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Periodontal diseases are among the most frequent inflammatory diseases affecting
children and adolescents, which affect the supporting structures of the teeth and
lead to tooth loss and contribute to systemic inflammation. Gingivitis is the most
common periodontal infection. Gingivitis, which is mainly caused by a substance
produced by microbial plaque, systemic disorders, and genetic abnormalities in the
host. Identifying gingivitis-related genes across human tissues is not only significant
for understanding disease mechanisms but also disease development and clinical
diagnosis. The Genome-wide association study (GWAS) a commonly used method to
mine disease-related genetic variants. However, due to some factors such as linkage
disequilibrium, it is difficult for GWAS to identify genes directly related to the disease.
Hence, we constructed a data integration method that uses the Summary Mendelian
randomization (SMR) to combine the GWAS with expression quantitative trait locus
(eQTL) data to identify gingivitis-related genes. Five eQTL studies from different human
tissues and one GWAS studies were referenced in this paper. This study identified
several candidates SNPs and genes relate to gingivitis in tissue-specific or cross-tissue.
Further, we also analyzed and explained the functions of these genes. The R program
for the SMR method has been uploaded to GitHub(https://github.com/hxdde/SMR).
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INTRODUCTION

Gingivitis is the most prevalent disease of the periodontium (Oliver et al., 1998) and is commonly
known to be a site-specific inflammatory disease caused by the accumulation of dental biofilm (Loe
et al., 1965; Theilade et al., 1966; Trombelli et al., 2004). Bacteria in the mouth from gingivitis
can easily get into the bloodstream and cause damage to organs. The list of potential problems
this bacteria can cause is long. Periodontitis may lead to an increased risk of stroke, heart attack,
heart disease, dementia, rheumatoid arthritis, and lung disease (Humphrey et al., 2008; Jamieson
et al., 2015). Studies have shown that the prevalence and severity of gingivitis are high (Oh et al.,
2002). More than 70% of children older than 7 years old are affected by gingivitis (Stamm, 1986).
The clinical symptoms of gingivitis are redness and edema of the gingival tissue, bleeding on
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provocation, changes in contour and consistency, occurrence of
calculus and/or plaque, and lead to tooth loss and contribute to
systemic inflammation (No authors listed, 2000; Kinane et al.,
2017). Although The pathogenic factors of gingivitis are mainly
related to the microbial biofilm of the dental plaque, hormonal
fluctuations, drugs, malnutrition, and system disease, the genetic
variation, and epigenetic program determine the susceptibility
and the regulatory capacity for plaque pathogens (Kinane et al.,
2017; Murakami et al., 2018; Zhang S. et al., 2020). Therefore,
identify gingivitis-related genes and loci can elucidate disease
mechanisms and guide clinical diagnosis and treatment.

Over the first decade of the twenty first century, with the
maturity of high-throughput sequencing technology, a large
amount of genomic data provides an important platform for
researchers to discover abnormal genes related to diseases,
understand disease mechanisms, and develop treatment methods
(Zhao and Grant, 2011; Zou and Ma, 2019; Wang L.
et al., 2019; Cheng et al., 2020). In recent years, several
institutions and companies have discovered gingivitis-related
pathways and susceptibility genes. For example, polymorphisms
in the interleukin-1 gene cluster can influence the severity
of gingivitis (Parkhill et al., 2000; Papapanou et al., 2001).
Through transcriptome analysis of patients with gingivitis
and healthy non-smokers, Demmer et al. (2008) identified 61
differentially expressed genes and function enrichment analysis
show these are significantly related to apoptosis, antimicrobial
humoral response, antigen presentation, regulation of metabolic
processes, signal transduction, and angiogenesis. Kim et al.
(2016) also identified 400 up-regulated genes and 62 down-
regulated genes which mainly related to defense/immunity
protein, receptor, protease, signaling molecules, cytoskeletal,
and structural proteins by transcriptome sequencing of gingival
biopsies. However, the current research is mainly to identify
gingivitis-related genes through biological experiments or simple
difference analysis. The major weakness with these study is that
it does not incorporate more biological information and describe
the disease in a single tissue, which makes it difficult to identify
key disease-causing genes from thousands of genes. How to
integrate more biological information across multiple tissues has
become a research hotspot and challenge (Lewin et al., 2016).

The Genome-wide association study (GWAS) is an
observational study that detects the single nucleotide
polymorphisms (SNP) of multiple individuals of a specific
species to find genetic variations associated with a particular
trait (Li et al., 2015; Liu and Jiang, 2016; Jiang et al., 2017; Bush,
2019; Cheng et al., 2019b; Sun et al., 2019). In recent years,
there have been many studies that have identified several risk
genes associated with gingivitis through the GWAS analysis.
The GWAS study of 4,910 European-American adults shows
that high IL-1β and IL-6 expression is associated with IL37
locus variant, which induces more severe periodontal disease
(Offenbacher et al., 2018). The genetic variation of ASIC2
(acid-sensing ionic channel 2) locus, which locates chromosome
17, is significantly associated with severe gingivitis (Zhang et al.,
2016). While GSWA can effectively identify disease-related gene
loci, there are still many limitations and problems. The GWAS
can determine the locus related to the trait or disease instead

of directly determining the gene itself. Due to the hypothesis of
“disease-common variations,” it is difficult for GWAS to identify
rare variants. And these rare variants may be an important role
in the disease process (Liu et al., 2016, 2018; Hu et al., 2018).
Besides, GWAS only gives statistical conclusions on genetic
variants and phenotype, and there is no information on gene
function studies. Therefore, GWAS cannot fully reveal the
abnormal genetic loci of complex disease. How to accurately
identify the genetic variant directly related to the disease and
obtain these changed biological functions is a major challenge.

At present, a large number of GWAS studies have found
that 80% of genetic variation sites are located in non-coding
regions of the genome. At present, a large number of GWAS
studies have found that 80% of genetic susceptibility sites are
located in non-coding regions of the genome, which indicates
that some pathogenic genetic sites may have the ability to
regulate gene expression (Hu et al., 2018; Cheng et al., 2019a).
The expression quantitative trait loci (eQTL) mapping analysis
takes the expression level of genes as quantitative traits and
uses traditional OTL methods to identify genetic sites that
can regulate gene expression. Traditional QTL methods need
to measure the genotype and gene expression level of each
individual studied, and then use association analysis (outbred
population) or linkage analysis (family or experimental hybrid
population) to assess the association between genotype and gene
expression level (Rockman and Kruglyak, 2006; Skelly et al., 2009;
Albert and Kruglyak, 2015).

The Summary Mendelian Randomization (SMR) is a
transcriptome-wide association analysis method that integrates
summary-level data from independent GWAS with data from
eQTL studies to identify genes whose expression levels are
associated with a complex trait (Zhu et al., 2016). The statistical
performance of the SMR method will increase with a higher
research sample size and it can provide a test to distinguish
the causal relationship between the genetic variant and gene
expression (Pavlides et al., 2016). Since Zhu et al. (2016) first
proposed the SMR method, considerable literature has grown
up around the SMR method to predicts complex trait gene
targets. Hu et al. (2018) used the SMR method to integrate 2
GWAS datasets and 5 eQTL datasets to identify27 SNPs related
to Alzheimer’s disease. Meng et al. (2018) collected the largest
GWAS and eQTL meta-analysis data and tested 5,967 genes

TABLE 1 | The number of SNP-Gene pairs related to gingivitis in each tissue.

GWAS eQTL Number
of SNP

Number
of gene

Gingivitis and
periodontal diseases

Artery_Tibial 4 5

Gingivitis and
periodontal diseases

Blood 5 6

Gingivitis and
periodontal diseases

Cells_Cultured_fibroblasts 5 5

Gingivitis and
periodontal diseases

Nerve_Tibial 3 4

Gingivitis and
periodontal diseases

Skin_Sun_Exposed_Lower_leg 4 6
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FIGURE 1 | Workflow.

through the SMR method, which identified two potentially causal
genes (ASB16-AS1 and SYN2) associated with bone mineral
density. In the study of complex collisions, Porcu et al. (2019)
found 36% of genes have no genome-wide significant SNP
nearby in previous GWAS by applying the SMR method for 43
human phenotypes and they think that the majority of these loci
were missed by GWAS due to power issues. Veturi’s research also
believes that the SMR method has excellent capabilities under
the assumption of causality (Veturi and Ritchie, 2018; Cheng,
2019). Hence to obtain more accurate results, we used the SMR
method to integrate GWAS and eQTL studies to identify genes
related to gingivitis.

MATERIALS AND METHODS

Data Collection
Reliable data is the key to further analysis (Liang et al., 2017;
Zhang et al., 2017). We downloaded one GWAS data related
to gingivitis from the GWAS Catalog database (The NHGRI-
EBI Catalog of human genome-wide association studies1). Five
eQTL studies data, which are five different tissues of patients with
gingivitis, are downloaded from the GTEx database (Genotype-
Tissue Expression2). The detailed data information has been
shown in Table 1.

The Summary Mendelian Randomization
Method
Some biological experiments have found that if a genetic
variant affects the expression level of a gene, then the gene
will have different expression levels among samples who carry
different genotypes of the genetic variant (Weiss et al., 2008;
McCarthy et al., 2009). In addition, if the gene can also affect
the phenotype, the phenotype will be different in different
genotypes (Golzio et al., 2012). This process is very similar
to the theory of Mendelian randomization (MR) (Katan, 1986;
Smith and Ebrahim, 2003). However, the current sample size
of phenotype, SNP, and gene expression data cannot meet the

1https://www.ebi.ac.uk/gwas/
2http://commonfund.nih.gov/GTEx/

needs of MR analysis. For this, we use the SMR method which
can integrate summary-level data from independent GWAS with
data from eQTL studies to identify genes whose expression levels
are associated with a disease phenotype because of pleiotropy
(Zhu et al., 2016).

Herein, we let Y be a disease phenotype (outcome), X be
gene expression level (exposure), and Z be a genetic variant
(instrumental variable). Then, the effect of gene expression on
disease phenotype bXY is bXY = bZY /bZX , where bZY is the effect of

TABLE 2 | Information table of SNP-Gene pairs selected by different tissue.

Index SNP GENE P-value TISSUE

1 rs1847936 MYT1L 2.29E-06 Artery

2 rs46086588 FYCO1 2.83E-07 Artery

3 rs99117452 ADH6 2.74E-09 Artery

4 rs72121193 FAM86C1 2.50E-14 Artery

5 rs72121193 ALG1L9P 2.33E-06 Artery

6 rs46086588 FYCO1 2.37E-07 Skin

7 rs26844004 RP11-293A21.1 5.45E-07 Skin

8 rs72121193 FAM86C1 2.73E-16 Skin

9 rs72121193 ALG1L9P 2.04E-10 Skin

10 rs72121193 ZNF705E 1.15E-09 Skin

11 rs73832766 MRPL48 2.48E-06 Skin

12 rs46086588 FYCO1 7.30E-08 Neuro

13 rs99117452 ADH5 1.64E-06 Neuro

14 rs72121193 FAM86C1 9.32E-07 Neuro

15 rs72121193 ALG1L9P 1.76E-07 Neuro

16 rs46086588 FYCO1 3.90E-07 Fibroblast

17 rs46330302 CCR1 1.17E-10 Fibroblast

18 rs26844004 RP11-293A21.1 2.29E-06 Fibroblast

19 rs99117452 ADH4 2.07E-07 Fibroblast

20 rs46032426 CITF22-92A6.2 6.02E-07 Fibroblast

21 rs26844004 RP11-293A21.1 2.15E-06 Blood

22 rs99117452 ADH5 2.59E-12 Blood

23 rs72121193 FAM86C1 4.22E-15 Blood

24 rs72121193 NUMA1 4.20E-08 Blood

25 rs47385713 RP11-493L12.6 3.03E-06 Blood

26 rs31232570 EVI2A 5.98E-08 Blood
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the SNP effect on disease phenotype, bZX is the effect of the SNP
effect on gene expression. The workflow is shown in Figure 1.

RESULTS

To fully elucidate the gene abnormality across the tissues of
patients with gingivitis, we downloaded 5 eQTL data from five
different organizations (artery, blood, fibroblast, nerve, and skin)
and 1 GWAS data (Table 1). The SMR method was used to

integrate these data sets to obtain 5 experimental results. For
these 5 experiments, we identified a total of 26 SNP-Gene pairs
that are significantly associated with gingivitis (Table 2). In the
eQTL data, multiple probes can label one SNP, which leads to
one SNP that can be repeatedly selected to be associated with
gingivitis in 5 experiments. Therefore, we counted the number
of times a significant SNP was screened. Looking at Figure 2, in 5
experiments, most SNPs were selected more than four times and
only two SNPs were selected once. This result indicates that SNP
can be accurately selected in our method.

FIGURE 2 | The number of repetitions of SNP-Gene pairs.

FIGURE 3 | A bar graph of GO function enrichment for gingivitis-related genes.
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Functional Analysis of
Gingivitis-Related Genes
For the gingivitis-related genes identified by the SMR method,
the GO database was used for functional annotation. As shown in
Figure 3, these genes are significantly annotated into 12 biological
processes and 8 molecular functions.

The top two biological functions are all related to
formaldehyde metabolism. A considerable amount of literature
has been published on formaldehyde may be a causative
factor of gingivitis. The study by Wantke et al. (2000) found
that exposure to formaldehyde can induce the production of
specific IgE and the research subjects have symptoms such
as gingival bleeding, oral or pharyngeal itch. Tokar et al.
(2020) test on the oral condition of woodworkers who have
long-term contact with formaldehyde showed that exposure
to formaldehyde has significant side effects on periodontal
diseases such as gingivitis. In addition, there are six biological
processes related to the metabolism of ethanol and aldehyde.
Several lines of evidence suggest that ethanol and aldehyde
both ethanol and aldehyde can damage the oral cavity
and induce gingivitis and periodontal disease (Barczynski
et al., 1987; Dong et al., 1996; Wyganowska-Świątkowska
et al., 2018) and in severe cases, ethanol can even cause
oral cancer (Calderón-Montaño et al., 2018). Both alcohols
and aldehydes belong to the oxygen-containing derivatives
of terpenoids. In our results, the two biological processes
related to the terpenoids are also abnormal. Therefore, we
infer that the metabolic disorders of alcohol and aldehydes in
patients with gingivitis may be related to the occurrence and
severity of gingivitis.

The remaining two biological processes are fatty acid omega-
oxidation and retinoid metabolic process. Abnormal function
of fatty acid omega-oxidation will hinder the metabolism and

absorption of fatty acids. However, studies have found that some
fatty acids have anti-inflammatory and antimicrobial effects to
treat gingivitis (Peedikayil et al., 2015; Woelber et al., 2019).
Vitamin A and its analogs have many physiological functions
such as promoting growth and reproduction, maintaining
bones, epithelial tissue, vision, and normal secretion of the
mucosal epithelium (Chapman, 2012). When vitamin A is
deficient, the mucosal barriers caused by infection cannot
be repaired and the innate immunity is destroyed. At the
same time, vitamin A deficiency can also reduce the adaptive
immune response mediated by Th2 cells (Stephensen, 2001).
Studies have found that the damage to mucosal epithelial
regeneration and changes in immune function caused by vitamin
A deficiency is important to the occurrence and recovery of
periodontal diseases (Cutress et al., 1976; Dommisch et al., 2018).
Currently, retinoid medication has been used for the treatment
of gingivitis and periodontal disease (Lundgren et al., 1996;
Epstein and Gorsky, 1999).

Similar to the enrichment results of biological processes,
KEGG pathway enrichment results also indicate that
gingivitis-related genes are mainly involved in tyrosine
metabolism, fatty acid degradation, retinol metabolism and
Glycolysis/Gluconeogenesis, etc. (Figure 4). The molecular
functions of gingivitis-related genes are mainly related to the
activity of S-(hydroxymethyl)glutathione dehydrogenase, alcohol
dehydrogenase, retinol dehydrogenase, and oxidoreductase
(Figure 3). This indicates that these biological enzymes
play an important role in gingivitis and may be potential
therapeutic targets.

Tissue Related Genes in Gingivitis
As shown in Figure 5A, only two genes FAM86C1 and
FYCO1 occur simultaneously in 4 tissues. They are related to

FIGURE 4 | Bubble chart of KEGG pathway enrichment for gingivitis-related genes.
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FIGURE 5 | (A) The number of duplicate genes in five tissues; (B) Venn diagram of gene distribution in tissues.

FIGURE 6 | Functional annotation heat map of gingivitis related genes. Red means corresponding gene-term association positively reported and blue means
corresponding gene-term association not reported yet.
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protein methylation, metabolism of proteins and inflammation,
the microtubule transport of autophagosomes, respectively
(Cloutier et al., 2013; Cheng et al., 2016). The Venn diagram
of the distribution of gingivitis-related genes in five tissues
shows that the expression of gingivitis-related genes has
obvious tissue specificity (Figure 5B). The genes MYT1L
and ADH6 are related to arterial tissue; The genes ZNF705E
and MRPL48 are related to skin tissues; The genes CCR1,
ADH4, and CITF22-92A6.2 are related to fibroblast; The
genes NUMA1, RP11-493L12.6, and EVI2A are related to
blood. The ADH4 as a member of the alcohol dehydrogenase
family metabolizes a wide variety of substrates, including
ethanol, retinol, other aliphatic alcohols, hydroxysteroids,
and lipid peroxidation products (Tokar et al., 2020). It
is worth noting that studies have found that alcohol
has an irreversible effect on human gingival fibroblasts
(Wyganowska-Świątkowska et al., 2018). In addition, some
studies have found that the expression level of CCR1 tends
to change in the gingival fibroblast (Candotto et al., 2019;
Lauritano et al., 2019).

We use the Database for Annotation, Visualization and
Integrated Discovery (DAVID) v6.8 tool3 to enrich gingivitis-
related genes into the functional set. As shown in Figure 6,
apart from the alcohol dehydrogenase family (ADH4, ADH5, and
ADH6), other genes have smaller functional overlaps.

Genes Associated With Gingivitis and
Other Diseases
Gingivitis is common chronic inflammation and recent research
has suggested it play an important role in the occurrence and
development of some systemic diseases (Humphrey et al., 2008;
Shah et al., 2010; Hou et al., 2019; Lombardi et al., 2019; Goodson,
2020). We found that some gingivitis-related genes can mediate
multiple diseases at the same time.

MYT1L (myelin transcription factor 1 like) encodes a member
of the zinc finger superfamily of transcription factors. MYT1L
mutation can lead to intellectual disability and obesity (Blanchet
et al., 2017; Loid et al., 2018). Research finds gingivitis and obesity
exhibit disease reciprocity and gingivitis is more prevalent in
obesity (Dursun et al., 2016; Goodson, 2020). CCR1 can regulate
the transduction of immune signals and affect the recruitment of
effector immune cells to the site of inflammation (Foroughi et al.,
2016). CCR1 has an important role in the occurrence of chronic
inflammation of gingivitis (Silva et al., 2005). At the same time,
it is a target for multiple myeloma and kidney diseases (Ninichuk
and Anders, 2005; Vallet and Anderson, 2011). In addition, early
diagnosis and treatment of gingivitis can effectively improve the
survival expectations of primary liver cancer (Hou et al., 2019).
And among genes related to gingivitis, ADH4 and FAM86C1 may
be potential prognostic and diagnostic markers of liver cancer
(Wei et al., 2012; Wang X. et al., 2019).

These abnormal genes in multiple diseases indicate the
connection between gingivitis and other systemic diseases, but
also predict the mechanism of gingivitis inducing other diseases.

3https://david.ncifcrf.gov/home.jsp

CONCLUSION

Gingivitis is a common periodontal disease and inflammation.
Gingivitis is mainly caused by a substance produced by microbial
plaque, systemic disorders, and genetic abnormalities in the
host. Bacteria that infect the human oral can easily get into
the bloodstream and cause damage to organs and may lead to
systemic disorders and an increased risk of stroke, heart attack,
heart disease, dementia, rheumatoid arthritis, and lung disease.
Discovering abnormal genes related to gingivitis is important
for understanding the disease mechanism, early diagnosis, and
treatment of the disease.

Herein, we used the SMR method to integrates summary-
level data from independent GWAS with data from eQTL studies
to identify gingivitis-related genes. One GWAS dataset and 5
different eQTL datasets from organizations are combined into 5
experiments. In total, we identified 26 SNP-Gene pairs that are
related to gingivitis in different tissues. Through GO function
enrichment analysis, gingivitis-related genes were enriched into
12 biological processes and 8 molecular functions. A number
of studies have confirmed that the functions and genes we
discovered are indeed related to the occurrence, development,
and treatment of gingivitis and periodontal diseases. These prove
the reliability of our results and the accuracy of the method.
Besides, we also present gingivitis-related biological enzymes that
can be used as potential therapeutic targets and tissue-specific
gingivitis-related genes which guide further research on gingivitis
on systemic disorders. Machine learning (Zou et al., 2018; Qu
et al., 2019; Zou, 2019; Dao et al., 2020; Zhang Z.M. et al., 2020;
Zhao et al., 2020) and big data mining will also help in-depth
mining biological knowledge.
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