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Abstract 1 

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-2 

based immunotherapies. Hence, we seek to genetically reprogram T cells to exploit a common tumor-3 

intrinsic evasion mechanism, whereby cancer cells suppress T cell function by generating a metabolically 4 

unfavorable tumor microenvironment (TME). Specifically, we use an in silico screen to identify ADA and 5 

PDK1 as metabolic regulators, in which gene overexpression (OE) enhances the cytolysis of CD19-specific 6 

CD8 CAR-T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampens such 7 

effect. ADA-OE in CAR-T cells improves cancer cytolysis under high concentrations of adenosine, the 8 

ADA substrate and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and 9 

metabolomics in these CAR-Ts reveal alterations of global gene expression and metabolic signatures in 10 

both ADA- and PDK1- engineered CAR-T cells. Functional and immunological analyses demonstrate that 11 

ADA-OE increases proliferation and decreases exhaustion in α-CD19 and α-HER2 CAR-T cells. ADA-OE 12 

improves tumor infiltration and clearance by α-HER2 CAR-T cells in an in vivo colorectal cancer model.  13 

Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR-T cells, 14 

and reveal potential targets for improving CAR-T based cell therapy. 15 

 16 

 17 

Synopsis 18 

The authors identify the adenosine deaminase gene (ADA) as a regulatory gene that reprograms T cell 19 

metabolism. ADA-overexpression (OE) in α-CD19 and α-HER2 CAR-T cells increases proliferation, 20 

cytotoxicity, memory, and decreases exhaustion, and ADA-OE α-HER2 CAR-T cells have enhanced 21 

clearance of HT29 human colorectal cancer tumors in vivo. 22 

 23 
  24 
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Introduction 1 

Cancer cells have several mechanisms to suppress immune function, including the development, 2 

recruitment, and activity modulation of suppressive immune cells. In addition, the tumor microenvironment 3 

(TME) itself can suppress T cell function through the oxygen depletion (hypoxia), nutrient deprivation, and 4 

production of immunosuppressive metabolites, including lactic acid and adenosine [1,2]. Cancer cells can 5 

adapt to these unfavorable conditions through metabolic reprogramming, offering competitive advantage 6 

over tumor-infiltrating T cells. Metabolic fitness is also a critical determinant of CTL cytotoxicity, 7 

persistence, and exhaustion [3], which remain challenges for improving anti-cancer efforts of CTLs within 8 

the TME. In addition, there is significant knowledge gap between the metabolism of T cells and chimeric 9 

antigen receptor (CAR) T cells, patient-derived T cells that are reprogrammed to target specific cancer 10 

antigens and reintroduced to patients as immunotherapy [4,5]. The metabolism of these cells may differ 11 

because of the highly engineered chimeric antigen receptor and the rewired T cell signaling that is used by 12 

the receptor [6]. 13 

 14 

Therefore, we hypothesize that we can improve CAR-T cell function through genetic manipulation of key 15 

metabolism genes in T cells. In this study, we screened genes that potentially influence T cell metabolism 16 

in the TME by a rational selection process through large databases, literature, and metabolic pathway 17 

analyses to narrow down to a small number of candidates. Through gene editing, systems biology 18 

approaches, and metabolomics experiments, (1) we revealed and validated key enzymes that modulate T 19 

cell and CAR-T metabolism; (2) we characterized the transcriptomic, metabolomic, and functional changes 20 

to T cell and CAR-T cell phenotypes; and (3) explored the anti-cancer efficacy of the reprogrammed CAR-21 

T cells, which demonstrated enhanced cytotoxic functions, increased memory, and decreased exhaustion. 22 

 23 

 24 

  25 
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Materials and Methods 1 

 2 

Institutional Approval  3 

This study has received institutional regulatory approval. All recombinant DNA and biosafety work were 4 

performed under the guidelines of Yale Environment, Health and Safety (EHS) Committee with an 5 

approved protocol (Chen-rDNA-15-45; Chen-rDNA-18-45). All human sample work was performed under 6 

the guidelines of Yale University Institutional Review Board (IRB) with an approved protocol 7 

(HIC#2000020784). All animal work was performed under the guidelines of Yale University Institutional 8 

Animal Care and Use Committee (IACUC) with approved protocols (Chen 2018-20068; 2021-20068). 9 

 10 

Murine tumor models  11 

NOD-SCID IL2Rγ-null (NSG) mice were purchased from JAX and bred for in vivo tumor models. Briefly, 12 

2e6 HT29-GFP-Luciferase (HT29-GL) cells were subcutaneously injected into the right flanks of mice, and 13 

tumors were measured by caliper with volume = (0.5 x height x width x depth). After 10 days, tumors 14 

reached an average volume > 75 mm3, and were treated with 3e6 CD3+ T cells, α-HER2 CAR-T, or ADA-15 

OE α-HER2 CAR-T cells via tail-vein injection (2 independent experiments of 4-5 mice per condition 16 

group). Tumor volume measurements were then recorded every 2-3 days for the duration of the 17 

experiments, after which, the tumors were extracted into PBS supplemented with 2 % FBS. The tissue was 18 

macerated, incubated with collagenase IV for 1 hour at 37C, then transferred through a 40 μm filter prior 19 

to staining the cells for flow cytometry analysis.  20 

 21 

Selection of metabolic regulatory genes 22 

Metabolic regulatory genes were predicted using a multi-stage selection process starting with genes that 23 

might have a potential role in T cell functions, which were pooled from three different gene-set catalogs, 24 

including genes associated with tumor-immunity, autoimmunity, and human immune-related diseases 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.532663doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532663
http://creativecommons.org/licenses/by-nc-nd/4.0/


CAR-T metabolism ms    

 
5 

(ImmunoBase; https://genetics.opentargets.org/immunobase; accessed: 11/2018). The pooled genes were 1 

filtered for (1) an association with T cell metabolism, (2) enzymes that interacted with TME-related 2 

metabolites, (3) enzymes with easily detected substrates based on published data, (4) genes that were 3 

disrupted by CRISPR-RNP with any of three top gRNAs designed by the GPP web portal [7,8], and (5) 4 

enzymes with detectable substrate changes (LC/MS) in HEK293FT treated with CRISPR-RNP gRNA 5 

knockout vs NTCs. All gene lists and references used for the candidate gene selection process are detailed 6 

in Supplementary Data 1. 7 

 8 

Regular cell culture 9 

HEK293FT cell lines were obtained from ThermoFisher and cultured in D10 media (DMEM (Gibco) 10 

supplemented with 10 % FBS (Sigma-Aldrich) and 200 U / mL penicillin–streptomycin (Gibco)). NALM6 11 

were obtained from American Type Culture Collection (ATCC) and cultured in cRPMI media (RPMI-1640 12 

(Gibco) supplemented with 10 % FBS (Sigma-Aldrich), and 200 U / mL penicillin-streptomycin (Gibco). 13 

NALM6-GL (GFP and luciferase reporters) were produced via lentiviral infection using a GFP-luciferase 14 

reporter vector, as previous described [9].  15 

 16 

Cytotoxicity assays 17 

The co-culture cytotoxicity assays were performed by seeding 96-well flat-bottom culture plates with 18 

NALM6-GL cells at 2e4 cells / well, and T cells were added at different concentrations for 48 h in X-19 

VIVOTM 15 media (Lonza) supplemented with 5 % human AB serum (Gemini Bio) and 30 U / mL 20 

recombinant human IL-2 (BioLegend). The viability of NALM6-GL cells was then assessed by adding 150 21 

ug / mL D-Luciferin (PerkinElmer) into each well for 10 mins at 37 oC, then measuring the relative 22 

luciferase intensity via plate reader (PerkinElmer).  23 

 24 

CD8 T cell isolation and culture 25 
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Human primary peripheral blood samples were derived from healthy donors (STEMCELL). CD8 T cells 1 

were purified using the EasySep human CD8 T cell isolation kits (STEMCELL), as per manufacturer’s 2 

instructions (STEMCELL). Cell culturing was performed in X-VIVOTM 15 media (Lonza), supplemented 3 

with 5 % human AB serum (Gemini Bio) and 30 U / mL recombinant human IL-2 (BioLegend) [9], and 4 

cells were activated for 16 h with anti-human CD3 / CD28 Dynabeads at 1:1 ratio, using manufacturer’s 5 

instructions (Gibco). Subsequently, activated T cells were cultured for another 48 h before 6 

ribonucleoprotein (RNP) electroporation or lentiviral infection, described below. 7 

 8 

Gene editing via Cas9-crRNA:tracrRNA RNP electroporation 9 

All guide RNAs (gRNAs) were designed using the Broad Genetic Purtubation Platform Web Portal [7,8] 10 

and tracrRNA and crRNA were synthesized by Integrated DNA Technologies, Inc. For genetic editing, 11 

human CD8 T cells were first activated with human anti-CD3 / CD28 Dynabeads as above. The T cells 12 

were transfected using the Neon Transfection System (Invitrogen) and Neon Transfection System Kit 13 

(Thermo-Fisher), as per manufacturer’s instructions. Briefly, gRNAs were made by annealing crRNA and 14 

tracrRNA at a 1:1 ratio in a thermocycler, using the following settings: 95 oC for 5 min, slowly cool down 15 

at -5 oC / min, then hold at 25 oC. Next, RNP were formed by incubating the gRNA and HiFi Cas9 Protein 16 

v3 for 15 min at room temperature, then the RNP mixed with electroporation enhancer (Final concentration: 17 

1.8 uM gRNA, 1.5 uM Cas9) and 2e6 T cells / 100 uL. The mixture was electroporated using the Neon 18 

Transfection System with the setting of 1,600 V and 10 ms for 3 pulses, then subsequently transferred T 19 

cells to pre-warmed supplemented X-VIVOTM 15 media for continued culturing.  20 

 21 

Vector design 22 

The anti-CD19 chimeric antigen receptor (CAR) construct is comprised of a leader sequence, a FLAG-tag 23 

sequence (GATTACAAAGACGATGACGATAAG), a human antigen-binding domain of the FMC-63 24 

single chain fragment variable (scFv) that targets CD19 (GenBank: HM852952), and a CD8 hinge and 25 
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transmembrane domain linked to the 4-1BB (CD137) transactivation domain and CD3 zeta signaling 1 

domain (Fig. 3a) [9,10]. The CAR constructs sequences were cloned into lentiviral plasmid backbone 2 

pLY041a (EF1α-T2A-GFP-WPRE) where T2A-GFP was replaced with the CAR sequence. Additional 3 

CAR constructs were created for the tandem expression of either ADA or PDK1 cDNA, for which genes 4 

were cloned from commercial cDNA plasmids (MHS6278-202829515 for ADA and OHS1770-202322779 5 

for PDK1; Horizon Discovery Ltd) into a multi-cistronic vector, downstream of the CAR and a T2A self-6 

cleaving peptide sequence via the Gibson Assembly method [11]. 7 

 8 

Lentivirus production 9 

Lentivirus particles were produced from HEK293FT cells, as previously described [12]. Briefly, the 10 

HEK293FT cells were transfected in 15 cm culture dishes with a mixture of 20 μg target plasmid, 15 μg 11 

psPAX2 (Addgene) packaging plasmid, 10 μg pMD2.G (Addgene) envelope plasmid and 130 μL 1 μg / mL 12 

polyethylenimine (Sigma-Aldrich) in 450 μL Opti-MEM media (Lonza). The virus was collected at 48 h 13 

and 72 h post-transfection, then concentrated with AmiconUltra-100kD Ultrafiltration centrifuge tubes 14 

(Millipore). CD8 T cells were spin-infected with lentivirus at 900 x g, 32 oC for 60 min in 24-well tissue-15 

culture plates, with each well containing 200 μL lentivirus and 800 μL supplemented X-VIVOTM 15 media 16 

including 2.4e6 cells and polybrene. Following spin-infection, media was completely replaced 16 h later, 17 

and cells were maintained at a density of 1-2e6 cells / mL.  18 

 19 

Measurement of gene editing 20 

Genetic perturbations from CRISPR-RNP were quantified from genomic DNA (gDNA) that was extracted 21 

from T cells using QuickExtract Buffer (NEB) according to manufacturer’s recommendation. The genomic 22 

regions targeted by CRISPR-RNP were amplified by PCR (95 oC / 3 min; 36 cycles: 95 oC / 30 s, 60 oC / 23 

30 s and 72 oC / 45 s; 72 oC / 4 min), 1 μL QuickExtract Buffer digested mixture was used as template in a 24 

50 μL PCR reaction with DreamTaq Green 2X PCR Master Mix (Thermo Fisher Scientific) and 0.5 μM 25 
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oligos. For T7 endonuclease I (T7eI) assay [13], 200 ng of purified PCR product was denatured at 95 oC 1 

for 5 min, then reannealed to form heteroduplexes (cooled to 25 oC at -5 oC / min), digested annealed DNA 2 

with 10 U of T7eI (NEB) at 37 oC for 45 min, then visualized on a 2 % agarose E-Gel with SYBR-Gold 3 

(Invitrogen). DNA fragment sizes were quantified using an ImageJ software [14], and cutting efficiencies 4 

were calculated as the proportion of T7eI-digested bands. For Nextera sequencing, 0.5 ng of PCR product 5 

was used for tagmentation and subsequently barcoded, as per manufacturer’s instructions (Illumina). The 6 

processed DNA was pooled, purified by 2 % agarose E-Gel electrophoresis, extracted from the gel via DNA 7 

Gel Extraction kit (Qiagen), and the pooled DNA was sequenced by the Illumina Novaseq platform (100 8 

bp paired-end; Illumina). For indel quantification, paired reads were mapped to the amplicon sequences 9 

using BWA-MEM with default settings (BWA-v0.7.1) [15,16], sorted and indexed using Samtools [17], 10 

variants were called using mpileup via Samtools with a max depth of 100000 [18,19], and indels were 11 

quantified using Varscan pileup2indel command [20] and filtered (>= 2 indel reads, >=2 coverage at indel 12 

locus, indel frequency > 0.00001). Cutting efficiency was reported as the proportion of indels detected with 13 

a 75 bp window of the target cut site (Supplementary Data 2).  14 

 15 

Quantitative RT-PCR and mRNA-seq 16 

Total RNA was extracted by treating cells with TRIzol Reagent (Invitrogen), then isolating RNA with the 17 

Qiagen RNA extraction kit, as per manufacturer’s instructions. For the qRT-PCR, the SuperScript™ IV 18 

Reverse Transcriptase (Invitrogen) was used for cDNA synthesis, and target mRNA levels were quantified 19 

relative to ACTB via qPCR with Taqman probes (Invitrogen) (Supplementary Data 2). For mRNA-seq, 20 

library preparation was performed using the NEBNext® Poly(A) mRNA Magnetic Isolation module 21 

(Illumina) and NEBNext® Ultra™ II Directional RNA Library Prep Kit (Illumina), per manufacturer’s 22 

instruction. Briefly, all samples were normalized to 200 or 500 ng total RNA for fragmentation and cDNA 23 

synthesis. Double-stranded cDNA was purified using oligo-dT Sample Purification Beads, adapters were 24 

ligated to the cDNA, and samples were barcoded using the NEBNext® Multiplex Oligos for Illumina® 25 
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(Index Primers Set 1) (NEB), listed in the Supplementary Data 1. Sample barcoding PCR conditions were 1 

1 cycle of 98 oC for 30 s, 11 cycles of 98 oC for 10 s, 65 oC for 75 s, and one cycle of 65 oC for 5 min. The 2 

barcoded library was then purified using NEBNext Sample Purification Beads then sequenced using the 3 

Novaseq platform (Illumina).  4 

 5 

Protein extraction and Western Blot 6 

Cellular protein was extracted by treating 1e7 cells / mL in ice-cold 1 x RIPA buffer (Boston BioProducts), 7 

containing protease inhibitors (Roche, Sigma) for 30 min on ice, pelleting cell debris for 15 min at 12,000 8 

x g at 4 °C, then the protein-containing supernatant was collected, and concentrations were measured by 9 

BCA assay (Abcam). Proteins were denatured in Laemmli loading buffer at 95 °C for 5 min, and 20 μg / 10 

sample were loaded into 4 % - 20 % SDS-PAGE gel for electrophoresis at 80 V for 20 min then 120 V for 11 

70 min. Proteins were transferred to PVDF membranes using a wet transfer at 320 mA for 70 min on ice. 12 

Membranes were blocked at room temperature for 1 h using 3 % BSA in TBST buffer, transferred 13 

membranes were incubated in 1:1000 diluted primary antibody in TBST buffer with 3 % BSA at 4 °C 14 

overnight, then incubated with 1:5000 horseradish peroxidase (HRP)-conjugated secondary antibodies in 15 

TBST buffer for 1 hr at room-temperature. The chemiluminescent substrate (Bio-Rad) was added to 16 

membranes and immunoblots were imaged using an Amersham Imager 600 (GE Healthcare). 17 

 18 

mRNA-seq data processing 19 

mRNA sequencing data was aligned to the human transcriptome reference panel (GRCh38 Ensembl 20 

Version 96) and quantified from raw FASTQ files using Kallisto with the quant function and 100 bootstraps 21 

[21]. Differential expression analyses were performed using the Sleuth package for R [22], by fitting the 22 

data, first to a full measurement error model then a secondary reduced error model, and lastly, data were 23 

analyzed for differential expression and beta-values via the Wald test. Differentially expressed genes (q 24 

value < 0.05 and beta-value fold-change > 1) were analyzed by the Database for Annotation, Visualization 25 
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and Integrated Discovery (DAVID) gene set enrichment test [23,24], and results were filtered to include 1 

Biological Process Gene Ontology terms, and Benjamini-adjusted p values < 0.05. Quantitative enrichment 2 

analyses were performed by the fast Gene Set Enrichment Analysis (GSEA) package for R, using the beta-3 

values of differentially expressed genes (q < 0.01) and pathways from the MSigDB hallmark collection 4 

(MSigDB v7.0) [25,26] with 1000 permutations, and results were filtered to include those with a gene set 5 

size between 10 and 200. Results were visualized using the ggplot2 R package. 6 

  7 

Flow cytometry 8 

Cell surface proteins were stained with experimentally-titrated fluorophore-conjugated antibodies in MACS 9 

buffer (2 % BSA and 2 mM EDTA in PBS) for 30 min on ice. Stained cells were washed then resuspended 10 

in MACS buffer for flow cytometric analysis. For intracellular staining, cells were fixed for 20 min on ice 11 

with fixation / permeabilization buffer (Invitrogen), washed twice with permeabilization buffer 12 

(Invitrogen), stained with experimentally-titrated fluorophore-conjugated antibodies in permeabilization 13 

buffer (Invitrogen) for 30 min on ice, then washed and resuspended in MACS buffer. Cytometric analyses 14 

were performed using an Attune NxT Focusing Flow Cytometer (Thermo Fisher Scientific), and cell sorting 15 

was accomplished with a FACSAria II flow sorter (BD) and cytometry data was analyzed using FlowJo 16 

software v10.3 (Treestar, Ashland, OR).  17 

 18 

Metabolomics  19 

Metabolomics analyses were performed using 1e6 CD3+CD8+ T cells that were purified via FACS and 20 

washed twice with DPBS. Lysates were extracted by treating the cells with 800 μL of 80 % (vol / vol) 21 

methanol (precooled to -80 oC) on dry ice for 30 min then ice for 20 min, and lysate was separated from 22 

cellular debris by centrifugation at 15,000 x g for 15 min at 4 oC twice to isolate the supernatant [27]. The 23 

lysate / methanol mixture was dried by Speedvac, resuspended in 80 % (vol / vol) methanol, centrifuged at 24 

18,000 x g for 10 min to remove particulates, and stored at -80 oC. Metabolites were analyzed using the 25 
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Agilent 6550 Q-TOF LC / MS system, then the Agilent 6490 Triple quadrupole LC / MS System. The 1 

HILIC liquid chromatography was optimized with the bioZen™ 2.6 µm Glycan LC Column, 150 x 2.1 mm 2 

(Phenomenex) and a Glycan guard column, 4 x 2 mm (Phenomenex). The eluents were A: 0.01 % formic 3 

acid in water HPLC grade and B: 0.01 % formic acid in acetonitrile. The gradient was set as follows: 0 - 2 4 

min 94 % B; 2-8 min 94 – 90 % B; 8 - 16 min 90 - 76% B; 16 - 36 min, 76 - 50 % B; 36 - 42 min hold at 5 

50 % B and then returned to initial conditions for 2 min for column equilibration. The flow rate was set at 6 

0.3 mL / min.  7 

 8 

Metabolomics data analyses 9 

Metabolomics quantification was performed using a two-part strategy, including an initial untargeted 10 

analysis to identify detectable metabolites across samples, and subsequent targeted analyses that re-11 

evaluated these metabolites using standards. Briefly, our untargeted metabolomics analysis had an 12 

optimized workflow, consisting of automated peak detection and integration, peak alignment, background 13 

noise subtraction, and multivariate data analysis for comprehensive metabolite phenotyping of each 14 

experimental group using Agilent Mass Hunter Qualitative Analysis Software (Version B 6.0.633.0) and 15 

Agilent Mass Profiler Professional (Version B 6.0.633.0). The untargeted metabolites were identified based 16 

on accurate mass match (accurate mass error ±30 ppm) and fragmentation pattern match, while structural 17 

annotations were matched to the metabolite databases: HMDB (http://www.hmdb.ca/) and METLIN (http:// 18 

metlin.scripps.edu) using the mass-to-charge ratios. We established detectable metabolites as those that 19 

significantly differed in the gRNA T cells relative to the NTC T cells (q < 0.05, log2-FC > 0.5; comparative 20 

analysis is described in more detail below). The targeted metabolomics analyses were performed for our 21 

list of detectable metabolites, as well as metabolites from related proline metabolism and immune system 22 

metabolism pathways. The targeted metabolite quantification was performed as above with Multiple 23 

Reaction Monitoring (MRM) used for qualitative and quantitative analysis of purified standards (Sigma).  24 

 25 
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All metabolomics analyses were performed via MetaboAnalyst v4.0 [28-30], whereby raw peak intensities 1 

were filtered to remove low-detection features (> 50% missing values across samples), imputed to replace 2 

missing values (half of minimum value across samples), then filtered to remove near-constant values (5% 3 

of features with lowest interquantile range). Next, the data were sample-normalized to the pooled control 4 

group, log2-transformed and scaled to z-score. Differential metabolite levels were then calculated by 5 

unpaired two-tailed t test, assuming equal variance between groups. Metabolomics Pathway Analyses 6 

(MetPA) were performed with default settings: global enrichment test with pathway topologies calculated 7 

as relative-betweeness centrality, and the KEGG Homo sapiens pathway library (Oct 2019). Integrated 8 

transcriptome-metabolome MetPA were performed with log2-fold-changes (LFC) of significantly changed 9 

metabolites (q < 0.10) and the beta-value of differentially expressed genes (q < 0.01, abs(b) > 1) as input, 10 

using hypergeometric tests for enrichment with KEGG Homo sapiens metabolic pathways (Oct 2019), 11 

pathway topologies calculated as degree centrality, and unweighted integration of gene-metabolite p values. 12 

Significantly enriched pathways were those with an FDR-corrected p value < 0.05, and a pathway impact 13 

score > 0.   14 

 15 

Sample size determination  16 

Sample size was determined according to the lab's prior work or from published studies of similar scope 17 

within the appropriate fields. 18 

 19 

Replication 20 

Number of biological replicates (usually n >= 3) are indicated in the figure legends. Key findings (non-21 

NGS) were replicated in at least two independent experiments. NGS experiments were performed with 22 

biological replications as indicated in the manuscript. 23 

 24 

Randomization and blinding statements 25 
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In vivo experiments were randomized and blinded from the experimenter that measured tumor volumes. 1 

Regular in vitro experiments were not randomized or blinded. NGS data were processed in an unbiased 2 

manner using barcoding and metadata. 3 

 4 

Standard statistical analysis 5 

Standard statistical analyses were performed using regular statistical methods. GraphPad Prism, Excel and 6 

R were used for all analyses. Different levels of statistical significance were accessed based on specific p 7 

values and type I error cutoffs (0.05, 0.01, 0.001, 0.0001). Further details of statistical tests were provided 8 

in figure legends and/or supplemental information. 9 

 10 

Data Collection summary 11 

Flow cytometry data was collected by BD FACSAria or ThermoFisher Attune. 12 

All deep sequencing data were collected using Illumina Sequencers at Yale Center for Genome Analysis 13 

(YCGA). 14 

Co-culture killing assay data were collected with PE Envision Plate Reader. 15 

 16 

Data analysis summary 17 

Flow cytometry data were analyzed by FlowJo v.10.  18 

All simple statistical analyses were done with Prism 9.  19 

All NGS analyses were performed using custom codes. 20 

 21 

Code availability 22 

The code used for data analysis and the generation of figures related to this study are available from the 23 

corresponding author upon reasonable request. 24 

 25 
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Data and resource availability 1 

All data generated or analyzed during this study are included in this article and its Supplementary Data 2 

files. Specifically, data and statistics for non-high-throughput experiments such as flow cytometry, qPCR, 3 

protein experiments, and other molecular or cellular assays are provided in Supplementary Data Tables. 4 

Processed data for genomic sequencing (e.g. RNA-seq, amplicon sequencing) and other forms of high-5 

throughput experiments (e.g. metabolomics) are provided as processed quantifications in the 6 

Supplementary Data Tables. Raw sequencing data have been deposited to the NIH Sequence Read Archive 7 

(SRA) and Gene Expression Omnibus under the series accession: GSE225186.  8 

Review information: 9 

Link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE225186 10 

Accession: GSE225186 11 

Token: yvyraomctfkhlqx 12 

 13 

Original cell lines are available at commercial sources listed in supplementary information files. Genetically 14 

modified cell lines are available via Chen lab. Other relevant information or data are available from the 15 

corresponding author upon reasonable request. 16 

 17 

  18 
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Results 1 

Candidate metabolic regulators of CD8+ T cells identified from human disease database and metabolic 2 

pathway analyses  3 

To identify a set of promising candidate genes as genetic targets to metabolically reprogram T cells, we 4 

developed a multi-step rationalization and selection process (Fig. 1a). Briefly, a candidate list was 5 

constructed from 572 genes with potential roles in T cell function, chosen from the data-mining of tumor 6 

immunity studies (137 genes), the ImmunoBase catalog of genes relevant to human immune-related 7 

diseases (311 genes; https://genetics.opentargets.org/immunobase, ImmunoBase accessed: 11/2018), and 8 

genes that were associated with autoimmune diseases in genome-wide association studies (GWAS; 196 9 

genes; Fig. 1A; Supplementary Data 1; Methods). The candidate gene list was then sequentially filtered, 10 

first for gene products that participate in metabolic pathways that are known to be related to T cell function 11 

(resulted in 67 genes), second for interaction with metabolites that contribute to TME-mediated 12 

immunosuppression (resulted in 17 genes), and third for the feasibility to detect relevant metabolites that 13 

are associated with the gene products (resulted in 11 genes) These 11 candidate genes were then 14 

experimentally filtered for efficient CRISPR/Cas9-based gene disruption in HEK293FT cells then CD8 T 15 

cells (resulted in 5 genes), for the feasibility to detect associated metabolites via LC/MS (resulted in 3 16 

genes), and finally, for their functional importance, resulting in two candidates that passed all criteria: ADA 17 

and PDK1. 18 

 19 

Generation of ADA and PDK1 knockout and overexpression mutant human CD8 T cells 20 

To assess how ADA and PDK1 genes impact the function of CD8 T cells, we generated target gene 21 

overexpression (OE) mutants using lentiviral vectors, and knockout (KO) mutants via electroporation of 22 

recombinant crRNA:tracrRNA/Cas9 ribonucleoprotein (CRISPR-RNP) into primary human CD8 T cells 23 

(Fig. 1B). Efficient gene editing was observed in the mutants, based on Nextera-based amplicon capture - 24 

next generation sequencing (NGS) of the target locus (Fig. 1C-D; Supplementary Data 2).  25 
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 1 

ADA and PDK1 mutant CD8 T cells showed broad transcriptomic and metabolomic alterations 2 

To reveal the effect of altered ADA and PDK1 expression, mRNA-seq analyses were performed for each of 3 

the CD8 T cell mutants (Fig. 1E-G; Supplementary Data 3). Our data confirmed the knock-out of ADA 4 

or PDK1 in mutant T cells, as each biological replicate showing significant downregulation of their 5 

respective gRNA target gene (Supplementary Fig. 1A-B). In the ADA mutants, gene enrichment analyses 6 

in ADA-gRNA cells showed that upregulated genes were associated with transcriptional and translational 7 

processes, while downregulated genes in ADA mutants are significantly associated with immune response 8 

and chemokine-mediated signaling (Fig. 1H-I and Supplementary Fig. 1C; Supplementary Data 3). The 9 

ADA-gRNA also significantly downregulated cytotoxicity genes: GZMA, PRF1, IFNG and TNF; 10 

exhaustion genes: CD244, VSIR and LAG3; and upregulated IRF4, a key transcription factor (TF) for 11 

PDCD-1 expression and T cell exhaustion (Supplementary Fig. 1D-F) [31]. Overall, the ADA-gRNA 12 

downregulated effector genes for cytotoxicity, extra-lymphoid homing and adhesion, while upregulating 13 

the exhaustion genes in CD8 T cells.  14 

 15 

In the PDK1-gRNA CD8 T cells, the most significant transcription changes include upregulation of the 16 

IRF4 exhaustion TF and CCR7 lymphoid homing receptor (Fig. 1G; Supplementary Data 3). There is a 17 

significant upregulation of IFNG and anti-inflammatory IL10 cytokines, as well as upregulation of genes 18 

for common memory T cell markers, CCR7 and IL7R, yet there is also a strong downregulation of core 19 

memory-related transcriptional regulator genes: TCF7 and BCL6 (Supplementary Fig. 1E; 20 

Supplementary Data 3). In addition, there is upregulation of multiple transcripts of MYB, a key memory 21 

transcription factor that activates TCF7 transcription [32]  (Supplementary Fig. 2B). There were 22 

transcriptional changes to immune checkpoint genes, including an upregulation of LAG3 and CD244 23 

(Supplementary Fig. 1F). Gene ontology analyses shows enrichment in several transcriptional and 24 

translational ontologies, where the upregulated genes were enriched for biological processes, including 25 
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immune response, inflammatory response, and the negative regulation of cell proliferation (Fig. 1I and 1 

Supplementary Fig. 1C; Supplementary Data 3).  2 

 3 

To further understand the metabolic impact of the ADA and PDK1 mutations in the CD8 T cells, we 4 

performed metabolomics profiling. The ADA-gRNA T cells showed the strongest metabolite shifts in purine 5 

metabolites, including a significant increase in GMP, ADP, adenosine (Ado), and deoxyadenosine (dAdo), 6 

as well as the purine biosynthesis intermediate PRPP (Fig. 2A and Supplementary Fig. 2A; 7 

Supplementary Data 4). Purine metabolism was also the most enriched pathway in a quantitative 8 

metabolic pathway analysis (MetPA, MetaboAnalyst v4.0) that integrates both metabolomics and 9 

transcriptomics data [30,33] (Fig. 2C and Supplementary Fig. 2C; Supplementary Data 4), and the 10 

pathway favors purine biosynthesis over salvage or catabolism with increased PRPP, XMP, GMP, S-AMP, 11 

and ADP, while no significant changes were found in hypoxanthine and IMP levels. Overexpression of 12 

ADA led to a significant increase in glucose, inosine and isoleucine, while there is a significant decrease in 13 

histidine and adenosine, the substrate of ADA (Fig. 2A and Supplementary Fig. 2A). MetPA analysis 14 

showed a significant association with the purine metabolism pathway with changes to levels of several 15 

metabolic intermediates and significantly increased inosine levels (Fig. 2E and Supplementary Fig. 2D; 16 

Supplementary Data 4). These data suggest that ADA-gRNA increased purine biosynthesis, and 17 

overexpression of ADA primarily affected the metabolites directly related to the ADA enzymatic reaction.  18 

 19 

Knocking out the PDK1 significantly affected the levels of 71 metabolites in CD8 T cells, most prominently 20 

were several amino acids (Fig. 2B and Supplementary Fig. 2B; Supplementary Data 4). The integrated 21 

MetPA of mRNA-seq and metabolomics data showed significant association with aminoacyl-tRNA 22 

biosynthesis and the glutathione metabolism pathway, which showed significant upregulation of the 23 

glutathione pathway enzyme genes, as well as glutathione (Fig. 2D and Supplementary Fig. 2E; 24 

Supplementary Data 4), which has key roles in T cell function, including as a cellular anti-oxidant and 25 
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modulating glycolysis and glutaminolysis through regulation of mTOR and NFAT [34]. Overexpression of 1 

PDK1 significantly increased the levels of pyroglutamic acid and L-asparagine, while pathway analyses 2 

showed significant changes to glutathione and butanoate metabolism (Fig. 2B, D and Supplementary Fig. 3 

2B, E-F; Supplementary Data 4). Together, we showed that in primary human CD8 T cells, ADA 4 

modulated metabolism through the purine biosynthesis pathway and influenced effector function genes, 5 

including TNFA, IFNG, granzymes and PRF1. In contrast, PDK1 levels corresponded to changes in broad 6 

range of metabolic pathways, most notably glutaminolysis, glutathione biosynthesis, and the TCA cycle. In 7 

addition, the knockout of PDK1 led to a significant increase of both effector and memory T cell genes. We 8 

assessed immune functions in the T cell mutants via flow cytometry to show a shift of both the ADA-gRNA 9 

and PDK1-gRNA T cells in the production of cytotoxic molecules with decreased granzyme B and IGN-γ 10 

and increased TNF-α (Fig. 2E and Supplementary Fig. 3A; Supplementary Data 8). In addition, there 11 

were increased levels of exhaustion markers in both mutant T cells, based on the significantly increased 12 

expression of CTLA-4 and PD-1 in ADA-gRNA, and of PD-1 and LAG-3 in PDK1-gRNA CD8 T cells 13 

(Fig. 2F and Supplementary Fig. 3A-B; Supplementary Data 8). 14 

 15 

ADA and PDK1 modulation improve cytotoxicity and survival in CD8 CAR-T cells 16 

Modulating the expression of ADA and PDK1 were shown to have strong effects to T cell metabolism, as 17 

well as cytotoxicity and survival gene expression. We next sought to test these functional attributes with a 18 

cytotoxicity assay by co-culture of T cells and cognate cancer cells. We generated CAR-T cells using a 19 

lentiviral vector with an anti-CD19 CAR (FLAG-(anti-CD19 scFv)-CD137-CD3ζ) [9,10]. The ADA or 20 

PDK1 gene was constitutively overexpressed (OE) on the same lentiviral CAR-T vector under a T2A (self-21 

cleaving peptide) element (Fig. 3A). The overexpression or control CAR-T cells were then cultured and 22 

sequentially FACS-sorted for CAR-T purity (Fig. 3B and Supplementary Fig. 3C), and then ADA/PDK1-23 

gRNA cells were generated from the control CAR-T cells via CRISPR-RNP mediated knockout (Fig. 1B, 24 

3A-B), with efficient gene perturbations detected by Nextera-based amplicon sequencing and western blots 25 
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(Fig. 3C-E; Supplementary Data 2). The different T cell populations were then co-cultured with NALM6-1 

GL B cell precursor leukemia cell line constitutively expressing GFP and firefly luciferase [9] at different 2 

concentrations to evaluate T cell-mediated cancer killing capacity. Our results showed that the 3 

overexpression of either ADA or PDK1 significantly enhanced cancer cytolysis by the CAR-T cells, based 4 

on NALM6-GL luciferase bioluminescence (Fig. 3F; Supplementary Data 5). The ADA-OE cytolysis 5 

consistently increased at all cancer cell concentrations (titrated as effector:target (E:T) ratios), whereas the 6 

PDK1-OE cytolysis is most significantly increased at intermediate cancer cell concentrations and non-7 

significantly changed at high concentrations. In contrast, both the ADA-gRNA and PDK1-gRNA CAR-T 8 

cells have decreased cytolytic capabilities at all cancer cell concentrations. 9 

 10 

We next assessed whether ADA-OE increased cancer killing by decreasing the extracellular Ado levels, 11 

which are immunosuppressive when increased in the tumor microenvironment [35]. To address this, cancer 12 

cytolysis was assessed in elevated and high Ado concentrations (30uM and 120uM, respectively) [36-38]. 13 

ADA-OE CAR-T cells showed enhanced killing overall and at most E:T ratios, while ADA-gRNA decreases 14 

killing in the presence of Ado (Fig. 3G; Supplementary Data 5). Overall, these data showed that 15 

overexpressing either ADA or PDK1 leads to enhanced cancer cell cytolysis for anti-CD19 CAR-T cells, 16 

while the ADA-OE also enables increased cytotoxicity under high concentrations of extracellular Ado. 17 

 18 

Transcriptomic and metabolomic alterations in ADA-OE and PDK1-OE CAR-T cells 19 

To determine how modulation of ADA and PDK1 affect T cells with the CAR system, we performed 20 

mRNA-seq transcriptional profiling of the different CAR mutants in parallel with matched anti-CD19 CD8 21 

CAR-T controls (Fig. 4A-B, D; Supplementary Data 6). Differential expression (DE) of ADA-gRNA 22 

CAR-T cells showed upregulated GZMB and GZMM, as well as the BCL2 pro-survival gene, while  pathway 23 

analyses upregulated genes in the type-I interferon, TNF-alpha and IFN-gamma response pathways (Fig. 24 

4C and Supplementary Fig. 4A & 5A, D-F). These combined data showed an upregulation of cytotoxicity, 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.532663doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532663
http://creativecommons.org/licenses/by-nc-nd/4.0/


CAR-T metabolism ms    

 
20 

survival and lymphoid trafficking factors. The expression profile in ADA-OE CAR-T cells also showed a 1 

cytotoxic profile with a significant upregulation of GZMA, GZMB and GZMM and downregulation of 2 

memory-related transcription factor genes: STAT3, HDAC5 and FOXO1 genes, as well as a significant 3 

switch in PRDM1 isoforms [39] (Supplementary Fig. 4A; Supplementary Data 6). Pathway analyses 4 

showed significantly upregulated genes are enriched in type-I IFN signaling and chemotaxis pathway 5 

(DAVID analyses), as well as less significant IFN-α and IFN-γ response upregulation (GSEA analyses) 6 

(Fig. 4E and Supplementary Fig. 5B, D-F; Supplementary Data 6). Together, these data showed an 7 

increased cytotoxic signature with altered memory transcriptional regulatory profile.  8 

 9 

Metabolic profiling of the ADA-OE CD8 CAR-T cells showed significantly altered the levels of 37 10 

metabolites, including a strong increase in pyruvate and several TCA intermediates (cis-Aconitate, a-11 

ketoglutarate, succinate), as well as a significant increase in glutamine and a decrease in glutamate (Fig. 12 

4F-G; Supplementary Data 7). The RNA-Metabolite integrated MetPA indicated significant changes to 13 

several aminoacyl and aminoacyl-tRNA biosynthesis pathways (Fig. 4H and Supplementary Fig. 7A; 14 

Supplementary Data 7). The enrichment analyses also found associations with purine metabolism, 15 

upregulation of the TCA cycle with significantly upregulated intermediates, and downregulation of 16 

glutathione metabolism (Fig. 4H-I and Supplementary Fig. 7A). Overall, the metabolomics of ADA-OE 17 

CAR-T cells showed changes to several aminoacyl metabolic pathways, suggesting an increased usage of 18 

glutaminolysis and at least partial TCA usage, in which the synthesis of intermediates α-KG and succinate 19 

were disproportionately promoted. The purine pathway was marked by an upregulation of multiple 20 

intermediates (cAMP, adenylsuccinate, dATP), as well as both increased adenosine and decreased inosine 21 

(Supplementary Data 7), which was expected by a decrease of the ADA enzyme. There was also increased 22 

Ado, AMP and ATP in ADA-gRNA relative to ADA-OE CAR-T cells (Fig. 4I; Supplementary Data 7). 23 

Together, altering the expression of ADA still predominantly affected purine metabolism, where the ADA-24 
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OE CD8 CAR-T cells showed metabolic changes, which were marked by increased glutaminolysis and 1 

altered TCA usage.  2 

 3 

In the differential expression (DE) analysis of PDK1-OE CD8 CAR-T cells, there was a significantly 4 

increased expression of multiple cytotoxicity genes, including GZMA, GZMB, PRF1, LAMP3, and IFNG, 5 

all indicating increased effector functions (Fig. 5A-B and Supplementary Fig. 4B; Supplementary Data 6 

6). There were also increased expression of exhaustion-related checkpoint genes, such as TIGIT, CD244 7 

and LAG3, as well as upregulation of EOMES and IRF4 transcription factors, and increased expression of 8 

antiapoptotic gene BCL2 (Supplementary Fig. 4B). Pathway analyses showed that upregulated genes were 9 

significantly enriched in type-I IFN and IFN-γ responses, cell-cell signaling and chemotaxis (DAVID 10 

analyses), as well as the IFN-alpha and IFN-gamma response, with decrease in the expression of MYC 11 

targets (Fig. 5C and Supplementary Fig. 5C & 6A-C; Supplementary Data 6). Together, these data 12 

suggested a strong effector phenotype with a notable increase in pro-survival genes, yet T cell exhaustion 13 

markers were elevated. In contrast to this expression profile, the PDK1-gRNA CAR-T cells displayed no 14 

significant changes to effector function genes (Supplementary Fig. 4B; Supplementary Data 6). There 15 

was a significant increased expression of pro-survival BCL2 and strong decreased expression of the MYB 16 

memory regulatory gene (Supplementary Fig. 4B). 17 

 18 

For the metabolomics of PDK1-OE CD8 CAR-T cells, the most prominent significant changes were 19 

increases in valine and isoleucine (Fig. 5D-E; Supplementary Data 7). Integrated pathway analysis 20 

showed significant associations with several metabolic pathways, including multiple amino acid metabolic 21 

pathways and the TCA cycle (Fig. 5F and Supplementary Fig. 7C; Supplementary Data 7). The amino 22 

acid changes were most pronounced in the neutral alkyl residues: valine, isoleucine and leucine, which were 23 

all increased, while the TCA cycle changes reflect a subtle increase in TCA utilization (Fig. 5F-G and 24 

Supplementary Fig. 7C). The PDK1-gRNA CAR-T cells had significant changes up-to 36 metabolites (q 25 
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< 0.05), with the most extreme changes including an upregulation of pyruvate and glucose and a 1 

downregulation of PRPP and nicotinamide adenine dinucleotide (NAD) (Fig. 5D-E; Supplementary Data 2 

7). There was also a noteworthy significant decrease in the level of lactate (Supplementary Data 7). The 3 

MetPA showed significant associations with several amino acid metabolic pathways, particularly the 4 

alanine-aspartate-glutamate metabolism (decreased amino acid pathway products) and arginine 5 

biosynthesis pathway (Fig. 5F and Supplementary Fig. 7B; Supplementary Data 7). Overall, the PDK1-6 

gRNA indicated upregulation of glycolysis and early TCA intermediates with a strong depletion of NAD. 7 

 8 

PDK1-OE reduces stability of CAR surface expression and cytotoxicity over time 9 

Given the relationship between metabolism and T cell function, we sought to investigate how ADA-OE and 10 

PDK1-OE influenced the T cell phenotype. Therefore, we performed multi-faceted functional 11 

characterizations of ADA-OE and PDK1-OE CD8 CAR-T cells by flow cytometry. First, we evaluated 12 

effector T cell function in stimulated CAR-T cells (4 hours), which showed unexpected decreases in the 13 

early production of granzyme B, perforin, IFN-γ, and TNF-α with both ADA-OE and PDK1-OE 14 

(Supplementary Fig. 8A). As decreased effector function is counterintuitive to the increased cancer cell 15 

lysis from our competition assays (Fig. 3F), we performed another competition assay that showed ADA-16 

OE still had improved cancer cell lysis, but PDK1-OE CAR-T cells had lost its cytotoxicity 17 

(Supplementary Fig. 8B). Further analysis demonstrated that the surface expression of the CAR was lost 18 

in PDK1-OE, but not ADA-OE or control cells (Supplementary Fig. 8C). These experiments were 19 

performed using copy-number-controlled knock-in/knock-out (KIKO) CAR system, in which CRISPR-20 

RNP was electroporated into CD8 T cells to induce dsDNA breaks in the TRAC locus, followed by cell 21 

infection with an adeno-associated virus type 6 (AAV6) vector with anti-CD19 CAR, CAR-T2A-ADA, or 22 

CAR-T2A-PDK1 [9]. The progressive downregulation of CAR in PDK1-OE T cells would explain the 23 

discrepancy between the competition assay results in Fig. 3F and Supplementary Fig. 8C, which were 24 

respectively performed days and weeks after FACS selection of CD8+CAR+ T cells. The remaining 25 
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experiments were performed in KIKO CAR-T cells to exclude the potential influence of ADA/PDK1 copy-1 

number inconsistencies from using lentiviral vectors. In addition, CAR-T cells were sorted only once for 2 

CD8+CAR+CD3- cells to prevent result biases from gradual CAR downregulation. 3 

 4 

Overexpression of ADA increases cytotoxicity and memory, while decreasing exhaustion in CAR-T cells 5 

To further explore how ADA-OE CAR-T cells have enhanced cancer killing even though the production of 6 

effector molecules is initially low (Supplementary Fig. 8A), we assessed effector function and cancer lysis 7 

over multiple time points. Our results revealed that the ADA-OE cells significantly increased granzyme B 8 

production at 2- and 4-days post stimulation (Fig. 6A), coinciding with enhanced cancer cell clearance (Fig. 9 

6B). Immune profiling also demonstrated that ADA-OE also enhances proliferation upon stimulation, based 10 

on assays with CellTrace Violet, which involves labeling cells with a fluorescent dye whose concentration 11 

decreases across subsequent cellular divisions. These assays demonstrated that nearly all ADA-OE CAR-T 12 

cells undergo at least one round of division (Fig. 6C). In addition, ADA-OE increased polarization of central 13 

memory (TCM; CD45RO+CD62L+) vs effector memory T cell subsets (TEM; CD45RO+CD62L-) (Fig. 14 

6D). Next, we profiled markers of T cell exhaustion, showing that ADA-OE decreases LAG-3 and TIM-3, 15 

but not PD-1 and CTLA-4 (Fig. 6E, Supplementary Data 8). These data further revealed the 16 

immunological phenotype of ADA overexpression in CD8 CAR-T cells, which enhances cytotoxicity and 17 

memory, while decreasing exhaustion.  18 

 19 

The mechanism of ADA should reduce extracellular adenosine, which we expect would decrease signaling 20 

by the adenosine receptor, and thus, should decrease PKA activation [40]. As PKA signaling in this context 21 

could lead to exhaustion through CREB activation and mTORC1 inhibition (Fig. 6G) [40], we assessed the 22 

downstream targets of PKA to show that ADA-OE CAR-T cells have significantly increased mTORC1 23 

signaling and significantly decreased CREB activation, based on p-S6 and p-CREB levels, respectively 24 

(Fig. 6F, Supplementary Data 8). 25 
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 1 

ADA Overexpression increases α-HER2 CAR-T cell function in colorectal cancer in vivo models 2 

We set out to test ADA-OE in CAR-T cells generated from heterogeneous CD3+ T cell populations, and 3 

test them in an α-HER2 CAR in vivo solid tumor models. First, we knocked-in α-HER2 CAR construct to 4 

the TRAC locus using Cas9-RNP (Fig. 7A). The in vitro characterization assays were performed as above 5 

to demonstrate that ADA-OE improves α-HER2 CAR T similarly to α-CD19 CAR, including increased 6 

cytotoxicity (IFN-γ, granzyme B, TNF-α), decreased pCREB levels and exhaustion, marked by LAG-3 and 7 

PD-1 in both CD4 and CD8 CAR-T (Supplementary Fig. S9A-D, Supplementary Data 8). Next, ADA-8 

OE was assessed in α-ΗΕR2 CAR-T cells that were adoptively transferred by intravenous injection to mice 9 

with subcutaneous HT29-GFP-Luciferase (HT29-GL) tumors (2 independent experiments of 4-5 mice per 10 

condition group). The ADA-OE CAR-T group showed enhanced anti-tumor efficacy compared to the 11 

control CAR-T and WT T cells (Fig. 7B, Supplementary Data 8). Tumors were extracted and analyzed, 12 

which showed that ADA-OE also increased CAR-T infiltration and CD8/CD4 CAR-T proportions, as well 13 

as proliferation rates and central memory polarization in both CD4 and CD8 populations (Fig. 7C-E and 14 

Supplementary Fig. 10A-B, Supplementary Data 8). ADA-OE also decreased the levels of PD-1 in CD8 15 

CAR-T, but increased CTLA-4 in CD4 and CD8 CAR-T (Supplementary Fig. 10C, Supplementary Data 16 

8). The remaining exhaustion markers were not significantly different between the treatment groups. 17 

 18 

These results demonstrated that ADA-OE (1) increased the performance of α-HER2 CAR-T cells similarly 19 

to α-CD19 CAR-T in vitro; (2) enhanced function of CAR-T generated from CD3 T cells; (3) significantly 20 

improved anti-tumor efficacy of CAR-T treatment in an in vivo colorectal cancer model. 21 

 22 
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Discussion 1 

ADA catalyzes the conversion of adenosine to inosine intracellularly, as part of the purine metabolism 2 

pathways, and extracellularly, where ADA can co-stimulate T-cell activation through its interaction with 3 

CD26 and enhance both IFN-gamma and TNF-alpha production [41,42]. While intracellular adenosine is 4 

involved in energy metabolism, nucleic acid metabolism, and the methionine cycle [43], deficiency of ADA 5 

can lead to immunosuppressive effects through the accumulation of Ado and dAdo substrates. dAdo and 6 

dATP are released upon cell death and can induce apoptosis in T cells [44,45], whereas Ado and dAdo 7 

accumulation enhances adenosine receptor 2A (A2aR) signaling that disrupts T cell activation and function, 8 

including inhibition of mTORC and ERK1/2 signaling pathways, PKA hyperactivation, and increased 9 

intracellular cAMP, which can decrease IFN-gamma and IL-2 productions in T cells [40,46-49]. Similarly, 10 

we showed decreased cytotoxicity in ADA-deficient CAR-T cells and found significantly enhanced 11 

cytotoxicity and memory function in ADA-OE CAR-T cells. The cytotoxicity of ADA-OE is also enhanced 12 

under high concentrations of extracellular adenosine, an inhibitor of immune function that is greatly 13 

increased in the hypoxic conditions of the TME [50], where the adenosine can stimulating tumor growth 14 

and angiogenesis through fostering the tumor cells to material and energy metabolism [51,52].  15 

 16 

PDK1 assists in the metabolic switch during T cell activation from oxidative phosphorylation to aerobic 17 

glycolysis, in which pyruvate is primarily converted to lactate for energy production [53]. This metabolic 18 

switch is bioenergetically favorable for rapid proliferation and cytokine production of effector T cells, and 19 

the early glycolytic shift is facilitated, in part, by PDK1 though inhibiting pyruvate decarboxylase and 20 

blocking pyruvate import to the mitochondria [54]. Our data showed that PDK1 overexpression enhanced 21 

effector T cell function with the upregulation of cytokine, cytotoxicity and chemotaxis-related genes, and 22 

thereby improving CAR-T cell cytotoxicity. However, the PDK1-OE CAR-T cells are likely transitioning 23 

toward a terminally exhausted state, given the overexpression of genes related to T cell exhaustion and 24 

downstream targets of the TCF-1-exhaustion axis, in which TCF-1 drives expression of EOMES and c-25 
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Myb, that upregulates the anti-apoptotic Bcl-2 gene, ultimately leading to the development of a persistent 1 

exhausted T cell [55].  2 

 3 

Taken together, we identified and omics-profiled ADA and PDK1 as key metabolic enzymes directly in 4 

human primary T cells and CAR-T cells. We demonstrated that ADA overexpression improves α-CD19 5 

and α-HER2 CAR-T cells from different donors by enhancing cancer lysis, CAR-T proliferation and central 6 

memory generation, while decreasing exhaustion. Furthermore, our results revealed that ADA-OE 7 

significantly improves the efficacy of α-ΗΕR2 CAR-T cells in an in vivo solid tumor model.  These findings 8 

highlight the roles of these new enzymes in the metabolism and T cell function critical for cancer 9 

immunotherapy and cell therapy. 10 

 11 
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Figure Legends 1 

Fig. 1: In silico screen and mRNA-seq revealed ADA and PDK1 as metabolic reprogramming genes 2 

that induce immune response-related transcriptomic changes in CD8 T cells. 3 

A, Flowchart of the multi-tier selection for identification of candidate genes that modulate T cell 4 

metabolism. 5 

B, Schematic of mutant T cell and CAR T cell generation, multi-omics profiling and functional analyses. 6 

C-D, Quantification of CRISPR-mediated indel formation to ADA and PDK1 genes. Sample sequences and 7 

indel statistics are displayed in C and D, respectively.  8 

E, Heatmap of significant differentially expressed (DE) transcripts in ADA-gRNA11 or PDK1-gRNA13 T 9 

cells.  10 

F-G, Volcano plots of differential expression (DE) in (F) ADA-gRNA11 or (G) PDK1-gRNA13 T cells. 11 

Expression fold-changes and significance are represented by the beta-value and q value, respectively. 12 

H-I, Waterfall plots of significantly enriched Biological Process ontologies in (H) ADA-gRNA11 or (I) 13 

PDK1-gRNA13 T cells. Results are shown for pathway analyses of DE genes, and significance is provided 14 

as the Benjamini-adjusted p value (adj. p). Enrichment was assessed separately for up- and down-regulated 15 

genes, but results are shown together. DE genes had a beta-change > 1 and q < 0.05. Indel quantification 16 

and DE were analyzed with 3 biological replicates for each condition.  17 

 18 

 19 

Fig. 2: Metabolic reprogramming in ADA and PDK1 mutant human primary T cells. 20 

A-B, Heatmaps of differential metabolite levels in (A) ADA and (B) PDK1 T cell mutants. Significant 21 

metabolite changes had an adjusted-p < 0.10 and log2 fold-changes > 0.50. Heatmap values depict the z-22 

score of log2 fold-changes. 23 

C-D, Waterfall plots of metabolic pathway analyses (MetPA) in (C) ADA and (D) PDK1 T cell mutants. 24 

Bar color, size and opacity represent pathway significance and impact scores, which summarizing 25 
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metabolite fold-changes of each pathway. MetPA results are given for metabolites-only in the 1 

overexpression mutants and for integrated metabolite-gene expression in the knockout mutants. 2 

E-F, Flow cytometric analyses of functional markers in ADA and PDK1 T cell mutants. Histograms and are 3 

provided for (E) cytotoxicity and (F) exhaustion markers. Metabolomics and flow cytometry data were 4 

analyzed with n >= 3 for each condition and control.  5 

 6 

Fig. 3: Overexpression of ADA or PDK1 in α-CD19 CAR-T cells enhanced cytotoxicity. 7 

A, Schematic maps of the α-CD19 CAR, CAR-ADA-OE, and CAR-PDK1-OE lentiviral vectors. 8 

B, Flow cytometry dot plots of α-CD19 CAR protein expression in CAR-T cell populations from a 9 

representative sample. 10 

C-E, CRISPR-mediated perturbations to ADA and PDK1 gene loci in CAR-T cell populations. Indel 11 

formation and protein expression were assessed by (C-D) Nextera DNA sequencing and (E) Immunoblot, 12 

respectively. 13 

F-G, Bar plots and line plots of co-culture cytotoxicity assay results for different CAR-T cell populations. 14 

Cytotoxicity was quantified as NALM6-GL cancer cell survival in co-culture assays with CAR-T cells at 15 

different effector-target ratio concentrations (E:T). NALM6-GL levels were quantified by luciferase 16 

bioluminescence, relative to no treatment. Results are shown for (F) ADA/PDK1 vs control CAR-T cells 17 

via Dunnett’s two-way ANOVA test, and the (G) ADA vs control CAR-T cells in 30 nM and 120 nM 18 

adenosine. All analyses were performed with n = 3 biological replicates for each condition. 19 

 20 

Fig. 4: Multi-omics profiling and phenotypic characterization of ADA mutant CAR-T cells.  21 

A, Heatmaps of significant differentially expressed (DE) transcripts in ADA-gRNA11 and ADA-OE CAR-22 

T cell mutants.  23 

B, D, Volcano plots of DE analyses in (B) ADA-gRNA11 and (D) ADA-OE CAR-T cells. Expression fold-24 

changes and significance are represented by the beta-value and q value, respectively.  25 
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C, E, Waterfall plots of significantly enriched Biological Process ontologies in (C) ADA-gRNA11 and (E) 1 

ADA-OE CAR-T cells. Results are shown for DAVID analyses of DE genes, and significance is provided 2 

as Benjamini-adjusted p values (adj. p). Enrichment was assessed separately for up- and downregulated 3 

genes, but results are shown together.  4 

F, Heatmap of Significant differential metabolite (DM) levels in ADA-OE CAR-T cell mutants.  5 

G, Volcano plot of differential metabolite levels in ADA-OE CAR-T cell mutants.  6 

H, Waterfall plot of integrated transcriptomic-metabolomic MetPA in ADA-OE CAR-T cells. Bar color, 7 

size and opacity represent pathway significance and impact scores, which summarizing metabolite fold-8 

changes of each pathway.  9 

I, Partial pathway map of extracellular adenosine metabolism in ADA CAR-T cell mutants. Log2-fold-10 

changes of normalized metabolites and enzyme genes are depicted by ovals and rectangles, respectively 11 

(heatmap color-scale). Multi-gene enzyme levels are presented as log2-fold-changes of the sum of 12 

normalized gene counts. Metabolomics and transcriptomics data were analyzed with n = 5 and n = 3 13 

biological replicates, respectively, for each condition. DE genes had a beta-change > 1 and q < 0.05, while 14 

DM had adjusted-p < 0.10 and a log2 fold-change > 0.50. Volcano plot labels are given to genes/metabolites 15 

with the highest significance and fold-changes, for which significant increases and decreases are shown in 16 

red and blue, respectively. 17 

 18 
 19 

Fig. 5: Multi-omics profiling and phenotypic characterization of PDK1 mutant CAR-T cells.  20 

A, Heatmaps of significant differentially expressed (DE) transcripts in PDK1-gRNA13 and PDK1-OE 21 

CAR-T cell mutants.  22 

B, Volcano plot of DE analyses in PDK1-OE CAR-T cells. Expression fold-changes and significance are 23 

represented by the beta-value and q value, respectively. 24 
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C, Waterfall plots of significantly enriched Biological Process ontologies in PDK1-OE CAR-T cells. 1 

Results are shown for DAVID analyses of DE genes, and significance is provided as the Benjamini-adjusted 2 

p value (adj. p). Enrichment was assessed separately for up- and downregulated genes, but results are shown 3 

together.  4 

D, Heatmaps of differential metabolite (DM) levels in PDK1-gRNA13 and PDK1-OE CAR-T cells.  5 

E, Volcano plot of DM levels in PDK1-gRNA13 and PDK1-OE CAR-T cells.  6 

F, Waterfall plots of integrated transcriptomic-metabolomic MetPA in PDK1-gRNA13 and PDK1-OE 7 

CAR-T cells. Bar color, size and opacity represent pathway significance and impact scores, which 8 

summarizing metabolite fold-changes of each pathway.  9 

G, Partial pathway maps of the TCA cycle in PDK1-gRNA13 and PDK1-OE CAR-T cell mutants. Log2 10 

fold-changes of metabolite and gene levels are depicted by ovals and rectangles, respectively (heatmap 11 

color-scale). Multi-gene enzyme levels were calculated as the log2-fold-changes of the sum of normalized 12 

gene counts. Metabolomics and transcriptomics data were analyzed with n = 5 and n = 3 samples, 13 

respectively, for each condition and control. DE genes had a beta-change > 1 and q < 0.05, while DM had 14 

adjusted-p < 0.10 and a log2 fold-change > 0.50. Volcano plot labels are given to genes/metabolites with 15 

the highest significance and fold-changes, for which significant increases and decreases are shown in red 16 

and blue, respectively. 17 

 18 

Fig. 6: Phenotypic profiling of ADA-OE CAR-T cells.  19 

A-B, Flow cytometric analyses for effector molecule production and NALM6-GL cytolysis in ADA-OE vs 20 

control CAR-T cells at 0, 2, and 4 days post-stimulation in a co-culture assay. Cancer lysis was measured 21 

as GFP+ cell numbers or percent of live lymphocytes.  22 

C, Proliferation assay of stimulated CAR-T cells, measured as the dissipation of Cell Trace Violet dye 23 

across cell divisions (modeled by FlowJo software). Proliferation is compared at 0 vs any divisions and 24 

across each number of divisions.  25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.532663doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532663
http://creativecommons.org/licenses/by-nc-nd/4.0/


CAR-T metabolism ms    

 
38 

D-F, Flow cytometry analyses of markers for memory, exhaustion, and downstream targets of A2AR-PKA 1 

signaling. 2 

G, Schematic of A2AR-PKA signaling pathway. 3 

Experiments in (A-F) were performed with >= 4 biological replicates in >= 2 independent experiments. 4 

When indicated, CAR-T cells were stimulated with NALM6-GL at a 1:2 E:T ratio.   5 

 6 

Fig. 7: ADA-OE enhances α-HER2 CAR-T cell function in an in vivo colorectal cancer model.  7 

A, Schematic maps of the ADA-OE and control α-HER2 CAR lentiviral vector constructs. 8 

B, Tumor growth curves of ADA-OE and control α-HER2 CAR-T treatments in an in vivo HT29-GL tumor 9 

model. The left panel is shown with summary curves for each treatment, while the right panels show spider 10 

plot curves of the individual growth curves, separately graphed by treatment group.  11 

C, Flow cytometry analyses of the percentages of tumor infiltrating ADA-OE vs control α-HER2 CAR-T 12 

cells. Tumor infiltration percentage is relative to live, single cells. 13 

D-E, Flow cytometry analyses of ADA-OE vs control CAR-T (D) proliferation (KI-67) and (E) memory 14 

phenotypes in CD4 or CD8 CAR-T cells. Tumor growth and flow cytometry experiments included >= 4 15 

mice per treatment with 2 independent experiments.  16 

 17 
Figure Notes 18 

Metabolomics data were analyzed by unpaired t test; indel and flow cytometry data were analyzed with 19 

Welch’s unpaired t tests; and tumor growth experiments were analyzed by 2-way ANOVA tests with Sidak’s 20 

multiple-comparison test. Flow cytometry plots shown with representative example data for each 21 

treatment. All analyses are presented with two-tailed results; error bars represent mean +/- SD; adjusted p 22 

values are FDR-corrected, unless stated otherwise. **** p < 1e-4, *** p < 1e-3, ** p < 0.01, * p < 0.05.  23 

 24 

 25 
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Supplementary Fig. 2
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Supplementary Fig. 4
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Supplementary Fig. 5
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Supplementary Fig. 6

Pathway Gene ranks NES pval padj
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Supplementary Fig. 7

Alanine, aspartate and glutamate metabolism
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Supplementary Fig. 8
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Supplementary Fig. 9
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Gating scheme 2: Effector staining of in vitro α-HER2 CAR-T cells
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Gating scheme 3: Adenosine signaling staining of in vitro α-HER2 CAR-T cells
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Supplementary Fig. 10
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