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The paper proposes an improved active contour model for segmenting and tracking accurate boundaries of the single lymphocyte
in phase-contrastmicroscopic images. Active contourmodels have beenwidely used in object segmentation and tracking. However,
current external-force-inspired methods are weak at handling low-contrast edges and suffer from initialization sensitivity. In
order to segment low-contrast boundaries, we combine the region information of the object, extracted by morphology gray-scale
reconstruction, and the edge information, extracted by the Laplacian of Gaussian filter, to obtain an improved feature map to
compute the external force field for the evolution of active contours. To alleviate initial location sensitivity, we set the initial contour
close to the real boundaries by performing morphological image processing. The proposed method was tested on live lymphocyte
images acquired through the phase-contrast microscope from the blood samples of mice, and comparative experimental results
showed the advantages of the proposed method in terms of the accuracy and the speed. Tracking experiments showed that the
proposed method can accurately segment and track lymphocyte boundaries in microscopic images over time even in the presence
of low-contrast edges, which will provide a good prerequisite for the quantitative analysis of lymphocyte morphology and motility.

1. Introduction

The study of cell morphology and motility in microscopic
images is essential to understand and treat various biological
processes [1, 2]. As is well known, lymphocytes are involved
in immune response. Clinicians observe that lymphocytes
are highly deformable objects in special conditions, espe-
cially the graft rejection occurring. Quantitative analysis of
lymphocyte morphology and motility is very meaningful in
immune response research. The segmentation and tracking
of lymphocyte boundaries is one of the prerequisites for
the quantitative analysis of cell morphology and motility
[3, 4]. Manual segmentation is subjective, time-consuming,
and prone to errors. Therefore, automatic segmentation and
tracking of cells are desired, and many such methods have
been proposed over the years.

Traditional methods for image segmentation, such as
thresholding, region growing, and watershed, could generate

incorrect boundaries of objects since only local information
is taken into consideration, while active contour models can
segment, match, and track the object by exploiting (bottom-
up) constraints derived from the image data together with
(top-down) a priori knowledge about the location, the size,
or the shape [5]. Hence they have been extensively studied
and used in medical image segmentation ever since the
introduction of active contour models in [6]. Zimmer et al.
used parametric active contour models to segment and track
migration cells in microscopic videos [7]. Acton’s research
group detected and tracked leukocytes based on the shape-
and size-constrained active contour models [8, 9]. Meijering
et al. applied the modified level set method to track cells with
time-lapse fluorescence microscope [4]. Seroussi et al. used
the directional gradient vector flow snakes to segment and
track live cells in phase-contrast microscopic images [10].

Generally speaking, there are two types of active con-
tours categorized by the representation and implementation:
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the parametric and the geometric active contours.The former
type usually establishes energy function composed of internal
and external energy terms.The latter is represented implicitly
as the zero crossings of level set function, which can tackle
topological changes elegantly at the cost of higher computa-
tional complexity [11]. Segmentation methods based on the
parametric active contour models are used in our study since
the observed lymphocytes are free of topological changes.

A number of methods for tracking cells have been
developed over the past decades [4, 12]. In general, they
can be divided into two categories according to the tracking
strategies.The first type, based on the “first detect, then track”
principle, initially detects the object in the first frame and
then establishes the link between the detected objects from
frame to frame based on certain criteria [13]. The second
category of algorithms based on the integrated segmentation
and tracking scheme is often referred to as active contour
models. In active contourmodels, segmentation and tracking
are performed simultaneously by fitting the model to the
image data, and the result of the contour evolution in
the previous frame is used as the initial contour of the
subsequent frame. The advantage of these algorithms is that
all available information from the previous frame can be
directly incorporated into the segmentation of the subsequent
frame. So tracking is realized by segmenting the object from
frame to frame. In this paper, we adopt the second category
of algorithms (active contour models) to segment and track
cell boundaries.

Active contour models confront two challenges. First,
inaccurate segmentations may occur when the edges are
low-contrast or noise-contaminated. Second, active contour
models are usually sensitive to the initial position. To address
these difficulties, three types of methods have been proposed:
edge-based models (where the energy optimization is driven
by boundary information of the image), region-basedmodels
(where the energy optimization is driven by region informa-
tion of the image), and hybrid models. Many external forces
were proposed in different applications, such as balloons
force [14], gradient vector flow (GVF) [15], virtual electric
field [16], and external force using vector field convolution
(VFC) [17]. The VFC snakes, within which an external force
is computed by convolving the edge map with a user-defined
vector field kernel, are more robust to noise and have less
computational costs, compared with the classic GVF snakes.
However, the initialization flexibility is still restricted. The
initial contour, which was shown to be of importance [18, 19],
evolves according to the external force field, and the external
force field is computed via the edge map. The idea of the
proposed external force field in this paper is inspired by [19],
which introduced a modified feature map based on Harris
detector for VFC snakes.

We note that the aforementioned methods of segmenta-
tion and tracking have focused on tracking the cell instead
of the accurate extraction of cell boundaries. In order to
segment and track the accurate boundaries of lymphocytes in
the image sequence, we propose a novel featuremap based on
morphological gray-scale reconstruction and the LoG filter
(MGRL) to compute external force field for the evolution of
active contours. We make use of the region information of

the given image by applying the morphological gray-scale
reconstruction [20] and make use of the edge information
through the LoG filter. To alleviate initialization sensitivity
and reduce the number of iterations, the active contour is
initialized close to the phase halo by an initial segmentation.

The rest of the paper is organized as follows. Section 2
reviews several kinds of active contour models and their
external force fields. Section 3 proposes the improved exter-
nal force based on MGRL-feature map, and the numerical
implementation is given.The initialization of the lymphocyte
contour is also introduced in this section. In Section 4, we
apply active contour models with the proposed external
force field to segment and track lymphocyte boundaries and
compare experimental results with that of othermethods.The
conclusions are given in Section 5.

2. Related Work

Active contours are curves defined in an image domain that
can move under the influence of internal forces and external
forces [6]. Mathematically, the active contour is defined by
a parametric contour 𝐶(𝑠) = [𝑥(𝑠), 𝑦(𝑠)], 𝑠 ∈ [0, 1] and
evolves within the spatial domain of an image to minimize
the following energy function:
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where superscript “(𝑝)” denotes the 𝑝th order derivative and
𝛼 and 𝛽 are weighting parameters representing the degrees
of elasticity and rigidity of the active contour, respectively.
The former makes the contour behave like an elastic string,
while the latter makes the contour behave like a rigid rod
[6]. The external energy 𝐸ext, which represents the image
constraints, is defined to move the active contour toward an
object boundary or other desired features. Using the calculus
of variations [21], an active contour that minimizes (1) must
satisfy the Euler equation

𝛼 ⋅ 𝐶
(2)
(𝑠) − 𝛽 ⋅ 𝐶

(4)
(𝑠) − ∇𝐸ext (𝐶 (𝑠)) = 0. (2)

The solution of (2) is obtained by calculating the steady state
solution of the following gradient flow:
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Xu and Prince defined the gradient vector flow as the
external force for the evolution of active contour [15]. They
proposed the method by replacing −∇𝐸ext(𝐶(𝑠)) in (2) with
the vector field V(𝑥, 𝑦) = [𝑉
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where 𝜇 is a regularization parameter. One of the generally
used forms of edge map 𝑓 is

𝑓 (𝑥, 𝑦) =
∇𝐺𝜎 (𝑥, 𝑦) ∗ 𝐼 (𝑥, 𝑦)

 , (5)
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where 𝐺
𝜎
is the Gaussian function with the standard devia-

tion (STD)𝜎 and 𝜎 = 3 in the study.
Li andActon proposed another external force field for the

evolution of active contours [17], in which the external force
−∇𝐸ext(𝐶(𝑠)) in (2) is replaced with the external force field
Vvfc(𝑥, 𝑦):

Vvfc (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) ∗ k (𝑥, 𝑦) , (6)

where k(𝑥, 𝑦) is the vector field kernel: k(𝑥, 𝑦) = (√𝑥2 + 𝑦2 +

𝜀)
−𝑟
⋅ n(𝑥, 𝑦); n(𝑥, 𝑦) is the unit vector pointing to the kernel

origin, n(𝑥, 𝑦) = [−𝑥/√𝑥2 + 𝑦2, −𝑦/√𝑥2 + 𝑦2]; 𝑟 is a positive
parameter to control the decrease, 𝑟 = 2 in the study; and 𝜀 is
a small positive number.

In active contour models, the external force, which is
computed from the edge map, determines the evolution
of the active contour. A good edge map (feature map)
should emphasize the normal and the low-contrast edges
equally. In order to reduce the effects of nonuniform edge
intensities and highlight the low-contrast edges in phase
contrast microscopic images, we propose a novel feature map
instead of the traditional edge map to compute the external
force, which is given as follows.

3. The Proposed Method

3.1. The Improved External Force Field Based on MGRL-
Feature Map. The proposed feature map based on MGR and
the LoG filter (MGRL-feature map) is

𝑓MGRL (𝑥, 𝑦) = 𝐹
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where 𝐹
𝑙
(⋅) is a low pass filter, which is realized by remov-

ing all connected region that have fewer than 𝑃 (15∼20)
pixels from a binary image; ∇2(⋅) is the Laplacian operator;
𝐺
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the MGR of the 𝐼(𝑥, 𝑦) from the 𝐽(𝑥, 𝑦). 𝐼(𝑥, 𝑦) is the region
of interest (ROI). The MGR process can fill the “holes”
induced by the intensity inhomogeneity in the image, which
is defined as follows [20]. Let 𝐽 and 𝐼 be two gray-scale
images defined on the same discrete domain 𝐷, where 𝐽(𝑝),
𝐼(𝑝) ∈ {0, 1, . . . , 𝑁 − 1} and 𝐽(𝑝) ≤ 𝐼(𝑝) for each pixel
𝑝 ∈ 𝐷. The MGR 𝜌
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inclusion relationship 𝑇
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(𝐼) ⊆ 𝑇

𝑘−1
(𝐼), ∀𝑘 ∈ [1,𝑁 − 1].

We emphasize edges to look for zero crossings by filtering
theMGR image 𝜌

𝐼
(𝐽)with the LoG filter.The STD of the LoG

filter is 2, and the size is 13-by-13. Since the LoG filter detects
many fragmentary edges simultaneously, we use a low pass
filter 𝐹

𝑙
(⋅) to omit the high frequency edges.

The external force field based on MGRL-feature map is

Vvfc MGRL (𝑥, 𝑦) = 𝑓MGRL (𝑥, 𝑦) ∗ k (𝑥, 𝑦) . (8)

In our study, phase contrast imaging is used for cell
images acquisition in order to observe single lymphocyte

morphology and motility over a long period of time.There is
only one target-lymphocyte in the center of the view in each
microscopic sequence, and the video is recorded by the help
of the clinicians. An example frame is shown as Figure 1(a), in
which the ROI containing the object-lymphocyte is marked
as in the rectangular by the user. Two different external force
fields of the marked rectangular are shown in Figures 1(b)
and 1(c), respectively, which indicate that the external force
field computed from the proposed featuremap is sparser than
that from the traditional edge map. Since the high frequency
components of the feature map are removed by a low pass
filter, the external force vectors only appear at the edges,
which can accelerate the evolution of the active contour.

3.2. Numerical Implementation. The VFC snakes based on
the improved external force minimize the following energy
function:
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(9)
where 𝐸vfc MGRL denotes the improved external energy. Using
the calculus of the variations [21], the minimization of (9)
must satisfy the Euler equation
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(4)
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where Vvfc MGRL(𝑥, 𝑦) = [𝑢(𝑥, 𝑦), V(𝑥, 𝑦)] denotes the
improved external force field derived from 𝐸vfc MGRL. Equa-
tion (10) is equivalent to the following expression:
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The solution of (11) is obtained by calculating the following
gradient descent equation:
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Using a finite difference approach on a discrete grid, our
iterative solution to (12) is as follows [6]:
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where 𝑛 corresponds to discrete time and 𝛾 denotes the time
step for each interaction. (𝑥

𝑖
, 𝑦
𝑖
) (𝑖 = 1, 2, . . . , 𝑁) is the
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𝑖
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𝑖
)) by discretizing the

interval [0 1] into 𝑁 − 1 equispaced subintervals of length
ℎ = 1/(𝑁 − 1). Replace the derivative by the difference;
then we get the second-order derivative of 𝑥(𝑠), 𝑑2𝑥(𝑠)/𝑑𝑠2 ≈
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obtained in this way.
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(a) (b) (c)

Figure 1: The original image and two differrent external force fields. (a) Cell image captured by the phase-contrast microscope, and the
lymphoctye is in the center of the view. The ROI contains the target-lymphoctye, marked as in the rectangular. (b) The traditional external
force field based on (5). (c) The proposed external force field based on (7).

3.3. Initial Contour. The active contourmodels may converge
to an incorrect boundary if the initial contour is far from
the real boundary. To alleviate the initialization sensitivity, we
initialize the contour close to the real boundary by an initial
segmentation. In the study, the initial contour of the object is
determined by the following steps.

(1) Select a rectangle ROI within the image by the user, as
shown in Figure 2(a).

(2) Apply MGR to the ROI, as shown in Figure 2(b). The
result shows that the lymphocyte region is distinct
from other red, white cells and the background.

(3) Obtain the binary image from Figure 2(b) through
thresholding techniques. The appropriate threshold
is selected based on the intensity histogram distri-
butions. The assumptions are as follows: there is
only one target-lymphocyte in each image/frame, and
there is no overlap occurrence between the target-
lymphocyte and other cells. So the largest intensity
distribution in the intensity histogram is selected as
the optimal intensity threshold. Suppose the optimal
threshold is thr; the image binarization processing
is defined as (14). The binarized result is shown in
Figure 2(c):

𝐵 (𝑥, 𝑦) = {
1, 𝐼 (𝑥, 𝑦) = thr
0, others.

(14)

(4) After the binarization, morphological operations,
including open and close, are applied to obtain the
initial segmentation.The flat disk-shaped structuring
element is used, and the specified radius is 3. And
then we obtain the coarse binary image of the object.
The initial contour, which is close to the real edge,
is extracted from the binary image, as shown in
Figure 2(d).

4. Experiments and Results

In the study, the image sequence of live cells were obtained
by an optical phase-contrast microscope at a magnification
of 16,000 from blood samples which were collected from the
tails ofmice (6–8weeks old, 20–22 grams heavy). Note that in
the experiments, there is only one target-lymphocyte in each
image, which is at the center of the view and separate from
other red and white cells.

4.1. Segmentation of Accurate Lymphocyte Boundaries. We
randomly selected 25 phase-contrast microscopic images.
The result ofmanual segmentation is used as the ground truth
inmany studies although they have limitations.Therefore the
average of the manual segmentation results by three experts
is used as the ground truth in our study. To validate the
performance the proposed method, we compared segmenta-
tion results with the other three types of widely used active
contours: GVF snakes, edge-based geodesic active contour
(GAC), region-based Chan, and Vese active contour model
(CV). In the validation of GVF snakes, the active contour
evolution equation is similar to (13), except that it uses
gradient vector field as the external force. The evolution of
GAC is 𝜕𝜙/𝜕𝑡 = 𝑔⋅(𝑘+𝑐)|∇𝜙|+∇𝑔⋅∇𝜙, where 𝑐 is the balloon
force, 𝑘 is the curvature, and 𝑔(⋅) is the edge function. The
evolution of CV is 𝜕𝜙/𝜕𝑡 = 𝛿(𝜙)[𝜇

1
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2
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1
and 𝑐
2
are two constants which are the average

intensities inside and outside the contour, respectively; 𝜇
1
≥

0, ] ≥ 0, 𝜆
1

> 0, 𝜆
2

> 0 are fixed parameters. The
detailed parameters settings of the fourmethods (GVF, GAC,
CV, and the improved VFC) are listed in Table 1. Figure 3
shows the comparison among GAC, GVF, CV, the proposed
method, and the manual segmentation results. The initial
contours of the active contour models were obtained by the
initial segmentation as mentioned above (see Section 3.3).
The iteration numbers and the execution time are shown in
Table 1.The experiments were conducted on a 2.93GHzCPU,
4.00GRAM computer. As we can see, the results of GVF and
GAC suffered from the edge leaks outside of cells due to the
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(a) (b)

(c) (d)

Figure 2:The procedure of obtaining the initial contour. (a)The ROI. (b) MGR of the ROI. (c)The coarse binary image of (b). (d)The initial
contour extracted from the binary image.

low-contrast boundaries. The CV method failed to segment
cell images with intensity variation inside the cell. The pro-
posed method VFC MGRL can find the accurate boundaries
at low-contrast edges due to the improved external force field.
The segmentation result of the proposed method is close to
the expert’s manual segmentation result, even better in the
details. For manual segmentation by the expert, it is hard to
segment the cellular protrusion consistently, but the proposed
method can converge to the details of the edges.

To quantitatively evaluate the segmentation, the Jac-
card coefficient (JC) is employed to measure the similarity
between the segmentation result and the ground truth, which
is defined as the ratio between the size of the intersection of
the sets and the size of their union; namely, JC = (𝐴∩𝐵)/(𝐴∪

𝐵), where 𝐴 denotes the segmentation result and 𝐵 is the
ground truth. Figure 4 shows the detailed evaluation results
for the 25 images separately. Parameters settings are shown in
Table 1. It is important to note that the proposed VFC MGRL
snakes method outperform their traditional counterparts in
most cases.

To compare the performance of different segmentation
methods, the statistical analysis of segmentation results by

different methods are shown in Table 2, in which STDmeans
standard deviation.

4.2. Tracking of Accurate Lymphocyte Boundaries. Active
contour models allow us to solve both segmentation and
tracking problems simultaneously. The concept is that lym-
phocyte tracking is realized by lymphocyte segmentation
frame by frame. The initial contour of the lymphocyte in the
first frame is obtained by an initial segmentation, and for the
second frame, the initial contour is obtained from the result
of the contour evolution in the previous frame. That is to
say, the final contour of the previous frame is regarded as the
initial contour of the current frame during the evolution of
active contours. The procedure of segmentation and tracking
is described in Figure 5(a).

Step 1. Read the first frame of the video, and then choose the
ROI containing the target-lymphocyte by the user, as shown
in Figure 1(a).

Step 2. Extract the initial contour close to the ground truth.
In the first frame of the video, this is realized by MGR and
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Segmentation of sample lymphocytes. The first line: the ROI (Img 1, Img 2, Img 3, and Img 4). The second, third, fourth, and fifth
lines present the results for GAC, GVF, CV, and the proposed VFC MGRL method. The last line is the ground truth.

thresholding techniques (as introduced in Section 3.3); in the
subsequent frames, the initial contour is obtained from the
previous frame since the vibration of the lymphocyte position
is not distinct between the successive frames.

Step 3. Compute the improved external force field of the
ROI, and then implement the evolution of active contours
according to the initial contour. The result of the evolution
of the active contour is the final boundary of the lymphocyte.
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Figure 4: Detailed evaluation results. Horizontal axis shows the numbered images used for evaluation. Separate bars indicate the results of
different methods: blue (the first bar) is GVF; red (the second bar) is GAC; green (the third bar) is CV; purple (the fourth bar) is the proposed
VFC MGRL method.
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Figure 5: (a) The workflow of segmentation and tracking of the target-cell in an image sequence. (b) Segmentation and tracking of cell by
using VFC MGRL snakes at frame 130, 250, 370, 490, 610, and 730, respectively. The frame interval is 0.04 seconds.

Table 1: Parameters settings and execution times for images 1–4 of the four kinds of active contour methods.

Parameters settings Number of iterations Run time (seconds)
Image 1 Image 2 Image 3 Image 4

GVF 𝑟 = 1, 𝛼 = 0.8, 𝛽 = 0.2, 𝜇 = 0.1 100 2.26 2.25 2.39 2.17
GAC 𝑑𝑡 = 0.1, 𝑐 = 1 200 4.08 3.99 4.16 4.05
CV 𝑑𝑡 = 0.1, 𝜇

1
= 0.2, ] = 0, 𝜆

1
= 𝜆
2
= 1 200 2.92 2.63 2.63 2.72

VFC MGRL 𝑟 = 1, 𝛼 = 2, 𝛽 = 0.2, log filter : sigma = 2, size = 13 100 1.71 1.78 2.05 1.91
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Table 2: The mean and standard deviation of JC by different
segmentation methods.

GVF GAC CV VFC MGRL
Mean 0.9091 0.8787 0.8422 0.9388
STD 0.0235 0.0460 0.0898 0.0185

Step 4. If the current frame is the last frame, the lymphocyte
tracking procedure is over; if not, go to the next frame of the
video repeating Step 3 till the last frame.

The accurate boundary of the lymphocyte is then
obtained from frame to frame by VFC MGRL snakes.

One result of lymphocyte tracking was shown in
Figure 5(b), which shows that the proposed algorithm can
accurately track the target-lymphocyte boundaries and follow
the dynamic change of lymphocyte shape over time in a
semiautomated fashion. In the first frame, the ROI was
chosen by the user; in the subsequent frames, the object
boundaries were segmented and tracked automatically.

5. Conclusions

The paper proposes a VFC MGRL active contour model for
segmenting and tracking of accurate boundaries of the single
lymphocyte in phase contrast microscopic images. In a video,
starting from the initial contour, the active contour converges
to the accurate boundary according to the improved external
force field. The MGRL-feature map can make full use of
the given image by incorporating the advantages of MGR
and the LoG filter. Therefore, it can be used for defining
an efficient external force field when detecting low-contrast
boundaries. To alleviate initialization sensitivity problem, the
initial contour of the first frame is abstracted around the
ground truth by an initial segmentation; the initial contour
of the subsequent frame is obtained from the previous frame.
The approach is tested on phase contrast microscopic images
and performs better than othermethods, whichwill provide a
good prerequisite for the quantitative analysis of lymphocyte
morphology and motility.
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