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Abstract: Tumor biopsy can identify prognostic biomarkers for metastatic uveal melanoma (UM),
however aqueous humor (AH) liquid biopsy may serve as an adjunct. This study investigated
whether the AH of UM eyes has sufficient circulating tumor DNA (ctDNA) to perform genetic
analysis. This is a case series of 37 AH samples, taken before or after radiation, and one tumor wash
sample, from 12 choroidal and 8 ciliary body (CB) melanoma eyes. AH was analyzed for nucleic
acid concentrations. AH DNA and one tumor wash sample underwent shallow whole-genome
sequencing followed by Illumina sequencing to detect somatic copy number alterations (SCNAs).
Four post-radiation AH underwent targeted sequencing of BAP1 and GNAQ genes. Post-radiation
AH had significantly higher DNA and miRNA concentrations than paired pre-radiation samples.
Highly recurrent UM SCNAs were identified in 0/11 post-radiation choroidal and 6/8 post-radiation
CB AH. SCNAs were highly concordant in a CB post-radiation AH with its matched tumor (r = 0.978).
BAP1 or GNAQ variants were detected in 3/4 post-radiation AH samples. AH is a source of ctDNA
in UM eyes, particularly in post-radiation CB eyes. For the first time, UM SCNAs and mutations
were identified in AH-derived ctDNA. Suggesting that AH can serve as a liquid biopsy for UM.
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1. Introduction

Uveal melanoma (UM) is the most common primary intraocular cancer in adults [1].
Tumors arise from the uveal tract and can affect the choroid, iris, and ciliary body, with
the latter two lesions being anatomically closer to the aqueous humor (AH). Conservative
treatment consists of radiation, with enucleation reserved for the most advanced cases. Even
when the intraocular tumor is successfully treated, approximately half of all patients with
UM will develop metastases [2]. Unfortunately, metastatic UM is usually fatal within one
year of symptom onset, as it is poorly responsive to chemotherapy and/or targeted therapy.

It is widely known that identifying tumor biomarkers stratifies the risk of metastatic
disease and may help improve the earlier detection of metastases [3]. While once taboo, in-
traocular tumor biopsy via fine-needle aspiration biopsy (FNAB) is now part of the routine
clinical workup for UM for prognostication and not for diagnosis. Tumor-derived prognos-
tic molecular markers can be categorized into (1) gene expression profiles (GEP) (2) somatic
copy number alterations (SCNA), or (3) mutations in key genes for UM oncogenesis. Recent
multi-omic work has used these three categories to divide UM patients into four subsets
of low (Type A), intermediate (Type B), and high (Types C and D) metastatic potential [4].
Clinically, Onken et al. found that this translated into a four-year risk of metastasis of 3%
for Types A and B and upwards of 80% for Types C and D [5]. Cytogenetic characteristics
include highly recurrent UM SCNAs such as monosomy 3, losses of chromosome arms 1p,
6q, 8p, and 16q, and gains of 1q, 6p, and 8q [6], with monosomy 3, 8q gain, and 1p loss
being the most prognostically unfavorable [7]. Although the American Joint Committee on
Cancer (AJCC) staging of UM does not currently include cytogenetic information and is
based only on clinical observations, it has been shown that the addition of these molecular
subsets yields a significant improvement in prognostication compared to the AJCC stage
alone [8–12]. While FNAB is considered a safe procedure, there remain small risks of
retinal detachment, subretinal hemorrhage, and vitreous hemorrhage, sometimes requiring
further surgical intervention to repair [13,14]. Furthermore, direct tumor biopsy is often not
repeatable without returning to the operating room. Given these risks, liquid biopsy has
emerged as a less invasive alternative that also offers the ability to track genomic changes
longitudinally over time without the need to return to the operating room.

Most liquid biopsy research in UM has focused on the blood as a biofluid source
of circulating tumor cells and/or circulating tumor DNA (ctDNA). However, the low
tumor fraction found in the blood due to the blood-ocular barrier limits the detection of
prognostic biomarkers; thus, blood liquid biopsies for UM may be better utilized to detect
systemic disease [15–18]. AH liquid biopsies have been investigated as an eye-specific
alternative. However, previous studies of the AH in UM patients have only reported on
cytokines and soluble HLA [19–23]. To our knowledge, no genomic prognostic biomarkers
have been found in UM AH. Given that we have not only demonstrated the presence but
also established the clinical utility of diagnostic and prognostic biomarkers in the AH of
retinoblastoma eyes [24,25]. we hypothesized that the AH of UM eyes may similarly harbor
tumor-derived nucleic acids to serve as a surrogate tumor biopsy in UM. Thus, the purpose
of this study is to determine if ctDNA is present in the AH of UM eyes. The presence
and prognostic significance of ctDNA isolated from the AH of UM patients has yet to be
evaluated. Furthermore, eye-specific biopsy allows for repeatable testing near the primary
tumor and may allow for detection of local recurrence, new avenues for prognostication,
and objective markers of tumoral regression post-therapy.

2. Results
2.1. Patient Clinical Characteristics and Demographics

Overall, 37 AH and one tumor wash sample from 20 UM patients (20 eyes) were
evaluated. Patient demographics and clinical characteristics are summarized in Table 1.
A total of twelve (60%) choroidal and eight (40%) ciliary body (CB) tumor patients were
included. All choroidal tumors (100%) were AJCC stage I or IIA and did not have concomi-
tant CB involvement. Of CB tumors, 5/8 (62.5%) were AJCC stage I or IIA, while the other
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three were more advanced. A significant number of CB tumors were diagnosed at a more
advanced AJCC stage than choroidal tumors (p = 0.003; Table 1). Of note, one choroidal UM
patient underwent primary enucleation due to the tumor surrounding the optic nerve head.
Results from a clinically indicated tumor biopsy, including UM mutation, preferentially
expressed antigen in melanoma (PRAME) status, and GEP class is included (Table 1).

Table 1. Clinical characteristics of choroidal and ciliary body melanoma patients.

Characteristic Choroidal, n = 12 Ciliary Body Tumor, n = 8 p-Value

Gender, n (%) 0.197
Females 5 (41.7) 6 (75.0)
Males 7 (58.3) 2 (25.0)

Eye, n (%) 0.650
OD 5 (41.7) 5 (62.5)
OS 7 (58.3) 3 (37.5)

Age at diagnosis, mean (± SD) 60.8 (12.5) 54.0 (15.5) 0.438
Eye Color, n (%) 0.999

Light (blue, gray, green,
hazel) 8 (66.7) 6 (75.0)

Dark (brown) 4 (33.3) 2 (25.0)
Ciliary Body Involvement, n (%) <0.001

Yes 0 (0) 8 (100)
No 12 (100) 0 (0)

AJCC Stage, n (%) 0.003
I 9 (75.0) 1 (12.5)

IIA 3 (25.0) 4 (50.0)
IIB 0 (0) 2 (25.0)

IIIA, IIIB, IIIC 0 (0) 1 (12.5)
IV 0 (0) 0 (0)

PRAME Status, known in 15 cases, n (%) 0.999
Negative 7 (100) 7 (87.5)
Positive 0 (0) 1 (12.5)

GEP Class, known in 15 cases, n (%) 0.876
1A 5 (71.4) 6 (75.0)
1B 0 (0) 0 (0)
2 2 (28.6) 2 (25.0)

Tumor Stage, n (%) 0.159
T1 9 (75.0) 4 (50.0)
T2 3 (25.0) 3 (37.5)
T3 0 (0) 1 (12.5)
T4 0 (0) 0 (0)

AJCC, American Joint Committee on Cancer; GEP, gene expression profile; PRAME, preferentially expressed
antigen in melanoma; SD, standard deviation; Categorical variables (Gender, Eye, Eye color, Ciliary body
involvement, PRAME, and GEP Class) were compared by Fisher’s exact test. Continuous variables (age at
diagnosis) were compared by the Mann-Whitney U test. AJCC Stage and Tumor Stage were compared by
Linear-by-Linear association.

2.2. Evaluation of AH Nucleic Acid Content before and after Brachytherapy Radiation

Analysis of AH samples revealed measurable levels of nucleic acids in the majority
of eyes with choroidal and CB melanomas, with the exception of RNA which was only
detectable in post-radiation AH from four CB tumors (Figure 1C and Figure S1). Paired
pre- and post-radiation AH samples from nine choroidal and eight CB melanoma eyes
were analyzed. In both choroidal and CB AH, post-radiation AH samples had significantly
higher concentrations of DNA and miRNA (choroidal: ssDNA, p = 0.035 and miRNA,
p = 0.016) (CB: dsDNA, p = 0.023 and miRNA, p = 0.008) (Figure 1A,B,D).
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file SCNAs in all 37 AH samples (Figure S2). All pre-radiation AH SCNA profiles were 
neutral. SCNAs were found only in AH collected after brachytherapy radiation, with sig-
nificantly more positive SCNAs found in CB post-radiation AH samples (6/8, 75%) than 
in choroidal post-radiation AH samples (0/11, p = 0.001; Figure 2B). Highly recurrent UM 
SCNAs of monosomy 3, 6p gain, 6q loss, and 8q gain were identified in SCNA-positive 
post-radiation AH samples (Figure 2C). A tumor wash (UM_019) was performed in a sin-
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Figure 1. Quantification of cell-free nucleic acids in UM aqueous humor samples before (pre-)
and after (post-) radiation. Concentration of (A), double-stranded DNA (dsDNA), (B), single-
stranded DNA (ssDNA), (C), RNA and (D), microRNA (miRNA), were determined in 18 (9-paired)
choroidal melanoma (choroidal) and 16 (8-paired) ciliary body (CB) melanoma AH samples. AH
samples were grouped by collection time at pre- and post-radiation. P values were calculated by
paired t-test. Mean and standard error of the mean (S.E.M.) were indicated. NA, not-available.

2.3. Circulating Tumor DNA in AH

To determine the presence of ctDNA in the AH, shallow WGS was performed to
profile SCNAs in all 37 AH samples (Figure S2). All pre-radiation AH SCNA profiles
were neutral. SCNAs were found only in AH collected after brachytherapy radiation, with
significantly more positive SCNAs found in CB post-radiation AH samples (6/8, 75%) than
in choroidal post-radiation AH samples (0/11, p = 0.001; Figure 2B). Highly recurrent UM
SCNAs of monosomy 3, 6p gain, 6q loss, and 8q gain were identified in SCNA-positive
post-radiation AH samples (Figure 2C). A tumor wash (UM_019) was performed in a single
case to determine whether this would be a feasible mechanism to obtain tumor samples
for research (instead of a repeat tumor biopsy). There was high concordance of SCNA
alterations between the post-radiation AH sample and the tumor wash collected before
radiation (Pearson’s r = 0.978; Figure 2D).

Due to limited DNA concentration, four SCNA-positive AH samples (UM_005, 007,
012, and 013) were further evaluated for the presence of tumor variants in the BAP1
and GNAQ genes. We analyzed the presence of SNVs using a pan-cancer predisposition
panel and identified UM mutations in BAP1 and GNAQ in 3/4 (75%) post-radiation AH
samples (UM_005, 007, 012, and 013, Table 2). These were concordant with clinical tumor
SNV testing from Castle Biosciences in two patients (UM_007 and 013). A mutation was
identified in the AH from patient UM_005; however, this patient did not have FNAB results
available from Castle Biosciences to determine concordance (Table 2). Additional gene
variants were investigated to determine the potential of detecting mutations from the AH
cfDNA beyond the BAP1 and GNAQ genes (Figure S3).
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Figure 2. Somatic copy number alterations in UM post-radiation aqueous humor samples.
(A) Schematic heatmap of the somatic copy number alterations (SCNA) in UM post-radiation AH sam-
ples. Gains and losses of chromosomes are shown. (B) Comparison of SCNA status (altered/neutral)
between choroidal UM (n = 11) and ciliary body tumor (n = 8) in post-radiation samples. P value was
calculated by the Fisher’s exact test. (C,D) Altered SCNA profiles identified from 6 UM post-radiation
AH samples (UM_005, 007, 012, 013, 014 and 019). Highly recurrent UM SCNAs (monosomy 3,
6p gain, 6q loss and 8q gain) are indicated with an * on DNA profiles. (D) Consistency of the copy
number variation (CNV) profile between UM_019_pre, UM_019_post and its corresponding tumor
wash sample. Pearson’s correlation coefficient compared at 5k bins between each sample is indicated.

Table 2. Single nucleotide variant analysis of BAP1 and GNAQ in four CB patients.

Sample BAP1 (VAF%) GNAQ (VAF%)

ciliary body tumor
UM_005_Tumor NA NA

UM_005_AH ND c.626A > T (42.9)
UM_007_Tumor ND c.626A > T (23.2)

UM_007_AH ND c.626A > T (40.9)
UM_012_Tumor ND c.626A > T (53.0)

UM_012_AH ND ND
UM_013_Tumor c.830_831del (68.0) ND

UM_013_AH c.830_831del (81.8) ND
VAF, variant allele frequency; NA, not-available, tumor biopsy not conducted; ND, non-detectable Mutation
detection assay in UM AH samples after radiation compared to clinical tumor single nucleotide variant (SNV)
testing. UM mutations BAP1 and GNAQ were detected in 3/4 (75%) post-radiation AH. These were concordant
with clinical tumor tissue SNV testing from Castle Biosciences in two patients with available clinical testing of
tumor tissue samples.
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3. Discussion

We examined 37 AH samples from 20 UM patients to investigate whether the AH
liquid biopsy can serve as a surrogate for tumor biopsy. We hypothesized that the AH
may contain ctDNA and may serve as a liquid biopsy for UM; these hypotheses arose
from our work on another ocular cancer, retinoblastoma, wherein we and others have
demonstrated that the AH is an enriched source of ctDNA [26–30] In this pilot study, we
first demonstrated that there were measurable concentrations of nucleic acids (dsDNA,
ssDNA, RNA, and miRNA) in the small volumes of AH that can be extracted from UM
patients during plaque brachytherapy or enucleation. This is the first-time nucleic acids
were quantified and characterized in the AH of UM patients. When comparing pre- and
post-radiation AH samples, there was a significantly higher concentration of evaluated
nucleic acids in post-radiation AH samples, most notably in patients with CB tumors
(Figure 1A–D). We hypothesize that the increased nucleic acids in post-radiation AH
are tumor-derived due to necrosis and lysis of tumor cells after radiation. Further, we
hypothesize that the higher mean concentration of nucleic acids in CB AH compared to
choroidal AH is likely due to the proximity of the tumor to the AH in these more anteriorly
located neoplasms. Importantly, 17/20 (85%) UM tumors included herein were AJCC stage
I or IIA tumors, suggesting utility in AH liquid biopsy even for smaller, early-stage UM.

Next, we determined whether the AH DNA was tumor-derived. Copy number
variation profiling confirmed the presence of highly recurrent UM SCNAs [31] in post-
radiation CB AH samples including monosomy 3, 6p gain, 6q loss, and 8q gain (Figure 2A).
No SCNAs were found in post-radiation choroidal AH samples or any pre-radiation
AH samples. Altered SCNA profiles were found in 0/11 and 6/8 (75.0%) post-radiation
AH samples of choroidal and CB melanomas respectively, with a significant difference
(p = 0.001) (Figure 2B). This suggests that AH liquid biopsy may be more useful for tumors
that form anteriorly in the eye in proximity to the anterior chamber, thus allowing an
increased amount of ctDNA to diffuse into the AH after radiation-induced necrosis of
tumor cells.

In one patient, we attempted a tumor wash sample wherein the needle that had
performed the tumor biopsy was washed with basic saline solution after it had already
been flushed for clinical GEP analysis for Castle Biosciences. We were able to effectively
identify ctDNA for research purposes without impacting the Castle Biosciences analysis
required for the clinical care of this patient. We demonstrated near-complete concordance in
the presence and amplitude of SCNAs between the genomic profiles from the post-radiation
AH and tumor wash samples (Pearson’s r = 0.978; Figure 2D).

Finally, four post-radiation AH samples that harbored SCNAs (thus, a higher fraction
of ctDNA) were evaluated for canonical UM mutations in BAP1 and GNAQ genes. Common
UM mutations GNAQ/11 are thought to be an early event in the development of UM [32],
and other mutations such as BAP1 portend a worse prognosis [32]. We identified tumor-
derived de novo UM mutations in 3/4 (75%) post-radiation AH samples in BAP1 or GNAQ
(Table 2). These were concordant with clinical tumor SNV testing results from Castle
Biosciences in two patients with available clinical testing of tumor samples (Table 2).

Both the presence of SCNAs and SNVs in post-radiation AH samples provides strong
evidence that dsDNA isolated from the AH is tumor-derived. SCNAs can be visualized by
shallow WGS with lower nucleic acid input requirements with a lower limit of detection
at ~5% tumor fraction [24]. Targeted next-generation sequencing for mutation detection
requires higher nucleic acid input, which is a potential explanation for why some SCNA-
containing samples with a known tumor SNV mutation were not detected. While further
optimization is needed, these results suggest that the AH may serve as a valid surrogate
biopsy to identify not only SCNAs but also specific UM mutations. As AH paracentesis is
repeatable and can be performed in clinic, this may also facilitate the evaluation of other
eye-specific biomarkers and longitudinal evaluation of local disease.

While we identified quantifiable amounts of dsDNA, ssDNA, miRNA, and RNA in the
AH, the levels were much higher after radiation. In contrast to retinoblastoma, it appears
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that UM, known to be less necrotic, does not shed into the AH at the same level and may
require radiation or other interventions to cause cell death and shedding [25,26]. This
may be somewhat confounded by tumor size, as the majority of choroidal tumors in this
cohort were relatively small. The larger and more anteriorly located CB tumors had a
higher concentration of nucleic acids in post-radiation AH samples, which facilitated the
detection of SCNAs and SNVs. Research has shown benefits in identifying tumor-derived
prognostic molecular markers and even that eye color may play a role in the interaction of
these biomarkers [33]. Thus, an AH liquid biopsy may serve as an adjunct to FNAB, for
example, a biopsy performed at plaque placement and a paracentesis performed at the
time of plaque removal, so that the complex prognostic association of tumoral biomarkers
including GEP, SCNA, and mutations in key UM-related genes can be better understood
and utilized.

A limitation of this study is that only 20 UM patients were evaluated, with the majority
of choroidal tumors being relatively small. Additionally, because there are some risks
associated with tumor biopsy, tumor was not available for research only analysis. We
relied instead on clinically available information from Castle Biosciences testing. This was
available for most, but not all patients. Future studies should maximize the availability
of tumors as well as include larger study populations and larger choroidal tumors. Most
liquid biopsy platforms center on identifying ctDNA, which was the aim of our study as
well. However, we are also investigating other nucleic acids as potential biomarkers in UM.
MiRNA has been detected in plasma, enveloped in extracellular vesicles, and discovered
here in the AH; miRNA has been investigated as a significant target in many cancers, and
future studies should explore its role in UM [34].

4. Materials and Methods

This investigation was a case series study at a tertiary care hospital (University of
Southern California Roski Eye Institute). Samples were taken between August 2020 and
May 2021.

4.1. Patient and Specimen Characteristics

This study included a convenience sample of 20 UM patients at the University of
Southern California Roski Eye Institute from whom written informed consent for an AH
sample was obtained. All samples consisted of ~0.1 mL of AH extracted via clear cornea
paracentesis at the end of surgery for brachytherapy plaque placement (pre-radiation),
brachytherapy plaque removal (post-radiation) or after enucleation without radiation.
We include 37 AH samples from 20 UM eyes: a total of 17 matched AH samples pre-
radiation and post-radiation, two AH samples post-radiation only, and one AH sample
after enucleation without radiation. Radiation methods in the treatment of UM have been
detailed and published previously [35] Genomic testing results were coded and maintained
separately from clinical data and thus did not alter patient treatment for all participants.

4.2. Specimen Collection and Storage

A clear corneal paracentesis with a 30-gauge needle was performed to extract ~0.1 mL
of AH from UM eyes during clinically indicated surgery to treat UM. The extraction method
has been described in detail and published previously by our group for specimen collection
from retinoblastoma eyes [26]. Briefly, needles only entered the anterior chamber via the
clear cornea at the limbus and did not make contact with the iris, lens, vitreous, or UM
tumor. Samples were stored on dry ice immediately and transferred to −80 ◦C within
hours of extraction. Routine FNAB with either a 25- or 27-gauge needle was conducted on
14 patients for mutational analysis and 15 patients for GEP and PRAME status which was
performed at Castle Biosciences (Phoenix, AZ, USA). In one patient, the same tumor biopsy
needle was washed with basic saline solution separately to obtain a tumor wash sample.
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4.3. Analysis of Nucleic Acid Content in the AH

Nucleic acids (dsDNA, ssDNA, RNA, and miRNA) were assayed using Qubit Assay
Kits (Thermo Fischer, Waltham, MA, USA), which measures the concentration of the
assayed nucleic acid with the Qubit Fluorometer (Thermo Fisher, Waltham, MA, USA)
following the manufacturer’s manual.

4.4. Genomic Analysis of Samples

All samples underwent DNA isolation, sequencing, and analysis within 1 month of
collection, as consistent with established methods of SCNA analysis [1–3]. Briefly, cell-free
DNA of AH was isolated with the QIAamp circulating nucleic acid kit (QIAGEN, Hilden,
Germany), and DNA from FNAB was isolated with the QIAamp DNA blood mini kit
(QIAGEN, Hilden, Germany). Isolated DNA was used to prepare whole-genome libraries
with the QIAseq Ultralow Input Library Kit (QIAGEN, Hilden, Germany) followed by
2 × 150 bp paired end shallow 0.1–0.3x whole-genome sequencing (WGS) for copy-number
alteration profiling. SCNAs were considered to be present at 20% deflection from a baseline
human genome, which is based on liquid biopsy analyses that have been previously
established [26,36].

4.5. Single Nucleotide Variants (SNV) Analysis of Samples

For four SCNA-positive AH samples (UM_005, 007, 012, and 013), the same sequencing
libraries then underwent targeted resequencing for mutation detection using a customized
hybridization panel laboratory developed test (Twist Bioscience, San Francisco, CA, USA)
at the Children’s Hospital Los Angeles Center for Personalized Medicine that covers BAP1
and GNAQ gene exon regions. Bioinformatics analysis was performed in parallel and blind
to the clinically available tumor testing (Castle Biosciences, Phoenix, AZ, USA). Results
were compared to tumor SNV results in all but one patient for whom AH analysis was
performed but there was no matched clinical analysis as insurance refused to cover the
Castle testing.

4.6. Statistical Analysis

Categorical variables were compared using the Fisher’s exact test or linear-by-linear as-
sociation test as indicated. Continuous variables were summarized as the mean ± standard
error and percentages and non-normally distributed variables were compared by the Mann–
Whitney U test. Paired t-test was used for pre- and post- paired AH sample comparison.
All statistical tests were two-tailed, and p < 0.05 was considered statistically significant.
p-values are represented as: *, p < 0.05; **, p < 0.01; ***, p < 0.001. The Pearson’s coefficient
was calculated by comparing the segmented ratio to medians at 5k bins. All statistical
analyses and plots were conducted using the Prism 8 (GraphPad, San Diego, CA, USA).

5. Conclusions

In conclusion, this study demonstrates that the AH is a source of ctDNA in UM,
with a significantly higher yield of nucleic acids after radiation. Given the significantly
higher concentration of nucleic acids in CB AH compared to choroidal AH, AH biopsy
may be more useful in anteriorly located tumors. To our knowledge, this is the first study
determining that (1) tumor nucleic acids are present and quantifiable in the AH of UM
eyes and that (2) UM SCNAs and mutations can be identified from the AH. These results
suggest that the AH can serve as a liquid biopsy for UM, especially in CB tumors. With
further investigations, this novel AH liquid biopsy platform may allow clinicians to better
prognosticate, monitor disease progression, and investigate local intraocular biomarkers
for UM.

6. Patents

Drs. Berry, Xu and Hicks have filed a patent application entitled: Aqueous humor cell
free DNA for diagnostic and Prognostic evaluation of Ophthalmic Disease.
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