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ABSTRACT The tick Ixodes ricinus is the vector of various pathogens, including Chla-
mydiales bacteria, which potentially cause respiratory infections. In this study, we mod-
eled the spatial distribution of I. ricinus and associated Chlamydiales over Switzerland
from 2009 to 2019. We used a total of 2,293 ticks and 186 Chlamydiales occurrences
provided by a Swiss Army field campaign, a collaborative smartphone application, and a
prospective campaign. For each tick location, we retrieved from Swiss federal data sets
the environmental factors reflecting the topography, climate, and land cover. We then
used the Maxent modeling technique to estimate the suitability of particular areas for I.
ricinus and to subsequently build the nested niche of Chlamydiales bacteria. Results indi-
cate that I. ricinus habitat suitability is determined by higher temperature and normal-
ized difference vegetation index (NDVI) values, lower temperature during the driest
months, and a higher percentage of artificial and forest areas. The performance of the
model was improved when extracting the environmental variables for a 100-m radius
buffer around the sampling points and when considering the climatic conditions of the
2 years previous to the sampling date. Chlamydiales bacteria were favored by a lower
percentage of artificial surfaces, drier conditions, high precipitation during the coldest
months, and short distances to wetlands. From 2009 to 2018, we observed an extension
of areas suitable to ticks and Chlamydiales, associated with a shift toward higher altitude.
The importance of considering spatiotemporal variations in the environmental condi-
tions for obtaining better prediction was also demonstrated.

IMPORTANCE Ixodes ricinus is the vector of pathogens including the agent of Lyme
disease, the tick-borne encephalitis virus, and the less well-known Chlamydiales bac-
teria, which are responsible for certain respiratory infections. In this study, we identi-
fied the environmental factors influencing the presence of I. ricinus and Chlamydiales
in Switzerland and generated maps of their distribution from 2009 to 2018. We
found an important expansion of suitable areas for both the tick and the bacteria
during the last decade. Results also provided the environmental factors that deter-
mine the presence of Chlamydiales within ticks. Distribution maps as generated here
are expected to bring valuable information for decision makers in controlling tick-
borne diseases in Switzerland and establishing prevention campaigns. The method-
ological framework presented could be used to predict the distribution and spread
of other host-pathogen pairs to identify environmental factors driving their distribu-
tion and to develop control or prevention strategies accordingly.
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Ixodes ricinus is the most common tick species in Switzerland and is known to be the
vector of many pathogens, including the tick-borne encephalitis virus and the

bacterium Borrelia burgdorferi, the agent of Lyme disease (1, 2). In 2015, Pilloux et al.
showed that I. ricinus may also have the role of vector and even reservoir for Chlamyd-
iales bacteria, especially Rhabdochlamydiaceae and Parachlamydiaceae (82). Chlamyd-
iales is an order of strictly intracellular bacteria containing various bacterial pathogens
or emerging pathogens associated with serious conditions for humans and animals,
including respiratory tract infections and miscarriage (3–5). Parachlamydiaceae have
been largely associated with free-living amoebae (6, 7) and are considered emerging
agents of pneumonia in humans (8, 9). They have also been associated with miscarriage
in ruminants (10, 11) and have been documented in roe deer and red deer, as well as
in some rodents (12, 13). Rhabdochlamydiaceae species have mainly been described in
association with arthropods, including Porcellio scaber, Blatta orientalis, and Ixodes
ricinus (14–16). The pathogenic role of the Rhabdochlamydiaceae is still largely un-
known, but they are suspected to cause newborn infections (17) and respiratory
complications such as pneumonia (18).

Considering the potential threat to human health caused by pathogens associated
with the tick Ixodes ricinus, studies have already investigated the influence of environ-
mental factors on its presence or density. They have shown that the distribution and
activity of I. ricinus are mainly influenced by temperature and humidity (19–22). Indeed,
this tick species is prone to desiccation, and a relative humidity between 70% and 80%
close to the soil is necessary for its survival (19, 20, 23). Its most favorable habitats may
therefore be vegetation types able to maintain a high humidity level close to the soil,
such as woodlands with thick vegetation litter (19, 22, 24).

In Switzerland, several studies analyzed the impact of environmental conditions on
the activity or density of Ixodes ricinus. An early study done by Aeschlimann (19)
indicated that I. ricinus distribution is mainly limited by the presence of a favorable
vegetation cover, with a relative humidity close to or greater than 80% and an altitude
lower than 1,500 m. Perret et al. (20) showed that the questing activity of ticks takes
place from a temperature of 7°C and Hauser et al. (25) indicated that questing activity
is largely reduced when the temperature exceeds 27°C. Jouda et al. (26) showed that
in the region of Neuchâtel, the density of ticks decreases with altitude, which was
confirmed by Gern et al. (27). However, this relationship was found to be the opposite
in the Alps (Valais), which was explained by drier conditions at the lower altitude.

Bacterial communities within ticks are also known to be influenced by environmen-
tal conditions, notably through the modification of tick density, tick behavior, or the
vector-host interactions (28–30). For example, B. burgdorferi is most likely found at
lower altitudes (27), infects more ticks collected in forests than in pastures (29, 31), and
may be favored by forest fragmentation (31, 32), whereas Rickettsia bacteria may be
more prevalent in ticks in pasture sites showing a shrubby vegetation and a medium
forest fragmentation (31). Environmental factors might provide us with critical infor-
mation regarding bacterial distribution and thus potential threats to humans. However,
nothing has yet been investigated regarding Chlamydiales bacteria.

Most studies described above analyzed the impact of environmental factors on the
density or questing activity of ticks. None modeled across years the spatial distribution
of Ixodes ricinus habitat suitability for the whole of Switzerland or the distribution of the
Chlamydiales bacteria. In our study, we therefore aimed to build a model estimating the
spatial distribution of the I. ricinus species from 2009 to 2019 in all of Switzerland using
the Maxent modeling technique. Further, we also investigated the ecological factors
that determine the distribution of Chlamydiales bacteria and the environmental factors
that influence the presence of these bacteria within the tick host.

Modeling of I. ricinus distribution with Maxent has already been done at the scale of
Europe (33), for an area including Europe, North Africa, and the Middle East (34), and
in Romania (35). Environmental data used in these studies were extracted from World-
clim climatic data at a spatial resolution of 30 arc-seconds (approximately 1 km). These
data summarized climatic conditions from 1950 to 2000. Therefore, in these studies as
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in many others (36–44), environmental data were extracted at a resolution that did not
match the species ecology and more importantly the environmental conditions at the
sampling dates. Our goals were thus to first build a model of higher spatial resolution
(100 m) for Switzerland and then to use recent climatic data to characterize in detail the
distribution of Ixodes ricinus and its associated Chlamydiales bacterial pathogen over
Switzerland from 2009 to 2019. To better understand the importance of the environ-
mental conditions surrounding the sampling points, and the conditions preceding the
sampling date, we analyzed the performance of the model (i) across buffer zones
around the sampling point and (ii) through different periods of time before the
sampling date. Finally, we investigated the potential to use Maxent modeling to
estimate the nested niche of a parasite within the ecological niche of its host.

RESULTS
Ixodes ricinus modeling. (i) Best model. Among the 56 models tested with various

parameters, the best one, according to the ranking procedure, was obtained with the
following parameters: (i) background points selected below 1,500 m in altitude (cor-
responding to 6,049/10,000 points); (ii) a principal-component analysis (PCA) procedure
to avoid correlated variables, with the components selected to retain 95% of the
variance; (iii) a combination of linear and quadratic features; and (iv) a value of 5 for the
regularization constant parameter. Details of the models tested and their correspond-
ing evaluation parameters are available in Fig. S5 in the supplemental material. These
parameters were then used to test the influence of the choice of buffer radius and time
period on the performance of the models. Figure 1 shows the area under the receiver
operating curve as computed on the testing data set (AUCtest) and sum of ranks
obtained for each combination. According to these results, the best model was

FIG 1 Performance of models predicting the habitat suitability for Ixodes ricinus. (Left) Values of the AUCtest and the sum of
ranks as a function of the buffer radius and the time period (in months) considered for the extraction of the environmental
variables. For the AUCtest, the points indicate the mean value computed through the 20 runs and the lines correspond to the
95% confidence intervals. The “combination” model refers to the model derived by using for each environmental variable the
combination of time period and buffer radius that best discriminates the tick’s presence from background locations (t test).
(Right) Characteristics of the best model chosen according to the best values from the graphs at the left. OE_test is the
omission error on the test samples and OE_indep the omission errors on the independent additional data available for 2018
and 2019.
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obtained by extracting the environmental variables in a buffer with a 100-m radius
around the sampling point and for the 2 years (24 months) preceding the sampling
date. Note that the performance of the “combination” model was very similar, as were
the performances of models obtained with an extraction for the 3 years preceding the
sampling date and a buffer radius of 100 m and for the 2 years preceding the sampling
date with a 200-m buffer radius. Moreover, we observed for each buffer radius that the
models were more powerful when considering the variables extracted for the 2 or
3 years previous to the sampling date, instead of considering the conditions of the
current year or even shorter time periods. Similarly, the models obtained by extracting
the variables within buffers of 100-m or 200-m radius always outperformed the other
models. Performance of models with variables extracted at the sampling coordinates
only (radius � 0 m) was much lower than any buffer model, even those with a radius
larger than 500 m. We retained the best model with variables extracted in a
100-m-radius buffer and for the 2 years preceding the sampling date (Fig. 1). The
global area under the curve (AUC) obtained (with both the training and testing
data) was 0.794 and the mean AUCtest obtained through the 20 runs was 0.789. The
threshold maximizing the sum of sensitivity and specificity equaled 0.59. Using this
threshold, the average omission error on the testing data set reached 23% and the
omission rate on the independent data set was 11%. The model estimated 31
nonnegative coefficients. The median predicted suitability for all occurrences used
in the model was 0.74 and the median suitability for independent occurrences from
2018 and 2019 was 0.88.

(ii) Effective variables. The jackknife procedure (Fig. 2) indicated that the four
variables containing the largest amount of important information not available in the
other variables (lowest AUCwithout) were as follows: (i) dimension 1 (AUCwithout � 0.748);
(ii) dimension 12 (0.776); (iii) dimension 8 (0.780); and (iv) dimension 5 (0.784). The four
variables containing the largest amount of important information by themselves
(highest AUConly) were as follows: (i) the first dimension of the PCA (AUConly � 0.641);
(ii) dimension 12 (0.617); (iii) dimension 21 (0.591); and (iv) dimension 8 (0.582).

Dimension 1 of the PCA is strongly positively correlated with the average of the
monthly mean temperatures (r � 0.91), which indicates that the presence of Ixodes
ricinus is favored by higher mean temperature. Dimension 8 is moderately correlated
with the percentage of herbs and grass vegetation (r � 0.57) and the mean tempera-
ture during the three driest consecutive months (r � 0.40). Its negative coefficient
indicates that a higher percentage of herb and grass vegetation or higher temperature
values during the driest months are less favorable for the presence of ticks. Dimension
12 is moderately negatively correlated with the percentage of artificial surfaces (r �

�0.51) and positively correlated with the range of monthly normalized difference
vegetation index (NDVI) (r � 0.35). This dimension is also negatively associated with
habitat suitability for ticks, indicating that a higher percentage of artificial surfaces and
a lower range of NDVI values are more favorable for the presence of I. ricinus. Finally,
dimension 5 is positively correlated with the mean monthly NDVI (r � 0.72) and the
minimum and maximum NDVI (r � 0.55 and 0.52, respectively) and is negatively
correlated with the percentage of watery areas (r � �0.56). Its positive coefficient
indicates that the areas with higher NDVI values and less water are more favorable for
ticks.

(iii) Distribution maps. The maps of the distribution of Ixodes ricinus with suitability
index values predicted by the model across Switzerland for June 2009 and June 2018
are shown in Fig. 3. The corresponding projections for the month of June in 2015, 2016,
2017, and 2019 are available in Fig. S6. Results for June 2009 show that 16% of the Swiss
territory is predicted to be suitable for the presence of Ixodes ricinus when using the
threshold maximizing the sum of specificity and sensitivity (threshold � 0.59). The
suitable areas are mainly localized in land covered by tree vegetation (48.6% of all
suitable areas); however, 26.6% are observed on hectares statistically classified as
artificial surfaces. In addition, most of the suitable areas lay between 500 and 1,000 m

Rochat et al. Applied and Environmental Microbiology

January 2021 Volume 87 Issue 1 e01237-20 aem.asm.org 4

https://aem.asm.org


in altitude (53.04%) or below 500 m (46.5%). Only 0.46% of the favorable area was
found above 1,000 m in altitude.

In June 2018, 25% of the Swiss territory was predicted to be suitable for Ixodes
ricinus (considering a threshold of 0.59). Between June 2009 and June 2018, the
predicted suitable area increased by more than 4,000 km2 (Fig. 3) and only 31 km2

became unsuitable. The increased suitability was particularly pronounced in the Rhône
Valley (Valais), in Surselva, in Simmental, on the Jura border, and in other lateral valleys
of medium to high altitude (circles on the map). The evolution of the PCA components
from 2009 to 2018 in these areas showed that the increase in suitability was generally
associated with an increase in the values of dimension 1 (warmer temperature), an
increase in dimension 5 (higher NDVI values), a decrease in dimension 12 (lower range
of NDVI values), and a decrease in dimension 8 (temperature during driest months) in
Valais and Jura (whereas this last dimension shows an increase of the values in Grisons).
The new suitable areas comprised mainly grass and tree vegetation (40.8% each), with
a large proportion (64.8%) located at an altitude between 500 and 1,000 m (corre-
sponding, for example, to the altitude of the suitable hectares on the Jura border or in
the Rhône valley). An increase in suitable areas mainly in forests was also observed
between 1,000 and 1,500 m (8%). The model also predicted suitable areas above 1,500
m. These results therefore highlighted a spread of the favorable areas toward higher
altitudes.

The distribution maps of Ixodes ricinus for the years 2015 to 2017 (Fig. S6) indicate
a constant and drastic increase in suitability, which is highest between 2017 and 2018.

FIG 2 Jackknife results for the best model predicting the suitability of habitats for Ixodes ricinus. The
variables Dim1 to Dim26 correspond to the components of the PCA needed to retain 95% of the variance.
AUCtotal corresponds to the performance of the model with all environmental variables, AUConly the
performance with only the environmental variable mentioned in the first column, and AUCwithout being
the performance with all the variables except the one mentioned. The column with �/� indicates the
type of association between the component and the presence of Ixodes ricinus (with a positive
association, the higher the value of the PCA dimension, the higher the suitability for ticks). The last
column shows the raw environmental variable most correlated with the PCA dimension, with the value
of the correlation indicated in parentheses (Temp, temperature; RH, relative humidity; Quant, quantile;
Prec, precipitation; Perc, percentage).

Ixodes ricinus and Chlamydiales Swiss Distributions Applied and Environmental Microbiology

January 2021 Volume 87 Issue 1 e01237-20 aem.asm.org 5

https://aem.asm.org


Indeed, 15.7% of the Swiss territory was predicted as suitable in 2009, 16.8% in 2015,
16.2% in 2016, 17.6% in 2017, and 25.4% in 2018 (considering a threshold of 0.59 for
suitable areas). Moreover, the map computed for 2019 predicted an important increase
from 2018 to 2019, with 35% of the Swiss territory being predicted as suitable in 2019.
The spread toward higher altitude was also observed between 2018 and 2019, with a
maximal altitude for the favorable areas that reached 1,595 m in 2019. The results

FIG 3 Suitability maps for Ixodes ricinus. Suitability map for Ixodes ricinus in June 2009 (upper panel) and June 2018 (lower panel) as
predicted by the best model (i.e., with environmental variables extracted with a 100-m radius buffer and for the 2 years preceding the
sampling date). The areas affected by transitions in suitability are represented in the middle panel.
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indicate that since 2018, there is a relatively high probability that ticks will reach such
altitudes.

Chlamydiales modeling. (i) Best model. The best model for Chlamydiales bacteria,
among the 60 models tested with various parameters, was obtained with the following
parameters: (i) the “correlation-VIF” procedure to select uncorrelated variables; (ii) a
combination of linear and quadratic features; and (iii) a value of 1 for the regularization
constant parameter. The details of all models tested and their corresponding evaluation
parameters are available in Fig. S7. As with the modeling of Ixodes ricinus, we then
tested the influence of the choice of buffer radius and time period on the performance
of the models. Figure 4 shows the AUCtest and sum of ranks obtained for each
combination. According to these results, the “combination” model outperformed the
other models. Unlike the results obtained for Ixodes ricinus, the models for Chlamydiales
performed better when the variables were extracted for the 3 or 6 months preceding
the sampling date than when considering 2 or 3 years before sampling (Fig. 4). In
addition, the influence of buffer radius seemed to be much less pronounced than for
the tick models. Accordingly, we retained the “combination” model. This model used 17
uncorrelated variables selected based on the “correlation/VIF” procedure. The list of
these variables, as well as the results of the t test, can be found in Fig. S8. As the
“combination” model aims to retain for each variable the best combination of buffer
radius and time period, not all variables are selected using the same buffer radius or
time period. Interestingly, we observed that the variables used in the model involved
a buffer radius smaller than or equal to 200 m or else superior to 1 km (Fig. S8). The
characteristics of the model are summarized in Fig. 4, on the right. The global AUC (with
both training and testing occurrences) was 0.78 and the mean AUCtest obtained

FIG 4 Performance of models predicting the suitability for Chlamydiales. (Left) Values of the AUCtest and the sum of ranks as
a function of the buffer radius and the time period (in months) considered for the extraction of the environmental variables.
For the AUCtest, the points indicate the mean value computed over the 20 runs and the lines correspond to the 95% confidence
intervals. The “combination” model refers to the model derived by using for each environmental variable the combination of
time period and buffer radius that best discriminates the tick’s presence from background locations (t test). (Right)
Characteristics of the best model chosen according to the graphs at the left. Mean diff 2009 and mean diff 2018 are the average
differences between the mean suitability values predicted on Chlamydiales occurrence points and on “absences,” i.e., locations
where no Chlamydiales were identified in 2009 and 2018, respectively.
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through the 20 runs was 0.74. The threshold maximizing the sum of sensitivity and
specificity equaled 0.3. The mean suitability for Chlamydiales occurrence in 2009 was
0.47 and the mean suitability for sites where Chlamydiales were not identified in 2009
was 0.37. For 2018, the mean suitability on occurrence points was 0.46 and the
suitability on sites where no Chlamydiales were identified was 0.15. The model esti-
mated 35 nonnegative coefficients.

(ii) Effective variables. The four variables containing the largest amount of impor-
tant information that was not available in the other variables (lowest AUCwithout) were
(Fig. 5) (i) the percentage of tree vegetation in a 100-m buffer (AUCwithout � 0.75); (ii)
the number of successive days with a relative humidity inferior to 80% during the
3 months preceding sampling (0.77); (iii) the number of successive days with a relative
humidity inferior to 70% during the 6 months preceding sampling (0.77); and (iv)
the distance to wetlands within a buffer of 1 km (0.77). The four variables containing the
largest amount of important information by themselves (highest AUConly) were (i) the
percentage of artificial surfaces in a 100-m buffer (AUConly � 0.59); (ii) the number of
days with a relative humidity superior to 90% in a 200-m buffer during the 2 years
preceding the sampling date (0.57); (iii) the precipitation of the three coldest months
in a 1.5-km buffer during the 2 years preceding the sampling (0.55); and (iv) the
percentage of tree vegetation in a 100-m buffer around the sampling point (0.55).

The conditions favorable for Chlamydiales were thus characterized by the following:
(i) a lower percentage of artificial surfaces around the sampling point (7.8% in average
for the occurrences locations in a 100-m buffer versus 16.8% for the background
locations); (ii) a higher percentage of tree vegetation (62.8% versus 53.1%); (iii) a lower
number of days with a relative humidity superior to 90% during the 2 years preceding
the sampling date (21.1 versus 25.2); (iv) a larger amount of precipitation during the
coldest months (24.15 mm versus 20.7 mm); (v) a higher number of successive days
with a relative humidity inferior to 80% during the three previous months (29.7 versus
27.1) and lower than 70% during the 6 previous months (16 versus 14.4); and finally, (vi)
a shorter distance to wetlands (2.5 km versus 3.1 km).

(iii) Distribution maps. The distribution maps of Chlamydiales with values of
suitability predicted by the model across Switzerland for June 2009 and June 2018 are

FIG 5 Jackknife results for the best model predicting the suitability for Chlamydiales. The column “Buffer”
indicates the buffer radius around the sampling point and “Months” the number of months before the
sampling date. The column with �/� indicates the type of association between the variable and the
presence of Chlamydiales (with a positive association, the higher the value of the variable, the higher
the suitability for Chlamydiales). AUCtotal corresponds to the performance of the model with all environ-
mental variables, AUConly the performance with only the environmental variable mentioned in the first
column, and AUCwithout the performance with all the variables except the one mentioned. Perc,
percentage; Temp, temperature; Prec, precipitation; quant. 0.75, quantile 0.75; RH, relative humidity.
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shown in Fig. 6. In June 2009, 8% of the Swiss territory was predicted as favorable for
Chlamydiales bacteria (using the threshold maximizing the sum of sensitivity and
specificity). As the niche of the bacteria is nested within the niche of the tick, modeling
suitability for Chlamydiales bacteria involved a multiplication by the suitability results
for Ixodes ricinus. Therefore, the areas predicted to be unfavorable for the presence of
the tick species are also predicted as weakly suitable for Chlamydiales. On the contrary,

FIG 6 Suitability maps for Chlamydiales in June 2009 (upper panel) and June 2018 (lower panel) as predicted by the best model (i.e.,
with the “combination” set of environmental variables). The areas affected by transitions in suitability are represented in the middle
panel. The green dots show sites where ticks were sampled but no Chlamydiales were identified. Note that, as explained in the text,
these sites cannot be considered real “absences.”
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some areas predicted to be highly favorable for the presence of Ixodes ricinus in Fig. 3
did not match and showed very low values in Fig. 6. This is the case for the areas
situated within urban settlements, for which a large portion was predicted to be
suitable for ticks but not for Chlamydiales. Indeed, the distribution of the areas
favorable for Chlamydiales within the various categories of land cover classes indicates
that they are essentially observed in natural areas, covered either by tree (74%) or grass
(12%) vegetation, and only 4% of them are observed in regions characterized by a large
portion of artificial elements. When considering the altitudinal distribution, areas
favorable for Chlamydiales seem to be essentially predicted in forests suitable for ticks,
between 500 and 1,000 m in altitude. However, due to other factors influencing the
model, notably the climatic conditions, 52% of those forests are also predicted to be
unfavorable for the bacteria.

In June 2018, 9% of the Swiss territory was predicted as suitable for the presence of
Chlamydiales. Between June 2009 and 2018, more than 1,850 km2 became newly
suitable for Chlamydiales, as shown in Fig. 6. Some regions showed a sharp increase in
suitability values (more than 0.4). However, more than 1,280 km2 was also becoming
unsuitable. In 2018, the proportion of suitable area within land cover classes was close
to what was observed in 2009; however, there was a clear spread toward higher
altitude, with 23% of the favorable areas localized between 1,000 and 1,500 m, versus
only 2% in 2009. Newly suitable areas match those of Ixodes ricinus in Fig. 3 (Rhône
valley, Surselva, and the Jura border). The spread of favorable areas toward higher
altitudes was also predicted, with 45% of the newly suitable hectares being localized
between 1,000 and 1,500 m. Loss of suitable areas mainly occurred in the northwest
part of Switzerland and appears to be associated with a decrease in precipitation during
the three coldest months together with a decrease in the successive number of days
with a relative humidity inferior to 70% during the 6 previous months (15 December
2017 to 15 June 2018 compared to 15 December 2008 to 15 June 2009).

DISCUSSION
Expansion of Ixodes ricinus and Chlamydiales in Switzerland. The suitability

index is proportional to the probability of presence of the species but involves an
unknown proportionality coefficient that corresponds to the prevalence of the species.
Suitability index values are thus not expected to be comparable between tick and
Chlamydiales distribution maps. Nevertheless, distribution maps for ticks and bacteria
from 2009 to 2019 highlighted an extension of the suitable areas for both species and
a spread toward higher altitude. Areas suitable for Ixodes ricinus expanded from 16% to
25% of the Swiss territory, and a subsequent extension from 8% to 9.3% was observed
for Chlamydiales bacteria. Ixodes ricinus expansion occurred all over the Swiss Plateau
and toward higher altitudes in the alpine valleys and was more extended in the
southwest. Newly available habitat consisted mostly of grass and forest areas. Extension
of Chlamydiales followed similar trends but was restricted to forest areas. As Ixodes
ricinus presence is favored by higher temperature, we might expect that, in the future,
this expansion might continue following global warming with some limitation by dryer
conditions at lower altitude.

Our results agree with the observed increased in cases of tick-borne encephalitis
(TBE) in Switzerland, which spread from the eastern to the western part of Switzerland
(45), leading to the extension of the vaccination recommendation (47). Similar tick
expansions toward higher altitudes were observed in other European countries during
the last few decades (48–50), notably in association with milder winters and extended
spring and autumn seasons (51, 52).

Variables explaining I. ricinus distribution. The effective variables identified by
our model are related to temperature and humidity, which reflect well the tick’s
ecology. We found that a high temperature favors Ixodes ricinus, in agreement with
previous studies (33, 53). However, our analysis indicated that this relationship does not
hold during the driest months. This can be explained by an increased evaporation of
the soil humidity under warmer temperatures, thus accentuating the desiccation risk
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for ticks (22). The NDVI variables, an important contribution to our model, are indicators
of physiological plant activity and have often been shown to be powerful for modeling
the presence of ticks because they reflect humidity conditions (22, 53). Nevertheless,
our results indicated that the ambient relative humidity variables showed limited effect
on the model. They may thus constitute a less precise predictor of soil humidity than
the combination of NDVI variables with temperature and land cover indicators. Sur-
prisingly, our results also showed that I. ricinus presence is favored by a higher
percentage of artificial surfaces. This might relate to an overrepresentation of ticks
collected in vegetated areas situated within urban settlements or close to roads.
Indeed, we expected a sampling bias, as many tick occurrences are noted via the Tick
Prevention app, in which users provide tick locations that are likely biased toward areas
closer to roads or paths and thus artificial surfaces. Moreover, other tick specimens
documented either by the army field campaign in 2009 or by the prospective campaign
in 2018, were collected essentially in forests or close to their borders. In contrast, grassy
areas, often corresponding to agricultural fields, were not sampled by the two field
campaigns and were also probably less explored by the users of the application, since
people are less likely to visit these areas. This might explain why our model associated
a low percentage of grass vegetation as favorable for I. ricinus and we might have an
underestimation of the suitability index in some grass areas. Nevertheless, the presence
of ticks in urban and suburban areas of Switzerland has already been reported (54, 55)
and the presence of vegetated areas in urban settlements or close to artificial surfaces
(roads, paths, and recreational areas) may constitute favorable habitats. In addition,
even if we expect some grass zones, especially at the forest border, to be highly
favorable for ticks, in general pasture land, open land, and cultivated areas have been
reported to be much less favorable than woodlands (22, 56, 57). Finally, in agreement
with previous studies (25, 58), we observed that the morphometric parameters and the
precipitation variables showed little effect on the suitability for ticks.

Variables for Chlamydiales spatial distribution. Identified effective variables for
the presence of Chlamydiales may provide novel insights into the ecology of these
bacteria. First, our results indicated that Chlamydiales are more likely present in ticks
collected in forests or grass fields than in ticks collected close to artificial areas. The
highest prevalence of Chlamydiales within natural areas could be explained by the
presence of different hosts (likely rodents) on which ticks feed, with potentially a higher
number of reservoir-competent hosts for Chlamydiales in natural areas. This may also
relate to a higher tick abundance in natural areas, which is known to be associated with
a higher prevalence of other pathogens in ticks (30) but not for all tick pathogens (55).
Our results also showed that the presence of Chlamydiales bacteria was favored by the
driest conditions (negatively associated with the number of days with a relative
humidity superior to 90% and positively associated with the number of days with
relative humidity inferior to 70%). Large amounts of precipitation during the coldest
months also appeared to be favorable for the presence of Chlamydiales. Several suitable
areas for Chlamydiales were predicted at an altitude higher than 1,000 m; thus, the
highest precipitation during the coldest months could be associated with the largest
snow amounts, preserving the soil from frost and leading to a higher tick survival rate
(24). Finally, a shorter distance to wetlands was also highlighted as a factor favoring
bacterial presence. Several Chlamydiales have been considered symbionts of amoebae
(59), which are free-living organisms usually found at the interface between water and
soil, air, or plants (59). It is therefore likely that amoebae can be found in wetlands,
which might favor the transmission of Chlamydiales to various animal hosts on which
ticks feed.

Chlamydiales prevalence values were heterogeneous among our data sets. In
2009, ticks were collected in forests only and Chlamydiales were present in 68.6%
of the sites visited, with a low prevalence within pools (6.4%). A low prevalence was
also observed in the ticks received from users of the Tick Prevention app in 2018
and 2019 (3.79%). In 2018, the ticks sampled during the prospective campaign were
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also mainly collected in forest areas and Chlamydiales were present in 53.7% of the
sites, but with a much higher prevalence (reaching 28.13%). This rate reflects values
obtained in 2010 in one specific site in the Swiss Alps (Rarogne), where a Chlamyd-
iales prevalence rate of 28.1% was found in 192 pools collected in forests and
meadows (60). Differences between years 2009 and 2018 could be explained by a
difference in the time and sampling areas (we excluded potential PCR contamina-
tions; see Fig. S9). As infected ticks were already present in most forest sites in 2009,
spread of infection might have occurred between 2009 and 2018. Then, ticks from
the Tick Prevention app were collected in sites more closely related to artificial
areas, which we have shown reduces the prevalence of the bacteria.

On the importance of considering the spatial and temporal scale of the
environmental variables. For I. ricinus, the most powerful models were obtained when
extracting the environmental variables in a buffer with a radius of 100 or 200 m
(corresponding to an area of 9 ha to 25 ha around the sampling point). This can be
explained by the ecology of the species. First, the establishment of a population of ticks
will probably need a suitable area that is large enough. Moreover, the presence of ticks
strongly depends on the presence of hosts, which disperse across larger areas and may
thus be influenced by the climatic conditions observed at some distance. Our results
also indicated that a buffer radius larger than 500 m (corresponding to areas larger than
121 ha) did not improve our model. This might relate to the dispersal range of tick
hosts, likely rodents, which is usually smaller (among the long dispersal hosts, the roe
deer dispersal is estimated to cover around 50 and 100 ha [61]). In addition, the most
powerful models were obtained when considering the climatic conditions of the 2 or
3 years preceding the sampling date. This time period appears to be relevant, as it
corresponds to the estimated duration of the life cycle of ticks (22).

For the modeling of Chlamydiales bacteria, a small buffer (�200 m) and a short time
period (1 year or less) were favorable for some variables, whereas for some others, to
consider a larger buffer (1 km or 1.5 km) and a longer time period (2 to 3 years) was
better. Some variables might influence local establishment of the tick species and the
ability for the bacteria to colonize and/or reproduce within it, whereas other variables
may be related to the interaction of the tick with the hosts on which it feeds, which may
disperse over a larger area and thus be influenced by climatic conditions at a larger
scale.

Our results thus highlighted the importance of considering the environment around
the sampling point for good estimation of variables in a species distribution model,
while single points are commonly considered (36–44, 62). Our results also showed that
the time period considered before the sampling date, with sliding windows, had a
significant impact on the performance of the resulting models. This should be favored
over using an average of the climatic conditions over the sampling period (36, 63) or
any larger period of time (e.g., the Worldclim climatic data from 1950 to 2000 that are
commonly used for species distribution modeling [64, 65]). Previous studies already
suggested the use of multigrain approaches involving various spatial resolutions to
consider variables affecting the presence of a species at different scales (66–68). Our
study adds to the recommendation of using data based on species ecology rather than
on availability (67, 69). In addition, our results showed that the temporal scale of the
environmental predictors should be taken into account.

Model performance. Ixodes ricinus distribution models are robust, as they allowed
a good discrimination between actual presence and randomly generated points and
correctly predicted the presence of I. ricinus observed in an independent data set.
Chlamydiales distribution models are more difficult to validate due to the limited
amount of data and poor knowledge regarding their distribution. Nevertheless, our
model performed relatively well for the data collected in 2018, as most of the occur-
rence locations had higher suitability index values than the locations where no Chla-
mydiales were identified. The year 2009 did not show such a trend, as many locations
where no Chlamydiales were found were predicted as potentially suitable. This might
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be due to an absence of Chlamydiales colonization of these sites at the sampling time
despite favorable conditions.

Our investigations considered mainly environmental factors. However, other factors,
such as species interaction and species life history traits, might influence the presence
of both the ticks and their bacterial pathogens (22, 29, 70–73). Also, additional abiotic
factors, such as landscape fragmentation and barriers that can limit dispersal of ticks
hosts (22, 72), or disturbances that can drive local populations to extinction, might play
an important role (74).

The precision of our predictions is limited by the precision of the data used. The
interpolated climatic grids used were produced based on weather station measure-
ments and thus contain interpolation uncertainties that may influence the model
results (70). Also, with interpolated grids, the inherent collinearity and autocorrelation
may reduce the reliability of the results (58). Finally, the occurrence data are probably
prone to sampling bias and do not represent a random sample of the studied
population; they were collected in three separate processes, among which two con-
stituted active surveillance while the third was passive surveillance. These elements can
affect the predictions (75, 76) and, since passive surveillance can be influenced by
population density, the results are likely to slightly overestimate the suitability index in
urban and artificial areas compared to natural regions (75, 76).

Conclusions. Both Ixodes ricinus and Chlamydiales are a potential threat to human
health, and their prevalences are currently increasing in Switzerland, with a strong expan-
sion of ticks in forests but also into urban and suburban areas. The ticks’ expansion has
already recently alarmed the Public Health Services (47), and this expansion is predicted to
continue in the future due to global warming. In this context, our results offer a unique tool
to identify precise locations where diseases are likely to spread through colonization of new
sites and increased prevalence. The maps and associated methods developed here could
thus provide critical information for decision makers to control tick-borne diseases and
target prevention campaigns.

Our methodological framework allowed a coherent identification of environmental
factors influencing the presence and distribution of both the Ixodes ricinus ticks and
their Chlamydiales bacteria in Switzerland and enabled the mapping of suitability
evolution across Switzerland from 2009 to 2019. Our results highlighted an important
increase in suitable areas for both species and predicted their expansion toward higher
altitude. Our investigations consist of an exploratory analysis of the environmental
factors influencing the presence of Chlamydiales bacteria within ticks in Switzerland,
showing an application of species distribution models to study the nested niche of a
parasite within the ecological niche of its host. Finally, our study demonstrated the
importance of considering the spatial and temporal scale of the environmental vari-
ables used for species distribution models.

The spread of pathogens through a vector is at the origin of major epidemics and
infectious diseases and affects humans, wildlife, and agriculture. We proposed a
methodological framework based on geographical systems able to provide deep
insights into factors affecting patterns of disease emergence by providing a better
characterization of the spatial distribution of their vectors. This method can be applied
to a wide range of host-pathogen associations to identify their spread and distribution,
which is expected to provide critical information for a better understanding and control
of pathogens.

MATERIALS AND METHODS
Species distribution can be modeled with various methods that use either records of presence and

absence of the species or only records of presence (62, 77–79). Among them, the maximum entropy
model, called Maxent (80), is a presence-only method which uses a set of georeferenced presence
records and a set of environmental grid data. Based on the environmental conditions observed at
locations where species were present and at background locations (i.e., random locations representative
of the entire study area), Maxent uses a machine learning algorithm to estimate a suitability index value
for each cell of the environmental grid, which is proportional to the probability of finding the species in
that cell (81). This method has been shown to perform particularly well compared to other presence-only
modeling methods, in particular based on its ability to discriminate presence sites from background
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locations (62, 78). We thus chose to use this model to determine the potential ecological niche of Ixodes
ricinus and its associated Chlamydiales bacterial pathogen in Switzerland. The various steps of the
method detailed in the paragraphs below are summarized in Fig. S2.

Occurrence data for ticks and bacteria. Data regarding tick occurrences were obtained from three
different sources. First, ticks were collected by a field campaign conducted by the Swiss Army from 21
April to 13 July 2009. During this campaign, 172 forests were sampled with convenience sampling in
forests of altitudes lower than 1,500 m. Ticks (62,889) were collected by flagging low vegetation using
a white cloth. The ticks were then aggregated into 8,534 pools of 5 to 10 ticks (5 nymphs or 10 adults)
and each pool was analyzed for the presence of Chlamydiales DNA by using a pan-Chlamydiales real-time
qPCR (RT-qPCR) as described by Pilloux et al. (82), after extracting the DNA as described by Gäumann et
al. (83). A pool was considered positive if the threshold cycle (CT) value was lower than 37. As a result,
among the 8,534 pools, 543 were positive (6.4%) and they were located in 118 out of the 172 sampling
sites (68.6%).

Second, data were obtained from the collaborative smartphone application called “Tick Prevention”
(zecke-tique-tick.ch/fr/) developed by A&K Strategy GmbH, a spinoff from the Zurich University of
Applied Sciences (ZHAW), in which users can indicate tick locations on a map. The application was
launched in February 2015 and by the end of December 2019, there were 29,153 locations of tick
observations made in Switzerland. To each observation, a spatial accuracy was assigned depending on
the scale (zoomed area) to which the observation was reported by the user. For our analysis, only
observations with a spatial accuracy equal to or higher than 100 m and only data collected from March
to October were used. The final data set corresponded to 5,781 tick locations. Moreover, since January
2017, users bitten by a tick can send the tick removed from their body to the National Reference Centre
for Tick-Transmitted Diseases (NRZK, https://www.labor-spiez.ch/en/die/bio/endiebionrz.htm). The ticks
received are analyzed by three different laboratories to detect the presence of various bacteria, including
Chlamydiales. In April 2019, 554 ticks from 506 sites were received and sequenced, among which 21 ticks
(3.79%) were positive for Chlamydiales bacteria and were located in 19 sites (3.75%).

Finally, to increase the number of data, especially regarding Chlamydiales occurrences, a prospective
campaign was conducted by the authors from 11 May to 24 June 2018. During this campaign, 95 sites
were visited, mainly in west Switzerland. Those sites were chosen in areas predicted to be favorable for
the presence of ticks based on a preanalysis of the two other data sets, as well as to maximize the
environmental variability between visited sites (see Fig. S1 for more details). Whenever possible, three
ticks were collected at each site by dragging a white cloth over the soil. For some sites, however, only
one or two ticks could be found. Eventually, the campaign collected 256 ticks, each of which was placed
in a sterile tube and kept at 4°C before being sent to the laboratory to be analyzed for the presence of
Chlamydiales bacteria. In the laboratory, the ticks were washed once with 70% ethanol and twice with
phosphate-buffered saline (PBS). DNA was extracted using the NucleoSpin DNA insect kit (Macherey-
Nagel) with NucleoSpin bead tubes type E and MN bead tube holder in combination with the
Vortex-Genie 2. The manufacturer’s protocol was slightly adapted by performing disruption for 20 min
followed by 2 h of incubation at 56°C in order to allow proteinase K digestion. DNA was then analyzed
using the pan-Chlamydiales qPCR developed by Lienard et al. (84). A tick was considered positive for the
presence of Chlamydiales if either of the two replicates was positive or if one of the two was highly
positive (CT value � 35). As a result, 72 out of the 256 ticks were positive (28.13%) in 51 out of 95 sites
(53.6%).

The characteristics of each data set are summarized in Table 1.
Environmental data. To characterize the environmental conditions potentially influencing the

spatial distribution of Ixodes ricinus and Chlamydiales, several types of information were retrieved for the
whole territory of Switzerland regarding (i) the morphometry, (ii) the land cover, and (iii) the climate.

TABLE 1 Characteristics of the three data sources with respect to Ixodes ricinus occurrence and infection by Chlamydiales bacteriaa

Parameter
Swiss Army field
campaign

“Tick Prevention” app
ticks recorded

“Tick Prevention” app
ticks sent for analysis

Authors’ prospective
campaign

Observation/sampling dates 21 April 2009–
13 July 2009

09 March 2015–
30 Oct 2019

04 April 2017–
07 April 2019

11 May 2018–
24 June 2018

No. of sites 172 5,781 506 95
No. of individual ticks 62,889 5,781 554 256
No. of adults 20,313 - 58 114
No. of nymphs 42,576 - 444 142
No. of larvae 0 - 50 0
No. of pools 8,534 / / /
No. of ticks/pools infected 543 - 21 72
Infection rate in ticks/pools (%) 6.34 - 3.79 28.13
No. of sites infected 118 - 19 51
Infection rate in sites (%) 68.6 - 3.75 53.68
aThe data obtained via the Tick Prevention app are divided into two data sets (columns 3 and 4). The first data set (column 3) corresponds to tick locations recorded
on the app and includes a majority of ticks for which no information regarding Chlamydiales bacteria was available. This data set was used in the modeling of the
distribution of Ixodes ricinus only. The second data set (column 4, which represents a subset of the data set in column 3) contains some ticks that were sent for the
laboratory analysis of Chlamydiales. This data set was therefore used in the modeling of Chlamydiales distribution. Data from the two other sources (columns 2 and
5) were used both for the modeling of I. ricinus and Chlamydiales. -, no information; /, not applicable.
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To characterize the morphometry of each data point site, seven indicators were derived from the
digital elevation model provided by USGS/NASA SRTM data version 4.1, at a 90-m resolution (85). The
chosen indicators were computed using the SAGA GIS 2.3.2 software (86) and represent slope, aspect,
general curvature, morphometric protection index, terrain ruggedness, sky-view factor, and topographic
wetness. The definition of each of these indicators and the exact procedure followed to derive them are
detailed in File S3 in the supplemental material.

To characterize the land cover, we first used the land cover statistics from the Swiss Federal Statistical
Office (OFS) (87). From this data set, we retrieved the classification of each Swiss hectare into six land
cover types representative of the period 2004 to 2009 as follows: artificial areas, grass and herb
vegetation, brush vegetation, tree vegetation, bare land, and watery areas. To better classify the forest
type, we computed in R (88) the percentage of coniferous trees in each forest based on a data set
provided by the OFS at a 25-m resolution, which classifies the forests of Switzerland into four classes as
follows: pure coniferous, mixed coniferous, mixed broadleaved, and pure broadleaved (89). Second, we
retrieved the vector landscape model swissTLM3D 2016 from the Swiss Federal Office of Topography (90)
and we used the function “Proximity” in the QGIS 2.14.7 software (91) to derive four indices character-
izing the minimal Euclidean distance to watery areas as follows: distance to wetland, to watercourses, to
stagnant water, and to any watery elements. Third, we retrieved the 16-day composite normalized
difference vegetation index (NDVI) available in the MODIS satellite products at a 250-m resolution (92),
from which we derived in R the average, minimum, maximum, and range of monthly mean NDVI. More
details regarding all those land cover data and the derived indicators are available in Fig. S3.

Finally, several indicators were computed to summarize the climatic conditions of each data point
site. They were derived from monthly temperature (average, minimal, and maximal) and sum of
precipitation grids computed at a 100-m resolution by the Swiss Federal Institute for Forest, Snow and
Landscape Research (www.wsl.ch), based on data from MeteoSwiss (www.meteoswiss.ch) and using the
Daymet software (93). From these data, 31 indicators were derived to represent the climatic conditions
during the period of interest and before the sampling date (from 1 to 36 months preceding the sampling
date; see the “Data extraction” section for more details). These indicators are presented in Fig. S3 and
they summarize (i) the values of the monthly mean, minimal, and maximal temperature and sum of
precipitation (8 indicators); (ii) the variation of monthly temperature and precipitation (5 indicators); (iii)
the temperature of the warmest and coldest months (2 indicators); and (iv) the temperature and
precipitation of the three consecutive warmest, coldest, wettest, and driest months (16 indicators). In
addition, grids of the daily maximum and minimum temperature values at a 1-km resolution were
obtained from MeteoSwiss. From these data sets, we estimated the daily saturated and ambient vapor
pressure using the Tetens formula (94) and by approximating the temperature at dew point by the
minimum temperature (95). We used them to compute the daily relative humidity and to derive 22
indicators summarizing the monthly (9 indicators) and daily (13 indicators) values of relative humidity. All
these climatic predictors were computed in R, with the detailed procedure presented in Fig. S3. In total,
this resulted in 77 environmental indicators, each of which was resampled to a final spatial resolution of
100 m.

Data extraction. The values of the 77 environmental predictors were extracted for each data point
site (tick occurrence) according to their coordinates using the function “extract” from the R “raster”
package. The climatic and NDVI variables were retrieved as a function of the sampling dates. To assess
the influence of the conditions before sampling, we retrieved these variables for 1 month, 3 months,
6 months, 1 year, 2 years, and 3 years before the sampling date. For the other stable predictors such as
morphometric predictors, land cover type, percentage of coniferous cover in forest, and distances to
watery areas one single extraction was used for all sampling dates over the period of analysis (from 2009
to 2019).

To assess the influence of the environmental conditions surrounding the sampling points, for each
environmental predictor we also computed the mean value observed in square buffers centered on the
sampling point, with radii of 100 m, 200 m, 500 m, 700 m, 1 km, and 1.5 km. Raster layers were also
computed for each of these indicators, with every buffer radius and time period for the month of June
from 2009 to 2019. For each pixel, the computation of mean values considering a square buffer around
the pixel was done with a moving-window procedure implemented in R, based on the “focal” function
from the “raster” package.

Finally, we also extracted all predictors for a generated background data set composed of sites with
10,000 coordinates randomly localized in Switzerland. As with the presence records, we also computed
the mean values in buffers and considered different time periods for the extraction of NDVI and climatic
variables. To this end, a fictive sampling date was assigned to each background location, which was
randomly selected from the distribution of observed sampling dates on the presence records (Fig. S4).

Ixodes ricinus modeling. (i) Selection of environmental variables. In order to compare the influences
of the time period and buffer radius on the performance of the model, independent Maxent species
distribution models were derived using environmental predictors extracted successively for each combination
of buffer radius (100 m, 200 m, 500 m, 700 m, 1 km, and 1.5 km) and time period (1 month, 3 months,
6 months, 1 year, 2 years, and 3 years), i.e., one Maxent model was derived using all environmental conditions
extracted within a 100-m buffer and 1 month preceding the sampling date, then a second model was derived
using 200-m buffer and 1 month, etc. In addition, to determine if the performance of the model could be
increased by selecting a different buffer radius and time period for the different environmental variables, we
computed a “combination model” in which we selected the most significant combination of buffer radius and
time period individually for each environmental variable. To this end, we performed a Student’s t test to
identify, for each environmental variable, the combination that best discriminates the tick’s presence from
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background locations. The computation was done using the function “t.test” in R and the discriminative
power of variables was considered significant if the P value of the t test was lower than 0.01 after a Bonferroni
correction for multiple comparisons. For each environmental variable, we then kept only the combination of
buffer radius and time period showing the highest t value. The “combination” model was then derived using
this “combination” set of variables.

As some environmental variables considered might be correlated, we used two methods to preselect
uncorrelated environmental predictors. In the first one, we ran a principal component analysis (PCA) on
the variables to retrieve independent components. The coordinates of the PCA components were then
used as environmental predictors to run the species distribution model. In the second method, for each
pair of variables showing a Pearson correlation higher than 0.8, we kept only the variable with the
highest t value in the t test previously computed. In addition, to avoid multicollinearity between our
variables, which can influence the resulting models, we computed the variance inflation factor (VIF) for
each variable using the R function “vif.” This index estimates how much the variance of a regression
coefficient is inflated due to collinearity, and VIF values higher than 10 can be considered indicative of
problematic collinearity (96). We thus successively removed the variable showing the strongest VIF index
values, until the highest VIF value was lower than 10. Only the remaining variables were used to train the
model.

(ii) Maxent modeling. Species distribution modeling was performed using the Maxent algorithm
(80) implemented in the R package “maxnet” (97). Maxent estimates a suitability index which is
proportional to the probability of the presence of the species knowing the environmental conditions of
a site of interest (81). The computation requires the values of environmental predictors observed on sites
where presence was recorded and on background locations (i.e., locations representative of the entire
study area). The model was trained with all Ixodes ricinus occurrences available for years 2009 to 2017 and
the occurrences from the 2018 prospective campaign. This represents a total of 2,293 presence points.
The occurrences reported by the users of the Tick Prevention app in 2018 and 2019, with 3,751 presence
points, were kept as an independent data set used to test the models.

Since the performance of the Maxent models is known to be notably influenced by the background
point selection, environmental variable selection, feature types, and regularization parameters (75,
98–100), we tested different alternatives regarding them. For the selection of background points, we
tested two options: we either (i) used the 10,000 points randomly selected in the Swiss territory or (ii)
used only the random points situated below 1,500 m in altitude, where tick occurrence is more likely. For
the environmental variables, we used the two procedures to derive uncorrelated set of variables, i.e., the
coordinates of the PCA components or the variables filtered by the previously described method based
on Pearson correlation and variance inflation factor. Moreover, when using the PCA components, we
considered either all components of the PCA or only the components needed to retain 50%, 70%, 80%,
90%, or 95% of the variance. For the feature types, we tested the use of linear features only, or the
combination of linear and product, linear and quadratic, or linear, product, and quadratic together.
Finally, we varied the regularization constant parameter, which is used to select against complex models
that are unlikely to generalize well, with constant values equal to 1, 2, 5, or 10 (the higher the value, the
stronger the penalization).

In order to perform a cross-validation procedure, we used 75% of the occurrences and background
points to train the model and kept 25% to test it. The training and testing occurrences were selected
randomly and 20 different runs were computed. All models were projected using the “cloglog” scaled
output (101), interpreted in terms of suitability index to avoid making assumptions regarding the
prevalence of the species.

(iii) Model evaluation. The models were compared based on four criteria. First, the area under the
receiver operating curve (AUC) (102) was computed on the testing data set. The mean value of AUCtest

over the 20 runs was used as a measure of discrimination power. The AUC is a measure commonly used
for the evaluation of species distribution models (62, 103). It has the advantage of being threshold-
independent but needs to be used in combination with other evaluation parameters (104–106).
Therefore, we used as a second evaluation measure the omission error rate, which reflects the accuracy
of the model. The computation of this rate requires the definition of a threshold value to classify the
predictions into binary presences or absences. Based on the receiver operating curve, we chose the
threshold which maximizes the sum of specificity and sensitivity and therefore minimizes the misclas-
sification rate (107). Omission errors were computed on both the testing and independent (3,751 points
from 2018 and 2019) data sets. Finally, to avoid the selection of complex models, which would be difficult
to interpret and probably prone to overfitting, we used a third evaluation measure that selected against
models having high number of coefficients (following the principle of information criterion) (108).

To combine the four evaluation parameters and select the most powerful model, we assigned four
performance ranks to each model as a function of each evaluating parameter and we selected the model
which minimizes the sum of ranks. We then applied the best model to the raster layers to map the
predicted suitability across all of Switzerland for the months of June from 2009 to 2019.

(iv) Identification of effective variables. In order to identify the environmental variables contrib-
uting the most to the model, we implemented in R a jackknife procedure as proposed by Phillips (101).
For each environmental predictor, we computed the Maxent model with only this variable and calculated
the corresponding AUC (AUConly). Variables leading to high values of AUConly therefore contribute a lot
to the model by themselves. Similarly, we successively computed models with all variables except the
one of interest and we computed the corresponding AUCwithout. Predictors associated with high values
of AUCwithout were identified as containing important information that is not present in the other
variables.
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Chlamydiales modeling. (i) Background data set. To model the distribution of Chlamydiales
bacteria within ticks, we used a similar procedure to that used for Ixodes ricinus. The modeling was also
done using Maxent, based on the 186 occurrence points available for 2009 and 2018. As for I. ricinus, the
modeling required the definition of background data. Since we are interested in the probability of
finding Chlamydiales within ticks, background points have to represent the environmental conditions of
the ecological niche for the tick. Consequently, we built a background data set in two steps. First, we
selected the points where ticks not infected by Chlamydiales have been observed (374 points). Second,
in order to avoid a model discriminating presences from background due to differences in sampling
dates, we completed the background data set such as to have a distribution of sampling months and
sampling years similar to that in the presence data set (Fig. S4). This was achieved by selecting random
points within areas predicted to be suitable for ticks, based on the suitability predicted by the models
previously derived for Ixodes ricinus. The final background data set contained 1,028 data points.

(ii) Variable selection and modeling. The same procedure as for the modeling of the tick suitability
was then applied: (i) computation of a t test to select a “combination” data set of environmental
variables; (ii) selection of uncorrelated variables with either a PCA or a correlation/VIF procedure; and (iii)
running of Maxent models by testing various parameters (methods to select uncorrelated variables,
feature types, and regularization parameters). In order to build models for the suitability of Chlamydiales
within areas suitable for ticks, the predicted suitability for Chlamydiales obtained by the Maxent model
was then multiplied by the suitability obtained for I. ricinus.

As for I. ricinus, 20 runs were computed for each model, using 75% of the data to train the model and
25% to test it. The ranking procedure used to evaluate the models was slightly different from the one used
for the tick. The AUCtest and the number of coefficients were used similarly, but the omission rates on testing
and independent data sets were replaced by two other indicators: (i) the difference between the mean of
suitability values predicted on occurrences sites in 2009 and the mean suitability predicted on sites without
Chlamydiales in 2009; and (ii) the same difference for 2018. Indeed, even if sites where no Chlamydiales were
found could not be considered proper absences, we suspected the probability of finding Chlamydiales to be
lower on these sites. A model showing a lower suitability in areas where Chlamydiales were not identified
compared to occurrence sites would therefore be considered more powerful.

Data availability. The main R codes developed for this study are available on GitHub (https://github
.com/estellerochat/SDM-Chlamydiales). Ticks and Chlamydiales occurrence data from the Swiss Army
field campaign and the prospective campaign have been submitted to Zenodo (doi:10.5281/ze-
nodo.4028822). The corresponding extractions of environmental predictors considering various buffers
and time periods are available in the same repository. Tick occurrences from the participating smart-
phone application Zecke-tique-tick should be requested from their owner, A&K Strategy GmbH, using the
contact form available at https://zecke-tique-tick.ch/fr/contact-et-infos/. A&K Strategy GmbH will then
specify the terms of use through material transfer agreements.
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Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 3.1 MB.
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