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Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the
effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride-
(NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling
pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia,
liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly
decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid
peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats.
C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase,
and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated
with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated
that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study
points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia.
Therefore, C. molmolmight be a promising protective agent against hyperammonemia.

1. Introduction

Hepatic encephalopathy (HE) is a serious complication of
both acute and chronic liver diseases [1, 2]. HE has been esti-
mated to occur in 10–50% of patients with transjugular intra-
hepatic portosystemic shunt and 30–45% of patients with

cirrhosis, whereas minimal HE affects 20–60% of patients
with liver disease [3]. Although the pathological mechanism
of HE is not fully understood, ammonia is known to play a
key role in HE [4]. Ammonia is a known neurotoxin and
induces harmful effects to the central nervous system [5].
Blood ammonia level is strongly correlated with the
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increased risk of HE and is therefore used as a diagnostic
marker for encephalopathy [6]. Ammonia is normally detox-
ified in the liver via urea cycle, and if does not proceed prop-
erly, as in cases of liver failure or congenital defect of the urea
cycle enzymes, ammonia increases and lead to HE [7].

The brain removes ammonia through glutamine synthe-
sis driven by glutamine synthetase (GS). Therefore, high
ammonia levels can increase glutamine synthesis and cause
swelling of astrocytes and brain edema [8]. In addition,
hyperammonemia can alter the mitochondrial function and
neurotransmission and induce oxidative/nitrosative stress
[9–11]. Hyperammonemia has been demonstrated to
increase the activity of nitric oxide synthase (NOS) and
subsequently nitric oxide (NO) production in the brain
[12]. High levels of NO were associated with HE, hyperam-
monemic syndromes, and other disorders without significant
neuronal damage [13, 14]. Moreover, ammonia-induced oxi-
dative stress occurs due to increased production of reactive
oxygen species (ROS) and subsequent damage of proteins,
lipids, and DNA [15]. Previous studies have demonstrated
increased ROS production and oxidative stress in hyperam-
monemia [10, 11, 16]. Hence, counteracting oxidative/nitro-
sative stress may represent a protective strategy against
hyperammonemia-induced brain injury. In this context,
several in vitro and in vivo studies have demonstrated the
role of nuclear factor erythroid 2-related factor 2 (Nrf2)/anti-
oxidant response element (ARE) signaling pathway as a con-
tributor to the cellular responses to neuronal injury [17–20].
Through binding to the promoter sequence ARE, Nrf2
controls the expression of antioxidant, defensive, and detox-
ification genes to remove ROS and reactive nitrogen species
(RNS) [21]. However, its role in hyperammonemia is still
not fully understood.

Excess ammonia reduces glutamate uptake and increases
extracellular glutamate levels [22], leading to activation of the
N-methyl-D-aspartic acid (NMDA) glutamate receptor in
the brain cortex [23]. Consequently, intracellular calcium
(Ca2+) increases followed by increased NO production and
activation of soluble guanylate cyclase (sGC) and subse-
quently increases cyclic guanosine monophosphate (cGMP)
production [24]. Excess ammonia also increases the activity
of Na+/K+-ATPase in the brain [25]; however, the underlying
mechanism remains unclear. Increased activity of the brain
Na+/K+-ATPase in hyperammonemia has been demon-
strated in multiple previous studies [16, 26].

Current treatments used to reduce ammonia levels are of
limited value, and therefore new psychopharmacological
agents acting on cellular molecular targets involved in brain
neurological alterations are required [27]. Medicinal plants
and their derived bioactive phytochemicals have been gain-
ing recognition in the treatment of neurological diseases.
Commiphora molmol (family Burseraceae) is a shrub resem-
bling tropical tree grows in dry forest and produces a resin-
ous exudate called myrrh or oleo-gum resin [28]. Myrrh
has been used traditionally for several centuries for the treat-
ment of various diseases and has showed multiple beneficial
effects, including antibacterial [29], hypoglycemic [30],
anti-inflammatory [31], antioxidant [32], and hepatoprotec-
tive efficacies [33]. To the best of our knowledge, nothing has

yet been reported on the possible protective effect of C.
molmol resin against hyperammonemia. Therefore, the pres-
ent study aimed to investigate the effects of C. molmol resin
extract against ammonium chloride- (NH4Cl-) induced
hyperammonemia in rats, pointing to the role of oxidative
stress and inflammation, and the glutamate-NO-cGMP and
Nrf2/ARE signaling pathways.

2. Materials and Methods

2.1. Preparation of C. molmol Extract and Assay of Radical
Scavenging Activity. C. molmol resin was purchased from a
local herbalist (Harraz Medicinal Plants Co., Cairo, Egypt)
and was ground into fine powder. The resin powder was
soaked in 90% ethanol for 24h, filtered, and concentrated
using a rotary evaporator at a temperature not exceeding 45°C.

The scavenging activity of C. molmol extract against 2,2-
diphenyl-1-picrylhydrazyl (DPPH) radicals was assayed
according to the method of Kamel et al. [34] using vitamin
C as antioxidant reference.

2.2. Experimental Animals and Treatments. Eight-week-old
male albino Wistar rats (Rattus norvegicus) purchased from
the Institute of Ophthalmology (Giza, Egypt) were used in
the present investigation. The animals were housed in stan-
dard cages at 23± 2°C with a 12 h dark/light cycle. All animal
procedures were approved by the Institutional Animal Ethics
Committee of Beni-Suef University (Egypt).

The experimental rats were divided randomly into 4
groups as following:

Group I (control): rats received intraperitoneal (i.p.)
injection of 0.9% sodium chloride (NaCl) (3 times/week)
and orally administered 0.5% carboxymethyl cellulose
(CMC) daily for 8 weeks.

Group II (C. molmol): rats received 0.9% NaCl
(3 times/week) and orally administered 125mg/kg body
weight C. molmol extract [35] suspended in 0.5% CMC daily
for 8 weeks.

Group III (NH4Cl): rats received 100mg/kg NH4Cl
(Sisco Research Laboratories, Mumbai, India) dissolved in
0.9% NaCl (i.p., 3 times/week) [10] and orally administered
0.5% CMC daily for 8 weeks.

Group IV (NH4Cl+C. molmol): rats received 100mg/kg
NH4Cl (i.p., 3 times/week) and orally administered 125mg/
kg body weight C. molmol extract suspended in 0.5% CMC
daily for 8 weeks.

The doses were adjusted in accordance with changes in
the body weight.

2.3. Samples Collection and Preparation. By the end of 8
weeks, the animals were fasted overnight and were then sacri-
ficed, and samples were collected for analysis. Whole blood
was collected for the assay of ammonia and hematological
parameters. Citrated blood samples were used to assay pro-
thrombin time (PT) and activated partial thromboplastin
time (aPTT). Other blood samples were left to coagulate for
serum preparation.

The liver, kidney, and cerebrum were immediately
excised, washed in cold phosphate-buffered saline (PBS),
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and weighed. Samples from the liver, kidney, and cerebrum
were homogenized in cold PBS, centrifuged, and kept frozen
for the determination of lipid peroxidation, NO, and antiox-
idants. Homogenized cerebrum samples were also used to
assay glutamine and Na+/K+-ATPase. Other samples from
the cerebrum were collected and kept at −80°C for RNA
isolation and Western blot analysis.

2.4. Biochemical Assays

2.4.1. Determination of Ammonia, Urea, Liver Function
Markers, and TNF-α. Blood ammonia was estimated using
reagent kit purchased from Spinreact (Spain), according to
the method of da Fonseca-Wollheim [36].

Circulating levels of ALT and AST were determined fol-
lowing the method of Schumann and Klauke [37] whereas
ALP was assayed according to the method of Wenger et al.
[38]. The assay kits were purchased from Spinreact (Spain).

Serum TNF-α levels were estimated using specific
ELISA kits (R&D Systems, USA), according to the manu-
facturer’s instructions.

2.4.2. Assay of Oxidative Stress and Antioxidant Defenses.
Samples from the liver, kidney, and cerebrum were used to
assays lipid peroxidation following the method of Preuss
et al. [39] and NO using Griess reagent. Reduced glutathi-
one (GSH) [40] and activity of superoxide dismutase
(SOD) [41], catalase (CAT) [42], and glutathione peroxi-
dase (GPx) [43] were also determined in the liver, kidney,
and cerebrum homogenates.

2.4.3. Assay of Glutamine Level and Na+/K+-ATPase Activity.
Glutamine concentration in the cerebrum of control and
experimental rats was determined according to the method
of Lund [44]. Na+/K+-ATPase activity was determined spec-
trophotometrically through determination of the inorganic
phosphate (Pi) liberated from ATP [45]. The concentration
of Pi was estimated using reagent kit purchased from
Spinreact (Spain), according to the method of Fiske and
Subbarow [46].

2.5. Hematological Assays. Erythrocytes, hemoglobin
content, platelets, total leukocytes, PT, and aPTT were
determined using an automated analyzer.

2.6. Gene Expression Analysis. Reverse transcriptase polymer-
ase chain reaction (RT-PCR) was used to determine the effect
of C. molmol extract on the expression of NOS1, sGC, and
Na+/K+-ATPase in the cerebrum of rats. Briefly, total RNA
was isolated from the frozen cerebrum samples using TRIzol
reagent (Invitrogen, USA). The isolated RNA was quantified
and its integrity was checked using formaldehyde-agarose gel
electrophoresis. Two μg RNA was used to synthesize cDNA
by AMV reverse transcriptase. cDNA was then amplified by
Green Master Mix (Fermentas, USA) [47] and the primer
set listed in Table 1. The amplified PCR products were
loaded into agarose gel and visualized using UV transillu-
minator. The obtained gel images were scanned and
analyzed by ImageJ (version 1.32j, NIH, USA) using β-actin
as housekeeping gene.

2.7. Western Blotting. To test the effect of C. molmol on Nrf2
and HO-1 expression in the cerebrum, Western blotting was
used as we previously reported [48]. In brief, samples from
the cerebrum were homogenized in RIPA buffer with
proteinase inhibitors and centrifuged, and protein concentra-
tion was determined in the homogenates using Bradford
reagent [49]. To determine Nrf2, nuclear proteins were
extracted using a commercial kit purchased from Beyotime
(China). The samples were electrophoresed on SDS/PAGE,
transferred to PVDF membranes, blocked, and incubated
with primary antibodies for Nrf2, lamin B, HO-1, and
β-actin (Santa Cruz Biotechnology, USA). After washing,
the membranes were incubated with the secondary anti-
bodies, washed, and then developed using enhanced
chemiluminescence kit (Bio-Rad, USA). The intensity of
bands was determined and quantified using ImageJ
(version 1.32j, NIH, USA).

2.8. Statistical Analysis. Results were analyzed by means of
one-way ANOVA followed by Tukey’s post hoc analysis
using GraphPad Prism 5 (La Jolla, CA, USA). The data were
presented as means± standard error of the mean (SEM), and
a P value <0.05 was considered to be statistically significant.

3. Results

3.1. Effect of C. molmol on Body Weight Changes in
Hyperammonemic Rats. Initial body weight showed nonsig-
nificant (P > 0 05) changes between all experimental groups.
Rats received NH4Cl administration for 8 weeks which
showed a significant (P < 0 05) decrease in body weight when
compared with the control rats (Figure 1). Concurrent
administration of C. molmol significantly (P < 0 05)
improved body weight in NH4Cl-induced hyperammonemic
rats, while exerting nonsignificant effect when administered
to control rats.

3.2. Effect of C. molmol on Blood Ammonia and Liver
Function Markers in Hyperammonemic Rats. Hyperammo-
nemic rats showed a significant (P < 0 001) increase in blood
ammonia when compared with the control group of rats.
Oral administration of C. molmol extract to hyperammone-
mic rats significantly (P < 0 001) ameliorated circulating
levels of ammonia when compared with the hyperammone-
mic group (Table 2).

NH4Cl-induced hyperammonemia in rats produced a
significant (P < 0 001) increase in circulating levels of the
liver function markers, ALT, AST, and ALP. Treatment
of the hyperammonemic rats with C. molmol significantly
(P < 0 001) improved the circulating levels of ALT, AST,
and ALP (Table 2). Rats received C. molmol alone exhibited
nonsignificant changes in blood ammonia, ALT, AST, and
ALP when compared with the control rats.

3.3. C. molmol Decreases Circulating TNF-α Levels in
Hyperammonemic Rats. Serum levels of the proinflammatory
cytokine TNF-α showed a significant (P < 0 001) increase in
NH4Cl-induced hyperammonemic rats when compared with
the control group (Table 2). Oral supplementation of C.
molmol resin extract significantly (P < 0 01) decreased the
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circulating levels of TNF-α in hyperammonemic rats, with no
effect on normal rats.

3.4. Effect of C. molmol on Lipid Peroxidation, NO, and
Antioxidant Defenses in the Liver of Hyperammonemic Rats.
Hyperammonemic rats showed a significant (P < 0 001)
increase in lipid peroxidation (Figure 2(a)) and NO levels
(Figure 2(b)) in the liver of rats when compared with the
control group. Treatment of the hyperammonemic rats
with C. molmol markedly decreased liver lipid peroxida-
tion (P < 0 001) and NO (P < 0 001) levels.

On the other hand, hyperammonemic rats exhibited a
significant (P < 0 01) decrease in liver GSH content, an effect
that was significantly (P < 0 05) prevented by C. molmol
(Figure 2(c)). Similarly, hyperammonemia was associated
with significant decline in the activity of SOD (P < 0 01;
Figure 2(d)), CAT (P < 0 01; Figure 2(e)), and GPx
(P < 0 001; Figure 2(f)) in the liver of rats. Oral administration
of C. molmol significantly alleviated the activity of SOD
(P < 0 05), CAT (P < 0 01), and GPx (P < 0 001) in the
liver of hyperammonemic rats.

Oral administration of C. molmol to normal rats did not
affect liver lipid peroxidation, NO, and antioxidant defenses.

3.5. Effect of C. molmol on Lipid Peroxidation, NO, and
Antioxidant Defenses in the Kidney of Hyperammonemic
Rats.Lipid peroxidation and NO levels showed a significant
(P < 0 001) increase in the kidney of hyperammonemic rats

when compared with the control group. Treatment of
the hyperammonemic rats with C. molmol significantly
(P < 0 001) reduced both lipid peroxidation (Figure 3(a))
and NO (Figure 3(b)) in the kidney. C. molmol administra-
tion to normal rats exerted nonsignificant (P > 0 05) effect
on kidney lipid peroxidation and NO.

GSH levels showed a significant (P < 0 01) decrease in the
kidney of hyperammonemic rats when compared with the
control rats, an effect that was markedly (P < 0 01) prevented
by C. molmol extract as depicted in Figure 3(c). Similarly,
hyperammonemic rats exhibited significantly declined activ-
ity of kidney SOD (P < 0 001, Figure 3(d)), CAT (P < 0 01,
Figure 3(e)), andGPx (P < 0 001, Figure 3(f)) when compared
with the control group.C.molmol administration significantly
improved the activity of SOD (P < 0 05), CAT (P < 0 05), and
GPx (P < 0 01) in kidneys of hyperammonemic rats, with no
effect on normal rats.

3.6. Effect of C. molmol on Lipid Peroxidation, NO, and
Antioxidant Defenses in the Cerebrum of Hyperammonemic
Rats. NH4Cl administration induced a significant (P < 0 001)
increase in the levels of lipid peroxidation (Figure 4(a)) and
NO (Figure 4(b)) in the cerebrum of rats when compared with
the control group. In addition, hyperammonemic rats
exhibited marked decrease in the cerebral GSH levels
(P < 0 01; Figure 4(c)), and the activity of SOD (P < 0 01;
Figure 4(d)), CAT (P < 0 01; Figure 4(e)), and GPx (P < 0 001;
Figure 4(f)). Treatment of the hyperammonemic rats
with C. molmol significantly decreased lipid peroxidation
(P < 0 001) and NO (P < 0 01) and significantly improved
GSH (P < 0 01), SOD (P < 0 05), CAT (P < 0 05), and
GPx (P < 0 01) in the cerebrum. Oral supplementation
of C. molmol did not affect lipid peroxidation, NO, and
antioxidant defenses in the cerebrum of normal rats.

3.7. C. molmol Upregulates the Nrf2/ARE/HO-1 Pathway in
the Cerebrum of Hyperammonemic Rats. To investigate the
effect of C. molmol resin extract on the Nrf2/ARE/HO-1
pathway in hyperammonemic rats, the protein expression
of Nrf2 and HO-1 was determined in the cerebrum using
Western blotting assay.

NH4Cl-induced hyperammonemia in rats induced a
significant (P < 0 001) downregulation of cerebral Nrf2
expression when compared with the control group of rats
(Figure 5(a)). Concurrent administration of C. molmol resin
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Figure 1: Effect of C. molmol resin extract on body weight changes
in control and NH4Cl-induced hyperammonemic rats. Data are
expressed as mean± SEM (N = 6). ∗P < 0 05.

Table 1: Primers used for RT-PCR.

Gene
GenBank

Accession number
Sequence (5′-3′)

NOS1 XM_017598257
F: GGCCCTTTTAATGAGGGTTGC
R: TCTGTGCTAAGTAGCCGCTC

sGC M57405
F: TCACCCCCATACCCTTCTGT
R: GGTAGACTCTGTTGCGGCTT

Na+/K+-ATPase (Atp1a1) NM_012504
F: TGGCATCCGAAGTGCTACAG
R: CCAGATCACCAACGACGACA

β-Actin (Actb) NM_031144
F: CCGCGAGTACAACCTTCTTG
R: CAGTTGGTGACAATGCCGTG
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Table 2: Effect of C. molmol on ammonia, liver function marker enzymes, and TNF-α in control and hyperammonemic rats.

Control C. molmol NH4Cl NH4Cl +C. molmol

Ammonia (μmol/dL) 75.30± 6.23 72.69± 4.89 418.20± 18.48∗∗∗ 136.25± 8.79###

ALT (U/L) 28.78± 4.25 26.50± 2.48 64.81± 6.23∗∗∗ 36.12± 3.14###

AST (U/L) 53.45± 4.26 48.16± 3.89 132.71± 8.49∗∗∗ 68.51± 6.77###

ALP (U/L) 82.69± 6.13 84.26± 5.23 179.18± 10.26∗∗∗ 95.50± 7.56###

TNF-α (pg/mL) 32.60± 2.42 35.78± 3.88 78.59± 5.53∗∗∗ 48.36± 4.33##

Data are expressed as mean ± SEM (N = 6). ∗∗∗P < 0 001 versus control, and ##P < 0 01 and ###P < 0 001 versus NH4Cl.
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Figure 2: Effect of C. molmol resin extract on (a) lipid peroxidation, (b) nitric oxide, (c) GSH, (d) SOD, (e) CAT, and (f) GPx in the liver of
NH4Cl-induced hyperammonemic rats. Data are expressed as mean± SEM (N = 6). ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001. MDA,
malondialdehyde; NO, nitric oxide; GSH, reduced glutathione; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase.

5Oxidative Medicine and Cellular Longevity



extract significantly (P < 0 001) increased Nrf2 expression in
the cerebrum of hyperammonemic rats.

Similarly, HO-1 expression showed a significant
(P < 0 001) downregulation in the cerebrum of NH4Cl-
induced hyperammonemic rats when compared with
the control rats as depicted in Figure 5(b). C. molmol
resin supplementation significantly (P < 0 001) amelio-
rated the expression of HO-1 in the cerebrum of hyper-
ammonemic rats. Oral supplementation of C. molmol did

not induce significant changes in cerebral Nrf2 and
HO-1 expression.

3.8. C. molmol Prevents Hyperammonemia-Associated
Hematological Alterations in Rats. To evaluate the effect of
C. molmol extract on hyperammonemia-associated hemato-
logical alteration, RBCs, Hb, WBCs, and platelets were
determined in the control and hyperammonemic rats.
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Figure 3: Effect of C. molmol resin extract on (a) lipid peroxidation, (b) nitric oxide, (c) GSH, (d) SOD, (e) CAT, and (f) GPx in the kidney of
NH4Cl-induced hyperammonemic rats. Data are expressed as mean± SEM (N = 6). ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001. MDA,
malondialdehyde; NO, nitric oxide; GSH, reduced glutathione; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase.
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Hyperammonemic rats exhibited a significant (P < 0 01)
decrease in the number of erythrocytes (Figure 6(a)) and in the
Hb content (Figure 6(b)) when compared with the control rats.
On the other hand,NH4Cl-induced hyperammonemiawas asso-
ciated with significant (P < 0 001) leukocytosis (Figure 6(c)). C.
molmol administration markedly prevented hyperammonemia-
induced anemia (P < 0 05) and leukocytosis (P < 0 001).

Thrombocytopenia was a characteristic feature for
hyperammonemia where the NH4Cl-induced hyperam-
monemic rats showed significant (P < 0 05) decrease in

the number of thrombocytes as compared to the control
group (Figure 6(d)). Oral supplementation of C. molmol
extract to NH4Cl-induced hyperammonemic rats did not
affect significantly the thrombocytes count.

To examine hyperammonemia-induced changes in the
coagulation system and the effect of C. molmol, we
determined PT and aPTT. Hyperammonemic rats exhibited
a significant (P < 0 01) prolongation of PT (Figure 6(e))
and aPTT (Figure 6(f)), an effect that was markedly
(P < 0 01) reversed by C. molmol.
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Figure 4: Effect of C. molmol resin extract on (a) lipid peroxidation, (b) nitric oxide, (c) GSH, (d) SOD, (e) CAT, and (f) GPx in
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Of note, C. molmol did not induce any significant
changes on hematological parameters of normal rats.

3.9. C. molmol Downregulates NOS1, sGC, and Na+/K+-
ATPase and Decreases Glutamine in the Cerebrum of
Hyperammonemic Rats. NOS1 mRNA expression showed a
significant (P < 0 001) increase in the cerebrum of NH4Cl-
induced hyperammonemic rats when compared with the
control group (Figure 7(a)). Concurrent supplementation of
C. molmol significantly (P < 0 001) improved the expression
of NOS1 mRNA in the cerebrum of hyperammonemic rats.

Hyperammonemic rats exhibited a significant (P < 0 001)
upregulation in the expression of sGC mRNA, an effect that
was significantly (P < 0 001) ameliorated by C. molmol
(Figure 7(b)). Glutamine levels as well showed a significant
(P < 0 001) increase in the cerebrum of NH4Cl-induced
hyperammonemic rats when compared with the control
rats (Figure 7(c)). Concurrent administration of C. molmol
significantly (P < 0 001) decreased cerebral glutamine levels
in NH4Cl-induced hyperammonemic rats.

NH4Cl-induced hyperammonemia induced a significant
(P < 0 001) increase in both the expression and activity
Na+/K+-ATPase in the cerebrum of rats. Oral supplementa-
tion of C. molmol to hyperammonemic rats significantly
improved the expression (P < 0 01) and activity (P < 0 001)
of the cerebral Na+/K+-ATPase as represented in
Figures 7(d) and 7(e), respectively.

Oral supplementation of C. molmol did not affect
the gene expression of NOS1, sGC, Na+/K+-ATPase, or
glutamine levels in the cerebrum of normal rats.

4. Discussion

C. molmol has showed multiple therapeutic effects; however,
nothing has yet been reported on its protective effect against
hyperammonemia. The present study shows for the first time

the protective effect of C. molmol resin extract against excess
ammonia-induced alterations, pointing to the role of Nrf2/
HO-1 pathway.

An initial objective of this study was to investigate the
protective activity of C. molmol resin extract against
NH4Cl-induced liver injury. The liver plays a central role in
detoxification of both endogenous and exogenous toxins.
This detoxification capacity is hampered upon liver injury,
and the body is exposed to the harmful effects of toxicants.
Hyperammonemia occurs as a consequence of liver failure
[7]. In the present investigation, increased circulating levels
of ammonia indicate liver damage induced by ammonia
intoxication in rats as we previously reported [10, 11]. Excess
ammonia-induced liver injury was confirmed by increased
circulating liver-specific marker enzymes ALT, AST, and
ALP. In NH4Cl-induced animal model, hyperammonemia
occurs as a consequence of liver damage induced by injection
of NH4Cl. Hyperammonemia induces liver damage which
may contribute to or exacerbate hyperammonemia and other
alterations resulting from liver damage. We have previously
reported increased circulating levels of ALT, AST, and ALP
in NH4Cl-induced hyperammonemic rats [10]. Elevated liver
marker enzymes in serum is an indicator for the assessment
of hepatocellular damage [50]. C. molmol resin extract signif-
icantly ameliorated body weight and decreased blood ammo-
nia levels and circulating levels of ALT, AST, and ALP in
hyperammonemic rats. These findings suggest hepatoprotec-
tive and membrane-stabilizing potentials of C. molmol.
Accordingly, C. molmol resin protected the liver against
ethanol-induced hepatotoxicity in rats and decreased the cir-
culating levels of ALT, AST, and ALP [51]. In addition, treat-
ment with C. molmol resin extract decreased circulating ALT
and AST in carbon tetrachloride- (CCl4-) [52] and D-GalN/
LPS-induced [53] liver injury in rats and in a rodent model of
chemically induced hepatocarcinogenesis [54]. The declined
body weight in NH4Cl-induced hyperammonemic rats could
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be explained by the decreased body fat content. Hyperammo-
nemia has been reported to alter lipid metabolism and signif-
icantly decrease body lipid content, leading to declined body
weight [55]. Alleviated body weight by C. molmol resin
extract in this study could be attributed to the ameliorated
lipid metabolism. However, further studies are required to

better explain the possible role of C. molmol in ameliorating
body weight in hyperammonemic rats.

Hyperammonemic rats in the present study exhibited a
marked increase in the circulating levels of TNF-α as we
recently reported [11]. Although the precise interaction
between inflammation and hyperammonemia is unclear,
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inflammation appears to play important role in the patho-
genesis of HE [56–58]. In this context, studies have showed
a strong positive correlation between inflammation and HE
[59, 60]. In patients with liver cirrhosis, elevated circulating

levels of the proinflammatory cytokine TNF-α were recorded
[59, 60]. Shawcross et al. [61] proposed the crucial role of
inflammation in hyperammonemia-associated neuropsycho-
logical alterations. Hence, attenuation of inflammation,
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particularly mediated by TNFα, may reduce or prevent
hyperammonemia. This notion is supported by the findings
of Chung et al. [62] who showed the ability of indomethacin,
a nonsteroidal anti-inflammatory drug (NSAID), to prevent
ammonia-induced brain edema after portacaval anastomosis
in rats. In addition, we have demonstrated that the amelio-
rated blood ammonia levels was associated with decreased
circulating levels of TNF-α in NH4Cl-induced hyperammo-
nemia in rats [11].

Here, C. molmol resin extract significantly decreased
serum levels of TNF-α, demonstrating that its anti-
inflammatory effect plays a role in attenuating hyperammo-
nemia. The anti-inflammatory efficacy of C. molmol has been
reported in different studies. In a rat model of formalin-
induced hind paw edema, Shalaby and Hammouda [35]
showed that C. molmol exerted a potent anti-inflammatory
effect. This effect has been attributed to the reduced produc-
tion of prostaglandins as reported by Su et al. [63]. Also,
Ahmad et al. [53] showed that myrrh attenuated inflamma-
tion in a rat model of D-GalN/LPS-induced hepatic injury.
Recently, Fatani et al. [64] showed the anti-inflammatory
efficacy of C. molmol in acetic acid-induced ulcerative colitis
in rats. We have recently demonstrated the potent anti-
inflammatory effect of C. molmol resin extract in a rat model
of chemically induced hepatocarcinogenesis [54]. These
studies support the idea that attenuation of inflammation
has a role in the protective mechanism of C. molmol against
hyperammonemia.

Attenuation of oxidative/nitrosative stress is another
mechanism we hypothesized to mediate the protective effect
of C. molmol resin extract against NH4Cl-induced hyperam-
monemia in rats. In animal models, excess ammonia pro-
vokes excessive production of ROS [15] which initiate lipid
peroxidation. Here, hyperammonemic rats exhibited marked
increase in lipid peroxidation levels in the liver, kidney, and
cerebrum. Previous research from our lab showed significant
increase in lipid peroxidation in the liver, brain, and kidney
of NH4Cl-induced hyperammonemic rats [10, 11]. Other
studies have reported increased lipid peroxidation in animal
models of hyperammonemia [16, 65, 66]. Moreover,
NH4Cl-induced hyperammonemic rats showed a marked
increase in NO levels in the liver, kidney, and cerebrum.
The increased NO production in the brain is a direct result
of the upregulated nNOS in hyperammonemic rats. Accord-
ingly, Ramakrishnan et al. [16] have reported increased
expression of nNOS in the brain of NH4Cl-induced rats.
Hyperammonemia is known to activate nNOS and increase
NO production in the brain. The excessive production of
NO can induce neuronal damage [12].

Interestingly, C. molmol resin significantly alleviated lipid
peroxidation in the liver, kidney, and cerebrum of hyperam-
monemic rats, demonstrating a radical scavenging efficacy.
In addition, C. molmol significantly decreased NO produc-
tion which is associated with the decreased nNOS expression.
In accordance, supplementation of C. molmol to rats with
ulcerative colitis [64], ethanol- [51] and lead-induced liver
injury [32], and hepatocarcinogenesis [54] significantly
decreased lipid peroxidation and NO levels. Moreover,
C. molmol significantly enhances both enzymatic and

nonenzymatic antioxidant defenses in the liver, kidney, and
cerebrum of hyperammonemic rats. These antioxidants play
key roles in protecting the body against free radicals. Previ-
ous studies have reported declined GSH, SOD, CAT, and
GPx in the liver, brain, and kidney of NH4Cl-induced hyper-
ammonemic rats [10, 11, 16]. Declined antioxidant defense
mechanisms in hyperammonemia can aggravate ROS-
induced tissue damage. Along with reducing lipid peroxida-
tion and NO, C. molmol has been reported to enhance the
antioxidant defenses in different tissues of rats [32, 51, 54, 64].

The in vivo antioxidant activity of C. molmol resin extract
is in positive correlation with the in vitro data. Our findings
showed a significant antioxidant and radical scavenging effi-
cacies of C. molmol resin extract evidenced by the DPPH
assay (Supplementary Figure I available online at https://doi.
org/10.1155/2017/7369671). The antioxidant activity of C.
molmol is due to its rich content of bioactive molecules. Phy-
tochemical analysis of C. molmol resin showed the presence
of active constituents with antioxidant activity. These bioac-
tive constituents include limonene, m-cresol, eugenol, com-
miphoric acids, furanosesquiterpenes, pinene, terpenoids,
and cuminic aldehyde [67, 68]. In addition, the study of
Mahboubi and Kazempour [69] showed the presence of phe-
nolic and flavonoid compounds in C. molmol resin ethanolic
extract. Phenolic compounds are well known for their potent
antioxidant and radical scavenging properties [10, 34, 70, 71].

In addition to its radical scavenging property, we hypoth-
esized that C. molmol resin extract can enhance antioxidant
defenses and abrogate oxidative stress through activation of
Nrf2/HO-1 signaling. The possible involvement of Nrf2 acti-
vation in mediating the protective activity of C. molmol resin
against hyperammonemia has not been previously investi-
gated. The current findings showed a significant decline in
Nrf2 expression in the cerebrum of hyperammonemic rats.
This downregulation has been markedly reversed following
treatment with C. molmol resin extract. The results also
showed that HO-1 gene expression was upregulated in the
cerebrum of hyperammonemic rats treated with C. molmol
resin extract. These findings highlight that activation of the
Nrf2/ARE/HO-1 signaling pathway participates in the neu-
roprotective effect of C. molmol resin extract against
hyperammonemia-induced injury. Nrf2 is known to be acti-
vated by ROS and then dissociates from Keap1 and translo-
cates to the nucleus where it binds to ARE and activates the
transcription of antioxidant and cytoprotective proteins
including HO-1, CAT, SOD, and GPx [21]. Although
activated by ROS, Nrf2 showed a significant decline in the
cerebrum of hyperammonemic rats exhibiting oxidative
stress. This was further confirmed by the declined HO-1
expression in the cerebrum of hyperammonemic rats. More-
over, the activity of antioxidant defenses in the cerebrum was
strongly correlated with these findings. An explanation for
this declined expression of Nrf2 could be the chronic and
surplus production of ROS. This notion is supported by our
recent findings where we demonstrated downregulation of
the Nrf2/ARE/HO-1 pathway in different conditions with
excessive production of ROS [34, 48, 72–74]. Furthermore,
the anti-inflammatory effect of C. molmol resin extract could
be attributed, at least in part, to the activation of Nrf2.
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Multiple studies have demonstrated the anti-inflammatory
role of Nrf2. Knockout of Nrf2 has been associated with
reduced anti-inflammatory efficacy of the antioxidant
curcumin [75]. In addition, activation of Nrf2 blocked the
transcription of IL-6 and IL-1β in macrophages [76].

The effect of C. molmol resin on hematological alterations
in hyperammonemia was one of our targets in this study;
however, reports about hematological alterations in hyper-
ammonemia are very few. Assessment of hematological
parameters represents a powerful tool and an earlier indica-
tor to evaluate the deleterious effects of drugs [77]. In the
present study, administration of C. molmol to normal rats
did not affect the hematological and coagulation system
parameters, whereas hyperammonemic rats exhibited ane-
mia, leukocytosis, thrombocytopenia, and prolonged PT
and aPTT. Hematological abnormalities occur frequently in
liver disease conditions [78]. In support of our findings,
Kalaitzakis et al. [79] have demonstrated that HE is related
to anemia in liver transplant candidates with cirrhosis. The
recorded anemia in hyperammonemic rats could also be a
consequence of the increased ROS production. ROS can
decrease cellular deformability and damage erythrocytes via
induction of membrane lipid peroxidation and rigidity [80].
In addition, liver disease is known to be associated with
defects of blood coagulation as a consequence of thrombocy-
topenia, endothelial dysfunction, and deficiencies of coagula-
tion factors. Low circulating levels of the coagulation factors
are associated with prolongation of PT and aPTT [81]. Here,
hyperammonemic rats exhibited thrombocytopenia and
prolonged PT and aPTT. Furthermore, hyperammonemic
rats showed leukocytosis. Accordingly, Choi et al. [82]
reported mild leukocytosis in hyperammonemic patients
with ornithine carbamoyltransferase deficiency and Aggar-
wal et al. [78] demonstrated a significant association of
leukocytosis with HE. Interestingly, C. molmol prevented all
hematological alterations in hyperammonemic rats. These
findings could be a direct result of the prevention of hyper-
ammonemia and attenuation of liver injury, oxidative stress,
and inflammation.

Glutamine is a neutral amino acid and functions
normally as ammonia carrier in the CNS [83]. Because the
brain does not convert ammonia into urea, ammonia is
exclusively removed by GS located in astrocytes. Thus, gluta-
mine synthesis is an essential process for the brain to detoxify
excess ammonia in liver failure [84]. In hyperammonemic
conditions, the metabolism of ammonia to glutamine is
followed by an osmotic disturbance, altered cerebral blood
flow, oxidative stress, and edema. Other factors including
systemic inflammation may contribute to the excess
ammonia-induced cerebral alterations [85]. NH4Cl-induced
hyperammonemic rats in the present investigation showed
a marked increase in cerebral glutamine levels and the
expression of sGC. Excess ammonia has been reported to
activate NMDA receptors in the brain cortex [23], followed
by increased intracellular Ca2+, increased NO production,
and activation of sGC [24]. Interestingly, C. molmol supple-
mented hyperammonemic rats showed a marked decrease
in cerebral glutamine levels and downregulated sGC. These
findings could be attributed to the ability of C. molmol to

decrease ammonia levels, oxidative stress, and nNOS
expression. Therefore, the protective effect of C. molmol resin
extract against hyperammonemia is illustrated, at least in
part, through inhibiting NMDA receptors and modulation
of the glutamate-NO-cGMP pathway.

Excess ammonia can also alter the ionic shifts and affect
the membrane potential of nerve cells. Here, NH4Cl-induced
hyperammonemic rats exhibited significantly increased
expression and activity of the cerebral Na+/K+-ATPase.
Previous studies have showed similar findings in hyperam-
monemic brain conditions [16, 25, 26]. The exact underlying
mechanism of the activated Na+/K+-ATPase in hyperammo-
nemia is not fully understood. Kosenko et al. [86] proposed
that the activation of Na+/K+-ATPase is a result of decreased
phosphorylation by protein kinase C (PKC). In addition, the
activity of Na+/K+-ATPase was increased in cerebral cortex
following exposure to millimolar concentrations of NH4Cl
[87]. C. molmol supplementation markedly ameliorated both
the expression and the activity of Na+/K+-ATPase in the
cerebrum of hyperammonemic rats. These findings added
support to the protective role of C. molmol resin against the
deleterious effects of hyperammonemia.

In conclusion, our study shows for the first time that C.
molmol resin extract protects against excess ammonia
through attenuation of oxidative stress and inflammation
and modulation of the glutamate-NO-cGMP pathway. This
investigation also confers information that C. molmol may
be an effective neuroprotective therapeutic agent with a
potential mechanism of upregulation Nrf2/ARE/HO-1
pathway and consequently enhances the antioxidant
defenses. C. molmol ameliorated both the activity and the
expression of Na+/K+-ATPase and prevented hematological
alterations in cases of hyperammonemia and hepatic failure.
Therefore, C. molmol resin may represent a promising
protective agent against hyperammonemia, pending further
detailed mechanistic studies. This study may serve as a base
for future investigations exploring Nrf2-activating agents as
therapeutics for hyperammonemia.
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