discovery (DAVID) gene set enrichment test [23,24], and results were filtered to include
Biological Process Gene Ontology terms, and Benjamini-adjusted p values < 0.05. Quantitative enrichment
analyses were performed by the fast Gene Set Enrichment Analysis (GSEA) package for R, using the beta-
values of differentially expressed genes (q < 0.01) and pathways from the MSigDB hallmark collection
(MSigDB v7.0) [25,26] with 1000 permutations, and results were filtered to include those with a gene set

size between 10 and 200. Results were visualized using the ggplot2 R package.

Flow cytometry

Cell surface proteins were stained with experimentally-titrated fluorophore-conjugated antibodies in MACS
buffer (2 % BSA and 2 mM EDTA in PBS) for 30 min on ice. Stained cells were washed then resuspended
in MACS buffer for flow cytometric analysis. For intracellular staining, cells were fixed for 20 min on ice
with fixation / permeabilization buffer (Invitrogen), washed twice with permeabilization buffer
(Invitrogen), stained with experimentally-titrated fluorophore-conjugated antibodies in permeabilization
buffer (Invitrogen) for 30 min on ice, then washed and resuspended in MACS buffer. Cytometric analyses
were performed using an Attune NxT Focusing Flow Cytometer (Thermo Fisher Scientific), and cell sorting
was accomplished with a FACSAria Il flow sorter (BD) and cytometry data was analyzed using FlowJo

software v10.3 (Treestar, Ashland, OR).

Metabolomics

Metabolomics analyses were performed using 1le6 CD3"CDS8"* T cells that were purified via FACS and
washed twice with DPBS. Lysates were extracted by treating the cells with 800 puL of 80 % (vol / vol)
methanol (precooled to -80 °C) on dry ice for 30 min then ice for 20 min, and lysate was separated from
cellular debris by centrifugation at 15,000 x g for 15 min at 4 °C twice to isolate the supernatant [27]. The
lysate / methanol mixture was dried by Speedvac, resuspended in 80 % (vol / vol) methanol, centrifuged at

18,000 x g for 10 min to remove particulates, and stored at -80 °C. Metabolites were analyzed using the

10
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Agilent 6550 Q-TOF LC / MS system, then the Agilent 6490 Triple quadrupole LC / MS System. The
HILIC liquid chromatography was optimized with the bioZen™ 2.6 um Glycan LC Column, 150 x 2.1 mm
(Phenomenex) and a Glycan guard column, 4 x 2 mm (Phenomenex). The eluents were A: 0.01 % formic
acid in water HPLC grade and B: 0.01 % formic acid in acetonitrile. The gradient was set as follows: 0 - 2
min 94 % B; 2-8 min 94 — 90 % B; 8 - 16 min 90 - 76% B; 16 - 36 min, 76 - 50 % B; 36 - 42 min hold at
50 % B and then returned to initial conditions for 2 min for column equilibration. The flow rate was set at

0.3 mL / min.

Metabolomics data analyses

Metabolomics quantification was performed using a two-part strategy, including an initial untargeted
analysis to identify detectable metabolites across samples, and subsequent targeted analyses that re-
evaluated these metabolites using standards. Briefly, our untargeted metabolomics analysis had an
optimized workflow, consisting of automated peak detection and integration, peak alignment, background
noise subtraction, and multivariate data analysis for comprehensive metabolite phenotyping of each
experimental group using Agilent Mass Hunter Qualitative Analysis Software (Version B 6.0.633.0) and
Agilent Mass Profiler Professional (Version B 6.0.633.0). The untargeted metabolites were identified based
on accurate mass match (accurate mass error +30 ppm) and fragmentation pattern match, while structural
annotations were matched to the metabolite databases: HMDB (http://www.hmdb.ca/) and METLIN (http://
metlin.scripps.edu) using the mass-to-charge ratios. We established detectable metabolites as those that
significantly differed in the gRNA T cells relative to the NTC T cells (q < 0.05, log2-FC > 0.5; comparative
analysis is described in more detail below). The targeted metabolomics analyses were performed for our
list of detectable metabolites, as well as metabolites from related proline metabolism and immune system
metabolism pathways. The targeted metabolite quantification was performed as above with Multiple

Reaction Monitoring (MRM) used for qualitative and quantitative analysis of purified standards (Sigma).

11
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All metabolomics analyses were performed via MetaboAnalyst v4.0 [28-30], whereby raw peak intensities
were filtered to remove low-detection features (> 50% missing values across samples), imputed to replace
missing values (half of minimum value across samples), then filtered to remove near-constant values (5%
of features with lowest interquantile range). Next, the data were sample-normalized to the pooled control
group, log2-transformed and scaled to z-score. Differential metabolite levels were then calculated by
unpaired two-tailed ¢ test, assuming equal variance between groups. Metabolomics Pathway Analyses
(MetPA) were performed with default settings: global enrichment test with pathway topologies calculated
as relative-betweeness centrality, and the KEGG Homo sapiens pathway library (Oct 2019). Integrated
transcriptome-metabolome MetPA were performed with log2-fold-changes (LFC) of significantly changed
metabolites (q < 0.10) and the beta-value of differentially expressed genes (q < 0.01, abs(b) > 1) as input,
using hypergeometric tests for enrichment with KEGG Homo sapiens metabolic pathways (Oct 2019),
pathway topologies calculated as degree centrality, and unweighted integration of gene-metabolite p values.
Significantly enriched pathways were those with an FDR-corrected p value < 0.05, and a pathway impact

score > (.

Sample size determination
Sample size was determined according to the lab's prior work or from published studies of similar scope

within the appropriate fields.

Replication
Number of biological replicates (usually n >= 3) are indicated in the figure legends. Key findings (non-
NGS) were replicated in at least two independent experiments. NGS experiments were performed with

biological replications as indicated in the manuscript.

Randomization and blinding statements
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In vivo experiments were randomized and blinded from the experimenter that measured tumor volumes.
Regular in vitro experiments were not randomized or blinded. NGS data were processed in an unbiased

manner using barcoding and metadata.

Standard statistical analysis

Standard statistical analyses were performed using regular statistical methods. GraphPad Prism, Excel and
R were used for all analyses. Different levels of statistical significance were accessed based on specific p
values and type I error cutoffs (0.05, 0.01, 0.001, 0.0001). Further details of statistical tests were provided

in figure legends and/or supplemental information.

Data Collection summary

Flow cytometry data was collected by BD FACSAria or ThermoFisher Attune.

All deep sequencing data were collected using Illumina Sequencers at Yale Center for Genome Analysis
(YCGA).

Co-culture killing assay data were collected with PE Envision Plate Reader.

Data analysis summary
Flow cytometry data were analyzed by FlowJo v.10.
All simple statistical analyses were done with Prism 9.

AIl NGS analyses were performed using custom codes.

Code availability

The code used for data analysis and the generation of figures related to this study are available from the

corresponding author upon reasonable request.
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Data and resource availability

All data generated or analyzed during this study are included in this article and its Supplementary Data
files. Specifically, data and statistics for non-high-throughput experiments such as flow cytometry, qPCR,
protein experiments, and other molecular or cellular assays are provided in Supplementary Data Tables.
Processed data for genomic sequencing (e.g. RNA-seq, amplicon sequencing) and other forms of high-
throughput experiments (e.g. metabolomics) are provided as processed quantifications in the
Supplementary Data Tables. Raw sequencing data have been deposited to the NIH Sequence Read Archive
(SRA) and Gene Expression Omnibus under the series accession: GSE225186.

Review information:

Link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225186

Accession: GSE225186

Token: yvyraomctfkhlgx

Original cell lines are available at commercial sources listed in supplementary information files. Genetically

modified cell lines are available via Chen lab. Other relevant information or data are available from the

corresponding author upon reasonable request.
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Results

Candidate metabolic regulators of CD8+ T cells identified from human disease database and metabolic
pathway analyses

To identify a set of promising candidate genes as genetic targets to metabolically reprogram T cells, we
developed a multi-step rationalization and selection process (Fig. 1a). Briefly, a candidate list was
constructed from 572 genes with potential roles in T cell function, chosen from the data-mining of tumor
immunity studies (137 genes), the ImmunoBase catalog of genes relevant to human immune-related
diseases (311 genes; https://genetics.opentargets.org/immunobase, ImmunoBase accessed: 11/2018), and
genes that were associated with autoimmune diseases in genome-wide association studies (GWAS; 196
genes; Fig. 1A; Supplementary Data 1; Methods). The candidate gene list was then sequentially filtered,
first for gene products that participate in metabolic pathways that are known to be related to T cell function
(resulted in 67 genes), second for interaction with metabolites that contribute to TME-mediated
immunosuppression (resulted in 17 genes), and third for the feasibility to detect relevant metabolites that
are associated with the gene products (resulted in 11 genes) These 11 candidate genes were then
experimentally filtered for efficient CRISPR/Cas9-based gene disruption in HEK293FT cells then CD8 T
cells (resulted in 5 genes), for the feasibility to detect associated metabolites via LC/MS (resulted in 3
genes), and finally, for their functional importance, resulting in two candidates that passed all criteria: ADA

and PDK.

Generation of ADA and PDK1 knockout and overexpression mutant human CD8 T cells

To assess how ADA and PDKI genes impact the function of CD8 T cells, we generated target gene
overexpression (OE) mutants using lentiviral vectors, and knockout (KO) mutants via electroporation of
recombinant crRNA:tracrRNA/Cas9 ribonucleoprotein (CRISPR-RNP) into primary human CD8 T cells
(Fig. 1B). Efficient gene editing was observed in the mutants, based on Nextera-based amplicon capture -

next generation sequencing (NGS) of the target locus (Fig. 1C-D; Supplementary Data 2).
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ADA and PDK1 mutant CD8 T cells showed broad transcriptomic and metabolomic alterations

To reveal the effect of altered ADA and PDK1 expression, nRNA-seq analyses were performed for each of
the CD8 T cell mutants (Fig. 1E-G; Supplementary Data 3). Our data confirmed the knock-out of ADA
or PDKI in mutant T cells, as each biological replicate showing significant downregulation of their
respective gRNA target gene (Supplementary Fig. 1A-B). In the ADA mutants, gene enrichment analyses
in ADA-gRNA cells showed that upregulated genes were associated with transcriptional and translational
processes, while downregulated genes in ADA mutants are significantly associated with immune response
and chemokine-mediated signaling (Fig. 1H-I and Supplementary Fig. 1C; Supplementary Data 3). The
ADA-gRNA also significantly downregulated cytotoxicity genes: GZMA, PRFI, IFNG and TNF;
exhaustion genes: CD244, VSIR and LAG3; and upregulated /RF'4, a key transcription factor (TF) for
PDCD-1 expression and T cell exhaustion (Supplementary Fig. 1D-F) [31]. Overall, the ADA-gRNA
downregulated effector genes for cytotoxicity, extra-lymphoid homing and adhesion, while upregulating

the exhaustion genes in CD8 T cells.

In the PDKI-gRNA CDS8 T cells, the most significant transcription changes include upregulation of the
IRF4 exhaustion TF and CCR7 lymphoid homing receptor (Fig. 1G; Supplementary Data 3). There is a
significant upregulation of /FNG and anti-inflammatory /L0 cytokines, as well as upregulation of genes
for common memory T cell markers, CCR7 and IL7R, yet there is also a strong downregulation of core
memory-related transcriptional regulator genes: 7TCF7 and BCL6 (Supplementary Fig. 1E;
Supplementary Data 3). In addition, there is upregulation of multiple transcripts of MYB, a key memory
transcription factor that activates TCF7 transcription [32] (Supplementary Fig. 2B). There were
transcriptional changes to immune checkpoint genes, including an upregulation of LAG3 and CD244
(Supplementary Fig. 1F). Gene ontology analyses shows enrichment in several transcriptional and

translational ontologies, where the upregulated genes were enriched for biological processes, including
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immune response, inflammatory response, and the negative regulation of cell proliferation (Fig. 11 and

Supplementary Fig. 1C; Supplementary Data 3).

To further understand the metabolic impact of the ADA and PDKI mutations in the CD8 T cells, we
performed metabolomics profiling. The ADA-gRNA T cells showed the strongest metabolite shifts in purine
metabolites, including a significant increase in GMP, ADP, adenosine (Ado), and deoxyadenosine (dAdo),
as well as the purine biosynthesis intermediate PRPP (Fig. 2A and Supplementary Fig. 2A;
Supplementary Data 4). Purine metabolism was also the most enriched pathway in a quantitative
metabolic pathway analysis (MetPA, MetaboAnalyst v4.0) that integrates both metabolomics and
transcriptomics data [30,33] (Fig. 2C and Supplementary Fig. 2C; Supplementary Data 4), and the
pathway favors purine biosynthesis over salvage or catabolism with increased PRPP, XMP, GMP, S-AMP,
and ADP, while no significant changes were found in hypoxanthine and IMP levels. Overexpression of
ADA led to a significant increase in glucose, inosine and isoleucine, while there is a significant decrease in
histidine and adenosine, the substrate of ADA (Fig. 2A and Supplementary Fig. 2A). MetPA analysis
showed a significant association with the purine metabolism pathway with changes to levels of several
metabolic intermediates and significantly increased inosine levels (Fig. 2E and Supplementary Fig. 2D;
Supplementary Data 4). These data suggest that 4DA-gRNA increased purine biosynthesis, and

overexpression of ADA primarily affected the metabolites directly related to the ADA enzymatic reaction.

Knocking out the PDK significantly affected the levels of 71 metabolites in CD8 T cells, most prominently
were several amino acids (Fig. 2B and Supplementary Fig. 2B; Supplementary Data 4). The integrated
MetPA of mRNA-seq and metabolomics data showed significant association with aminoacyl-tRNA
biosynthesis and the glutathione metabolism pathway, which showed significant upregulation of the
glutathione pathway enzyme genes, as well as glutathione (Fig. 2D and Supplementary Fig. 2E;

Supplementary Data 4), which has key roles in T cell function, including as a cellular anti-oxidant and
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modulating glycolysis and glutaminolysis through regulation of mTOR and NFAT [34]. Overexpression of
PDK]1 significantly increased the levels of pyroglutamic acid and L-asparagine, while pathway analyses
showed significant changes to glutathione and butanoate metabolism (Fig. 2B, D and Supplementary Fig.
2B, E-F; Supplementary Data 4). Together, we showed that in primary human CD8 T cells, 4DA
modulated metabolism through the purine biosynthesis pathway and influenced effector function genes,
including TNFA, IFNG, granzymes and PRF'1. In contrast, PDK/ levels corresponded to changes in broad
range of metabolic pathways, most notably glutaminolysis, glutathione biosynthesis, and the TCA cycle. In
addition, the knockout of PDK led to a significant increase of both effector and memory T cell genes. We
assessed immune functions in the T cell mutants via flow cytometry to show a shift of both the ADA-gRNA
and PDKI-gRNA T cells in the production of cytotoxic molecules with decreased granzyme B and IGN-y
and increased TNF-a (Fig. 2E and Supplementary Fig. 3A; Supplementary Data 8). In addition, there
were increased levels of exhaustion markers in both mutant T cells, based on the significantly increased
expression of CTLA-4 and PD-1 in ADA-gRNA, and of PD-1 and LAG-3 in PDKI-gRNA CDS8 T cells

(Fig. 2F and Supplementary Fig. 3A-B; Supplementary Data 8).

ADA and PDK1 modulation improve cytotoxicity and survival in CD8 CAR-T cells

Modulating the expression of ADA and PDK1 were shown to have strong effects to T cell metabolism, as
well as cytotoxicity and survival gene expression. We next sought to test these functional attributes with a
cytotoxicity assay by co-culture of T cells and cognate cancer cells. We generated CAR-T cells using a
lentiviral vector with an anti-CD19 CAR (FLAG-(anti-CD19 scFv)-CD137-CD3{) [9,10]. The ADA or
PDK1 gene was constitutively overexpressed (OE) on the same lentiviral CAR-T vector under a T2A (self-
cleaving peptide) element (Fig. 3A). The overexpression or control CAR-T cells were then cultured and
sequentially FACS-sorted for CAR-T purity (Fig. 3B and Supplementary Fig. 3C), and then ADA/PDK -
gRNA cells were generated from the control CAR-T cells via CRISPR-RNP mediated knockout (Fig. 1B,

3A-B), with efficient gene perturbations detected by Nextera-based amplicon sequencing and western blots
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(Fig. 3C-E; Supplementary Data 2). The different T cell populations were then co-cultured with NALM6-
GL B cell precursor leukemia cell line constitutively expressing GFP and firefly luciferase [9] at different
concentrations to evaluate T cell-mediated cancer killing capacity. Our results showed that the
overexpression of either ADA or PDK1 significantly enhanced cancer cytolysis by the CAR-T cells, based
on NALMG6-GL luciferase bioluminescence (Fig. 3F; Supplementary Data 5). The 4ADA-OE cytolysis
consistently increased at all cancer cell concentrations (titrated as effector:target (E:T) ratios), whereas the
PDKI-OE cytolysis is most significantly increased at intermediate cancer cell concentrations and non-
significantly changed at high concentrations. In contrast, both the ADA-gRNA and PDKI-gRNA CAR-T

cells have decreased cytolytic capabilities at all cancer cell concentrations.

We next assessed whether ADA-OE increased cancer killing by decreasing the extracellular Ado levels,
which are immunosuppressive when increased in the tumor microenvironment [35]. To address this, cancer
cytolysis was assessed in elevated and high Ado concentrations (30uM and 120uM, respectively) [36-38].
ADA-OE CAR-T cells showed enhanced killing overall and at most E:T ratios, while ADA-gRNA decreases
killing in the presence of Ado (Fig. 3G; Supplementary Data 5). Overall, these data showed that
overexpressing either ADA or PDK] leads to enhanced cancer cell cytolysis for anti-CD19 CAR-T cells,

while the ADA-OE also enables increased cytotoxicity under high concentrations of extracellular Ado.

Transcriptomic and metabolomic alterations in ADA-OE and PDKI1-OE CAR-T cells

To determine how modulation of ADA and PDKI affect T cells with the CAR system, we performed
mRNA-seq transcriptional profiling of the different CAR mutants in parallel with matched anti-CD19 CD8
CAR-T controls (Fig. 4A-B, D; Supplementary Data 6). Differential expression (DE) of ADA-gRNA
CAR-T cells showed upregulated GZMB and GZMM, as well as the BCL2 pro-survival gene, while pathway
analyses upregulated genes in the type-I interferon, TNF-alpha and IFN-gamma response pathways (Fig.

4C and Supplementary Fig. 4A & 5A, D-F). These combined data showed an upregulation of cytotoxicity,
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survival and lymphoid trafficking factors. The expression profile in ADA-OE CAR-T cells also showed a
cytotoxic profile with a significant upregulation of GZMA, GZMB and GZMM and downregulation of
memory-related transcription factor genes: STAT3, HDACS and FOXOI genes, as well as a significant
switch in PRDM1 isoforms [39] (Supplementary Fig. 4A; Supplementary Data 6). Pathway analyses
showed significantly upregulated genes are enriched in type-I IFN signaling and chemotaxis pathway
(DAVID analyses), as well as less significant IFN-a and IFN-y response upregulation (GSEA analyses)
(Fig. 4E and Supplementary Fig. SB, D-F; Supplementary Data 6). Together, these data showed an

increased cytotoxic signature with altered memory transcriptional regulatory profile.

Metabolic profiling of the ADA-OE CD8 CAR-T cells showed significantly altered the levels of 37
metabolites, including a strong increase in pyruvate and several TCA intermediates (cis-Aconitate, a-
ketoglutarate, succinate), as well as a significant increase in glutamine and a decrease in glutamate (Fig.
4F-G; Supplementary Data 7). The RNA-Metabolite integrated MetPA indicated significant changes to
several aminoacyl and aminoacyl-tRNA biosynthesis pathways (Fig. 4H and Supplementary Fig. 7A;
Supplementary Data 7). The enrichment analyses also found associations with purine metabolism,
upregulation of the TCA cycle with significantly upregulated intermediates, and downregulation of
glutathione metabolism (Fig. 4H-I and Supplementary Fig. 7A). Overall, the metabolomics of ADA-OE
CAR-T cells showed changes to several aminoacyl metabolic pathways, suggesting an increased usage of
glutaminolysis and at least partial TCA usage, in which the synthesis of intermediates a-KG and succinate
were disproportionately promoted. The purine pathway was marked by an upregulation of multiple
intermediates (cAMP, adenylsuccinate, dATP), as well as both increased adenosine and decreased inosine
(Supplementary Data 7), which was expected by a decrease of the ADA enzyme. There was also increased
Ado, AMP and ATP in ADA-gRNA relative to ADA-OE CAR-T cells (Fig. 41; Supplementary Data 7).

Together, altering the expression of ADA still predominantly affected purine metabolism, where the ADA-
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OE CD8 CAR-T cells showed metabolic changes, which were marked by increased glutaminolysis and

altered TCA usage.

In the differential expression (DE) analysis of PDK/-OE CD8 CAR-T cells, there was a significantly
increased expression of multiple cytotoxicity genes, including GZMA, GZMB, PRF1, LAMP3, and IFNG,
all indicating increased effector functions (Fig. SA-B and Supplementary Fig. 4B; Supplementary Data
6). There were also increased expression of exhaustion-related checkpoint genes, such as TIGIT, CD244
and LAG3, as well as upregulation of EOMES and IRF'4 transcription factors, and increased expression of
antiapoptotic gene BCL2 (Supplementary Fig. 4B). Pathway analyses showed that upregulated genes were
significantly enriched in type-I IFN and IFN-y responses, cell-cell signaling and chemotaxis (DAVID
analyses), as well as the IFN-alpha and IFN-gamma response, with decrease in the expression of MYC
targets (Fig. SC and Supplementary Fig. SC & 6A-C; Supplementary Data 6). Together, these data
suggested a strong effector phenotype with a notable increase in pro-survival genes, yet T cell exhaustion
markers were elevated. In contrast to this expression profile, the PDKI-gRNA CAR-T cells displayed no
significant changes to effector function genes (Supplementary Fig. 4B; Supplementary Data 6). There
was a significant increased expression of pro-survival BCL2 and strong decreased expression of the MYB

memory regulatory gene (Supplementary Fig. 4B).

For the metabolomics of PDKI/-OE CD8 CAR-T cells, the most prominent significant changes were
increases in valine and isoleucine (Fig. SD-E; Supplementary Data 7). Integrated pathway analysis
showed significant associations with several metabolic pathways, including multiple amino acid metabolic
pathways and the TCA cycle (Fig. SF and Supplementary Fig. 7C; Supplementary Data 7). The amino
acid changes were most pronounced in the neutral alkyl residues: valine, isoleucine and leucine, which were
all increased, while the TCA cycle changes reflect a subtle increase in TCA utilization (Fig. SF-G and

Supplementary Fig. 7C). The PDK1-gRNA CAR-T cells had significant changes up-to 36 metabolites (q
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< 0.05), with the most extreme changes including an upregulation of pyruvate and glucose and a
downregulation of PRPP and nicotinamide adenine dinucleotide (NAD) (Fig. SD-E; Supplementary Data
7). There was also a noteworthy significant decrease in the level of lactate (Supplementary Data 7). The
MetPA showed significant associations with several amino acid metabolic pathways, particularly the
alanine-aspartate-glutamate metabolism (decreased amino acid pathway products) and arginine
biosynthesis pathway (Fig. SF and Supplementary Fig. 7B; Supplementary Data 7). Overall, the PDK -

gRNA indicated upregulation of glycolysis and early TCA intermediates with a strong depletion of NAD.

PDK1-OE reduces stability of CAR surface expression and cytotoxicity over time

Given the relationship between metabolism and T cell function, we sought to investigate how 4ADA-OE and
PDKI-OE influenced the T cell phenotype. Therefore, we performed multi-faceted functional
characterizations of ADA-OE and PDKI-OE CD8 CAR-T cells by flow cytometry. First, we evaluated
effector T cell function in stimulated CAR-T cells (4 hours), which showed unexpected decreases in the
early production of granzyme B, perforin, IFN-y, and TNF-a with both 4DA-OE and PDKI-OE
(Supplementary Fig. 8A). As decreased effector function is counterintuitive to the increased cancer cell
lysis from our competition assays (Fig. 3F), we performed another competition assay that showed ADA-
OE still had improved cancer cell lysis, but PDKI/-OE CAR-T cells had lost its cytotoxicity
(Supplementary Fig. 8B). Further analysis demonstrated that the surface expression of the CAR was lost
in PDK1-OE, but not ADA-OE or control cells (Supplementary Fig. 8C). These experiments were
performed using copy-number-controlled knock-in/knock-out (KIKO) CAR system, in which CRISPR-
RNP was electroporated into CD8 T cells to induce dsDNA breaks in the TRAC locus, followed by cell
infection with an adeno-associated virus type 6 (AAV6) vector with anti-CD19 CAR, CAR-T2A-4DA, or
CAR-T2A-PDK]1 [9]. The progressive downregulation of CAR in PDK1-OE T cells would explain the
discrepancy between the competition assay results in Fig. 3F and Supplementary Fig. 8C, which were

respectively performed days and weeks after FACS selection of CD8+CAR+ T cells. The remaining
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experiments were performed in KIKO CAR-T cells to exclude the potential influence of ADA/PDKI copy-
number inconsistencies from using lentiviral vectors. In addition, CAR-T cells were sorted only once for

CD8+CAR+CD3- cells to prevent result biases from gradual CAR downregulation.

Overexpression of ADA increases cytotoxicity and memory, while decreasing exhaustion in CAR-T cells
To further explore how ADA-OE CAR-T cells have enhanced cancer killing even though the production of
effector molecules is initially low (Supplementary Fig. 8A), we assessed effector function and cancer lysis
over multiple time points. Our results revealed that the ADA-OE cells significantly increased granzyme B
production at 2- and 4-days post stimulation (Fig. 6A), coinciding with enhanced cancer cell clearance (Fig.
6B). Immune profiling also demonstrated that ADA-OE also enhances proliferation upon stimulation, based
on assays with CellTrace Violet, which involves labeling cells with a fluorescent dye whose concentration
decreases across subsequent cellular divisions. These assays demonstrated that nearly all ADA-OE CAR-T
cells undergo at least one round of division (Fig. 6C). In addition, ADA-OE increased polarization of central
memory (TCM; CD45RO+CD62L+) vs effector memory T cell subsets (TEM; CD45RO+CD62L-) (Fig.
6D). Next, we profiled markers of T cell exhaustion, showing that ADA-OE decreases LAG-3 and TIM-3,
but not PD-1 and CTLA-4 (Fig. 6E, Supplementary Data 8). These data further revealed the
immunological phenotype of ADA overexpression in CD8 CAR-T cells, which enhances cytotoxicity and

memory, while decreasing exhaustion.

The mechanism of ADA should reduce extracellular adenosine, which we expect would decrease signaling
by the adenosine receptor, and thus, should decrease PKA activation [40]. As PKA signaling in this context
could lead to exhaustion through CREB activation and mTORCI1 inhibition (Fig. 6G) [40], we assessed the
downstream targets of PKA to show that ADA-OE CAR-T cells have significantly increased mTORCI
signaling and significantly decreased CREB activation, based on p-S6 and p-CREB levels, respectively

(Fig. 6F, Supplementary Data 8).
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ADA Overexpression increases a-HER2 CAR-T cell function in colorectal cancer in vivo models

We set out to test ADA-OE in CAR-T cells generated from heterogeneous CD3+ T cell populations, and
test them in an a-HER2 CAR in vivo solid tumor models. First, we knocked-in a-HER2 CAR construct to
the TRAC locus using Cas9-RNP (Fig. 7A). The in vitro characterization assays were performed as above
to demonstrate that ADA-OE improves o-HER2 CAR T similarly to a-CD19 CAR, including increased
cytotoxicity (IFN-y, granzyme B, TNF-a), decreased pCREB levels and exhaustion, marked by LAG-3 and
PD-1 in both CD4 and CD8 CAR-T (Supplementary Fig. S9A-D, Supplementary Data 8). Next, ADA-
OE was assessed in a-HER2 CAR-T cells that were adoptively transferred by intravenous injection to mice
with subcutaneous HT29-GFP-Luciferase (HT29-GL) tumors (2 independent experiments of 4-5 mice per
condition group). The ADA-OE CAR-T group showed enhanced anti-tumor efficacy compared to the
control CAR-T and WT T cells (Fig. 7B, Supplementary Data 8). Tumors were extracted and analyzed,
which showed that ADA-OE also increased CAR-T infiltration and CD8/CD4 CAR-T proportions, as well
as proliferation rates and central memory polarization in both CD4 and CDS populations (Fig. 7C-E and
Supplementary Fig. 10A-B, Supplementary Data 8). ADA-OE also decreased the levels of PD-1 in CDS8
CAR-T, but increased CTLA-4 in CD4 and CD8 CAR-T (Supplementary Fig. 10C, Supplementary Data

8). The remaining exhaustion markers were not significantly different between the treatment groups.

These results demonstrated that ADA-OE (1) increased the performance of a-HER2 CAR-T cells similarly

to 0-CD19 CAR-T in vitro; (2) enhanced function of CAR-T generated from CD3 T cells; (3) significantly

improved anti-tumor efficacy of CAR-T treatment in an in vivo colorectal cancer model.
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Discussion

ADA catalyzes the conversion of adenosine to inosine intracellularly, as part of the purine metabolism
pathways, and extracellularly, where ADA can co-stimulate T-cell activation through its interaction with
CD26 and enhance both IFN-gamma and TNF-alpha production [41,42]. While intracellular adenosine is
involved in energy metabolism, nucleic acid metabolism, and the methionine cycle [43], deficiency of ADA
can lead to immunosuppressive effects through the accumulation of Ado and dAdo substrates. dAdo and
dATP are released upon cell death and can induce apoptosis in T cells [44,45], whereas Ado and dAdo
accumulation enhances adenosine receptor 2A (A2aR) signaling that disrupts T cell activation and function,
including inhibition of mTORC and ERK1/2 signaling pathways, PKA hyperactivation, and increased
intracellular cAMP, which can decrease IFN-gamma and IL-2 productions in T cells [40,46-49]. Similarly,
we showed decreased cytotoxicity in ADA-deficient CAR-T cells and found significantly enhanced
cytotoxicity and memory function in ADA-OE CAR-T cells. The cytotoxicity of ADA-OE is also enhanced
under high concentrations of extracellular adenosine, an inhibitor of immune function that is greatly
increased in the hypoxic conditions of the TME [50], where the adenosine can stimulating tumor growth

and angiogenesis through fostering the tumor cells to material and energy metabolism [51,52].

PDK1 assists in the metabolic switch during T cell activation from oxidative phosphorylation to aerobic
glycolysis, in which pyruvate is primarily converted to lactate for energy production [53]. This metabolic
switch is bioenergetically favorable for rapid proliferation and cytokine production of effector T cells, and
the early glycolytic shift is facilitated, in part, by PDK1 though inhibiting pyruvate decarboxylase and
blocking pyruvate import to the mitochondria [54]. Our data showed that PDK/ overexpression enhanced
effector T cell function with the upregulation of cytokine, cytotoxicity and chemotaxis-related genes, and
thereby improving CAR-T cell cytotoxicity. However, the PDK-OE CAR-T cells are likely transitioning
toward a terminally exhausted state, given the overexpression of genes related to T cell exhaustion and

downstream targets of the TCF-1-exhaustion axis, in which TCF-1 drives expression of EOMES and c-
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Myb, that upregulates the anti-apoptotic Bcl-2 gene, ultimately leading to the development of a persistent

exhausted T cell [55].

Taken together, we identified and omics-profiled ADA and PDK1 as key metabolic enzymes directly in
human primary T cells and CAR-T cells. We demonstrated that ADA overexpression improves o-CD19
and a-HER2 CAR-T cells from different donors by enhancing cancer lysis, CAR-T proliferation and central
memory generation, while decreasing exhaustion. Furthermore, our results revealed that ADA-OE
significantly improves the efficacy of a-HER2 CAR-T cells in an in vivo solid tumor model. These findings
highlight the roles of these new enzymes in the metabolism and T cell function critical for cancer

immunotherapy and cell therapy.
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Figure Legends

Fig. 1: In silico screen and mRNA-seq revealed ADA and PDK1 as metabolic reprogramming genes
that induce immune response-related transcriptomic changes in CD8 T cells.

A, Flowchart of the multi-tier selection for identification of candidate genes that modulate T cell
metabolism.

B, Schematic of mutant T cell and CAR T cell generation, multi-omics profiling and functional analyses.
C-D, Quantification of CRISPR-mediated indel formation to ADA4 and PDK1 genes. Sample sequences and
indel statistics are displayed in C and D, respectively.

E, Heatmap of significant differentially expressed (DE) transcripts in ADA-gRNA11 or PDKI-gRNA13 T
cells.

F-G, Volcano plots of differential expression (DE) in (F) ADA-gRNA11 or (G) PDKI-gRNA13 T cells.
Expression fold-changes and significance are represented by the beta-value and q value, respectively.

H-I, Waterfall plots of significantly enriched Biological Process ontologies in (H) ADA-gRNAI11 or (I)
PDKI-gRNAI13 T cells. Results are shown for pathway analyses of DE genes, and significance is provided
as the Benjamini-adjusted p value (adj. p). Enrichment was assessed separately for up- and down-regulated
genes, but results are shown together. DE genes had a beta-change > 1 and q < 0.05. Indel quantification

and DE were analyzed with 3 biological replicates for each condition.

Fig. 2: Metabolic reprogramming in ADA and PDKI mutant human primary T cells.

A-B, Heatmaps of differential metabolite levels in (A) ADA and (B) PDKI T cell mutants. Significant
metabolite changes had an adjusted-p < 0.10 and log2 fold-changes > 0.50. Heatmap values depict the z-
score of log2 fold-changes.

C-D, Waterfall plots of metabolic pathway analyses (MetPA) in (C) ADA and (D) PDKI T cell mutants.

Bar color, size and opacity represent pathway significance and impact scores, which summarizing
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metabolite fold-changes of each pathway. MetPA results are given for metabolites-only in the
overexpression mutants and for integrated metabolite-gene expression in the knockout mutants.

E-F, Flow cytometric analyses of functional markers in ADA and PDK T cell mutants. Histograms and are
provided for (E) cytotoxicity and (F) exhaustion markers. Metabolomics and flow cytometry data were

analyzed with n >= 3 for each condition and control.

Fig. 3: Overexpression of ADA or PDKI in a-CD19 CAR-T cells enhanced cytotoxicity.

A, Schematic maps of the a-CD19 CAR, CAR-4DA-OE, and CAR-PDK-OE lentiviral vectors.

B, Flow cytometry dot plots of a-CD19 CAR protein expression in CAR-T cell populations from a
representative sample.

C-E, CRISPR-mediated perturbations to 4DA and PDKI gene loci in CAR-T cell populations. Indel
formation and protein expression were assessed by (C-D) Nextera DNA sequencing and (E) Immunoblot,
respectively.

F-G, Bar plots and line plots of co-culture cytotoxicity assay results for different CAR-T cell populations.
Cytotoxicity was quantified as NALMG6-GL cancer cell survival in co-culture assays with CAR-T cells at
different effector-target ratio concentrations (E:T). NALMG6-GL levels were quantified by luciferase
bioluminescence, relative to no treatment. Results are shown for (F) 4DA/PDKI vs control CAR-T cells
via Dunnett’s two-way ANOVA test, and the (G) ADA vs control CAR-T cells in 30 nM and 120 nM

adenosine. All analyses were performed with n = 3 biological replicates for each condition.

Fig. 4: Multi-omics profiling and phenotypic characterization of ADA mutant CAR-T cells.

A, Heatmaps of significant differentially expressed (DE) transcripts in ADA-gRNA11 and ADA-OE CAR-
T cell mutants.

B, D, Volcano plots of DE analyses in (B) ADA-gRNA11 and (D) ADA-OE CAR-T cells. Expression fold-

changes and significance are represented by the beta-value and q value, respectively.
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C, E, Waterfall plots of significantly enriched Biological Process ontologies in (C) ADA-gRNAT11 and (E)
ADA-OE CAR-T cells. Results are shown for DAVID analyses of DE genes, and significance is provided
as Benjamini-adjusted p values (adj. p). Enrichment was assessed separately for up- and downregulated
genes, but results are shown together.

F, Heatmap of Significant differential metabolite (DM) levels in ADA-OE CAR-T cell mutants.

G, Volcano plot of differential metabolite levels in ADA-OE CAR-T cell mutants.

H, Waterfall plot of integrated transcriptomic-metabolomic MetPA in ADA-OE CAR-T cells. Bar color,
size and opacity represent pathway significance and impact scores, which summarizing metabolite fold-
changes of each pathway.

I, Partial pathway map of extracellular adenosine metabolism in ADA CAR-T cell mutants. Log2-fold-
changes of normalized metabolites and enzyme genes are depicted by ovals and rectangles, respectively
(heatmap color-scale). Multi-gene enzyme levels are presented as log2-fold-changes of the sum of
normalized gene counts. Metabolomics and transcriptomics data were analyzed with n = 5 and n = 3
biological replicates, respectively, for each condition. DE genes had a beta-change > 1 and q < 0.05, while
DM had adjusted-p <0.10 and a log2 fold-change > 0.50. Volcano plot labels are given to genes/metabolites
with the highest significance and fold-changes, for which significant increases and decreases are shown in

red and blue, respectively.

Fig. 5: Multi-omics profiling and phenotypic characterization of PDKI mutant CAR-T cells.

A, Heatmaps of significant differentially expressed (DE) transcripts in PDKI/-gRNA13 and PDKI-OE
CAR-T cell mutants.

B, Volcano plot of DE analyses in PDK/-OE CAR-T cells. Expression fold-changes and significance are

represented by the beta-value and q value, respectively.
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C, Waterfall plots of significantly enriched Biological Process ontologies in PDKI/-OE CAR-T cells.
Results are shown for DAVID analyses of DE genes, and significance is provided as the Benjamini-adjusted
p value (adj. p). Enrichment was assessed separately for up- and downregulated genes, but results are shown
together.

D, Heatmaps of differential metabolite (DM) levels in PDK/-gRNA13 and PDKI-OE CAR-T cells.

E, Volcano plot of DM levels in PDK-gRNA13 and PDKI-OE CAR-T cells.

F, Waterfall plots of integrated transcriptomic-metabolomic MetPA in PDK/-gRNA13 and PDKI-OE
CAR-T cells. Bar color, size and opacity represent pathway significance and impact scores, which
summarizing metabolite fold-changes of each pathway.

G, Partial pathway maps of the TCA cycle in PDKI-gRNA13 and PDKI-OE CAR-T cell mutants. Log2
fold-changes of metabolite and gene levels are depicted by ovals and rectangles, respectively (heatmap
color-scale). Multi-gene enzyme levels were calculated as the log2-fold-changes of the sum of normalized
gene counts. Metabolomics and transcriptomics data were analyzed with n = 5 and n = 3 samples,
respectively, for each condition and control. DE genes had a beta-change > 1 and q < 0.05, while DM had
adjusted-p < 0.10 and a log2 fold-change > 0.50. Volcano plot labels are given to genes/metabolites with
the highest significance and fold-changes, for which significant increases and decreases are shown in red

and blue, respectively.

Fig. 6: Phenotypic profiling of ADA-OE CAR-T cells.

A-B, Flow cytometric analyses for effector molecule production and NALM6-GL cytolysis in ADA-OE vs
control CAR-T cells at 0, 2, and 4 days post-stimulation in a co-culture assay. Cancer lysis was measured
as GFP+ cell numbers or percent of live lymphocytes.

C, Proliferation assay of stimulated CAR-T cells, measured as the dissipation of Cell Trace Violet dye
across cell divisions (modeled by FlowJo software). Proliferation is compared at 0 vs any divisions and

across each number of divisions.
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D-F, Flow cytometry analyses of markers for memory, exhaustion, and downstream targets of A2AR-PKA
signaling.

G, Schematic of A2AR-PKA signaling pathway.

Experiments in (A-F) were performed with >= 4 biological replicates in >= 2 independent experiments.

When indicated, CAR-T cells were stimulated with NALM6-GL at a 1:2 E:T ratio.

Fig. 7: ADA-OE enhances a-HER2 CAR-T cell function in an in vivo colorectal cancer model.

A, Schematic maps of the ADA-OE and control a-HER2 CAR lentiviral vector constructs.

B, Tumor growth curves of ADA-OE and control a-HER2 CAR-T treatments in an in vivo HT29-GL tumor
model. The left panel is shown with summary curves for each treatment, while the right panels show spider
plot curves of the individual growth curves, separately graphed by treatment group.

C, Flow cytometry analyses of the percentages of tumor infiltrating ADA-OE vs control a-HER2 CAR-T
cells. Tumor infiltration percentage is relative to live, single cells.

D-E, Flow cytometry analyses of ADA-OE vs control CAR-T (D) proliferation (KI-67) and (E) memory
phenotypes in CD4 or CD8 CAR-T cells. Tumor growth and flow cytometry experiments included >= 4

mice per treatment with 2 independent experiments.

Figure Notes

Metabolomics data were analyzed by unpaired t test; indel and flow cytometry data were analyzed with
Welch’s unpaired t tests; and tumor growth experiments were analyzed by 2-way ANOVA tests with Sidak’s
multiple-comparison test. Flow cytometry plots shown with representative example data for each
treatment. All analyses are presented with two-tailed results; error bars represent mean +/- SD; adjusted p

values are FDR-corrected, unless stated otherwise. **** p < le-4, *** p <le-3, ** p <0.01, * p <0.05.
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Gating scheme 1: Exhaustion staining of in vitro a-HER2 CAR-T cells
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Gating scheme 2: Effector staining of in vitro a-HER2 CAR-T cells
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Gating scheme 3: Adenosine signaling staining of in vitro a-HER2 CAR-T cells
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Gating scheme 1: Tumor CAR-T infiltration and memory analyses
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Gating scheme 2: Tumor CAR-T proliferation and exhaustion analyses
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