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ABSTRACT
Background. Efficient identification of microbe-drug associations is critical for drug
development and solving problem of antimicrobial resistance. Traditional wet-lab
method requires a lot of money and labor in identifying potential microbe-drug
associations. With development of machine learning and publication of large amounts
of biological data, computational methods become feasible.
Methods. In this article, we proposed a computational model of neighborhood-based
inference (NI) and restricted Boltzmannmachine (RBM) to predict potential microbe-
drug association (NIRBMMDA) by using integratedmicrobe similarity, integrated drug
similarity and known microbe-drug associations. First, NI was used to obtain a score
matrix of potential microbe-drug associations by using different thresholds to find
similar neighbors for drug or microbe. Second, RBM was employed to obtain another
score matrix of potential microbe-drug associations based on contrastive divergence
algorithm and sigmoid function. Because generalization ability of individual method
is poor, we used an ensemble learning to integrate two score matrices for predicting
potential microbe-drug associations more accurately. In particular, NI can fully utilize
similar (neighbor) information of drug or microbe and RBM can learn potential
probability distribution hid in known microbe-drug associations. Moreover, ensemble
learning was used to integrate individual predictor for obtaining a stronger predictor.
Results. In global leave-one-out cross validation (LOOCV), NIRBMMDA gained
the area under the receiver operating characteristics curve (AUC) of 0.8666, 0.9413
and 0.9557 for datasets of DrugVirus, MDAD and aBiofilm, respectively. In local
LOOCV, AUCs of 0.8512, 0.9204 and 0.9414 were obtained for NIRBMMDA based
on datasets of DrugVirus, MDAD and aBiofilm, respectively. For five-fold cross
validation, NIRBMMDA acquired AUC and standard deviation of 0.8569 ± −0.0027,
0.9248±−0.0014 and 0.9369±−0.0020 on the basis of datasets of DrugVirus, MDAD
and aBiofilm, respectively. Moreover, case study for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) showed that 13 out of the top 20 predicted drugs were
verified by searching literature. The other two case studies indicated that 17 and 17 out
of the top 20 predicted microbes for the drug of ciprofloxacin and minocycline were
confirmed by identifying published literature, respectively.
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INTRODUCTION
Studies revealed that microbe communities, primarily include bacteria, viruses, fungi,
archea and protozoa, which are closely related to host in human body (Sommer &
Bäckhed, 2013). Microbe communities inhabit human body organs such asmouth, skin and
gastrointestinal tract (Ventura et al., 2009). Usually,microbes are considered as a ‘‘forgotten
organ’’ for human due to microbes can produce important vitamins, prevent pathogenic
invasion, promote metabolic capability and improve immunity (Gill et al., 2006; Kau et al.,
2011; O’Hara & Shanahan, 2006; Smith, McCoy & Macpherson, 2007). Recently, a growing
number of biological and clinical studies have indicated that the imbalance of microbe
communities can cause diverse noninfectious diseases (Bao, Jiang & Huang, 2017; Khan et
al., 2016). For example, imbalance of gut microbiota can cause colorectal cancer (Gagnière
et al., 2016). Decrease of microbe Bacteroidetes and increase of microbe Firmicutes can lead
to obesity (Ley et al., 2005). Therefore, it is no surprise that maintaining the balance of
microbial communities is essential for human health (ElRakaiby et al., 2014).

Moreover, increasing evidence demonstrates that microbes are emerging as novel
potential biomarkers or diagnostic/therapeutic tools for disease, laying groundwork for
antiviral drug development (Brown & Hazen, 2017; Cummings & Relman, 2000; Fazius,
Zaehle & Brock, 2013). In nowadays, drug development faces three main challenges. First,
the development cycle of newdrugs is long. Usually, a newdrug needs an time of 10–15 years
from the start to derive marketing approval (Berdigaliyev & Aljofan, 2020). Second, the
pharmaceutical industry faces multiple problems including high costs of research and
development, high failure rates and low productivity (Khanna, 2012). Third, a burgeoning
number of cases demonstrated that antimicrobial drug resistance has emerged posing
significant trouble for drug development and treatment of disease (Ramirez et al., 2016).
For example, from 1980–2000, the prevalence of drug-resistant Streptococcus pneumoniae
increased 60-fold with 51% of them resistant to penicillin and 8% of them resistant to
third-generation cephalosporin (Bain & Wittbrodt, 2001). Thus, it was difficult to treat
pneumococcal pneumonia with penicillin and third-generation cephalosporin (Ament,
Jamshed & Horne, 2002). In Europe, 6% of K. pneumoniae were resistant to carbapenems
in bloodstream infections which has a high mortality rate of 40–70% (Ben-David et al.,
2012; Schwartz & Morris, 2018). The emergence of antimicrobial drug resistance causes a
great threat to humans. Around the world, antimicrobial resistance already caused 700,000
deaths per year and antimicrobial resistance will lead to 10 million deaths per year after
2050 according to the study (Tagliabue & Rappuoli, 2018). To solve these problems, drug
combination therapies have been employed for fighting antimicrobial drug resistance
(Fischbach, 2011). Besides, drug repositioning is also an effective method for fighting
antimicrobial drug resistance, which can use existing drugs to treat new diseases (Jarada,
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Rokne & Alhajj, 2020; Xue et al., 2018). It is worth mentioning that the known microbe-
drug association information is crucial for implementation of drug combination and drug
repositioning. Therefore, it is an urgent need to develop effective methods to identify
potential microbe-drug associations.

Based on the development of sequencing technologies and data acquisition tools, a large
number of biological databases have been established over the past few decades, such as
GenBank, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the DNA Data
Bank of Japan (DDBJ) (Chen et al., 2020; Kumar & Shanker, 2018; Mahmud et al., 2021).
Meanwhile, machine learning has become one of the most rapidly growing technical fields
and can be used for a large number of data processing tasks with low-cost computing (Carleo
et al., 2019; Jordan & Mitchell, 2015). Therefore, with the explosion of biological data and
low-cost computing driven by machine learning, computational approaches have been
widely applied in the diagnosis and treatment of diseases such as horrible cancer (Cheng et
al., 2019). For example, Stark et al. (2019) developed six different machine learning-based
models to implement five-year breast cancer risk prediction based on highly accessible
personal health data. Those models include logistic regression, Gaussian naive Bayes,
decision tree, linear discriminant analysis, support vector machine and feed-forward
artificial neural network. Auffenberg et al. (2019) developed a random forest machine
learning model to provide a prediction of prostate cancer treatment decisions for new
patients by using clinical registry data. In particular, the predictive models mentioned
above can be integrated into web-based platforms, which brings great convenience to
researchers and reduces the cost of medical tests (Sumathy et al., 2010).

Because traditional wet-lab method is time-consuming and costly in identifying new
microbe-drug associations. Some computational models based on deep learning have
been constructed for identifying potential microbe-drug associations. For example, Long
et al. (2020a) presented a computational model of Graph Convolutional Network (GCN)
to predict potential Microbe-Drug Associations (GCNMDA). First, they constructed a
heterogeneous network by integrating drug similarity network, microbe similarity network
and microbe-drug association network. Then, the random walk with restart was used for
microbe similarity network and drug similarity network to obtain a new feature matrix.
Subsequently, they used GCN to learn embeddings of nodes based on heterogeneous
network and feature matrix. Moreover, they employed conditional random field (CRF)
in the hidden layer of GCN for enhancing the node representation learning. They also
added attention mechanism into the CRF to accurately aggregate representations of
neighborhoods. Long et al. (2020b) also developed model of Ensemble framework of graph
attention networks (GAT) for microbe-drug association prediction (EGATMDA). First,
they constructed three microbe-drug networks (graphs) including microbe-drug bipartite
network, microbe-drug heterogeneous network and microbe-disease-drug heterogeneous
network based on multiple biological data including drug-drug associations, microbe-
microbe associations, known microbe-drug associations, drug-disease associations,
microbe-disease associations and disease-disease associations. Second, they constructed a
feature matrix by using microbe sequence similarity and drug Gaussian kernel similarity
and drug structure similarity. Third, by using graph convolutional network (GCN) and
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GAT, nodes embedding representations were learned from feature matrix and each
input microbe-drug network. Finally, they removed irrelevant noise via using graph-level
attention and aggregated the learned node embedding representations to reconstructed
a microbe-drug matrix for predicting potential microbe-drug associations. Moreover,
Deng et al. (2021) proposed a computational model of variational graph autoencoder
(VGAE) and deep neural network (DNN) to predict potential Microbe-Drug Association
(Graph2MDA). First, they build multi-modal attributed graphs based on drug structure
similarity, drug Gaussian kernel similarity, microbe functional similarity, microbe sequence
attribute (similarity). Then, they took multi-modal attribute graphs as input and employed
VGAE to learn the latent representations of nodes. Finally, they used deep neural network
classifier to predict potential microbe-drug associations based on learned embedding
obtained by VAGE.

In addition, several computational models based on machine learning were developed
to predict potential drugs for SARS-CoV-2 through virus-drug association prediction.
For example, Wang et al. (2021) developed a model of Gaussian kernel similarity and
bounded nuclear norm regularization (BNNR) to predict potential virus-drug association
(VDA-GBNNR). First, they build a heterogeneous network based on virus similarity
network, drug similarity network and known virus-drug association network. Second,
they defined an adjacency matrix to represent constructed heterogeneous network.
Then, BNNR, a matrix completion method, was employed to identify new microbe-
drug associations by minimizing nuclear norm of adjacency matrix. Recently, Meng et
al. (2021) proposed a model of similarity constrained probabilistic matrix factorization
(called SCPMF) to identify potential virus-drug associations. First, they projected known
virus-drug associations matrix into virus feature matrix and drug feature matrix. Second,
they introduced drug similarity and virus similarity as constraints for drug feature matrix
and virus feature matrix, respectively. Third, gradient descent algorithm was used to obtain
final drug feature matrix and virus feature matrix through an iterative process. Finally, the
potential virus-drug association matrix was obtained by multiplying transposition of drug
feature matrix and virus feature matrix.

Moreover, some network-based computational models were constructed for predicting
potential microbe-drug associations. For example, Peng et al. (2021) developed a model
of Random Walk with Restart (RWR) to predict new virus-drug association (VDARWR).
First, they constructed a heterogeneous network by employing virus similarity network,
drug similarity network and known virus-drug association. Subsequently, based on
heterogeneous network, RWR was used to compute the potential association probabilities
between viruses and drugs by using restart probability and computed transition probability
of random walk. Zhou et al. (2020) developed a model of Virus-Drug Associations by
using KATZ to predict drugs against SARS-CoV-2 (VDAKATZ). They first constructed
virus-drug heterogeneous networks based on virus similarity, drug similarity and known
virus-drug associations. Then, based on the constructed network, a length-based algorithm
of KATZwas used to predict potential virus-drug associations by the integration of all walks
of different lengths between virus and drugs. Finally, remdesivir, oseltamivir and zanamivir
were predicted as the top three potential drugs for SARS-Cov-2 through implementing

Cheng et al. (2022), PeerJ, DOI 10.7717/peerj.13848 4/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.13848


VDAKATZ. Long & Luo (2021) developed a model of heterogeneous network embedding
representation framework for microbe-drug association prediction (HNERMDA). In
the model, they constructed a heterogeneous network based on many biological data
including microbe-microbe associations, drug-drug associations and known microbe-
drug associations. Based on the heterogeneous network, they employed metapath2vec
to learn embedding representations for microbes and drugs to more efficiently save
microbe-drug association information. In particular, they added a bias network projection
recommendation algorithm to identifying new microbe-drug associations more accurately
through distributing different bias weights between microbes and drugs.

In this article, we developed a new computational model of neighborhood-based
inference (NI) and restricted Boltzmannmachine (RBM) for predicting potential microbe-
drug association (NIRBMMDA) based on known microbe-drug associations, integrated
drug similarity and integrated microbe similarity. First, NI was used to obtain two potential
microbe-drug associations matrices by computing associations of similar drugs of drugs
with microbes and associations of similar microbes of microbes with drugs, respectively.
Then, newmicrobe-drug associations were predicted by integrating two potential microbe-
drug associations matrices. Second, RBM was used to predict potential microbe-drug
associations via efficiently extracting hidden information from known microbe-drug
associations. To improve generalization ability of model, ensemble learning was employed
to integrate NI and RBM for predict final potential microbe-drug associations. Moreover,
we implemented global leave-one-out cross validation (LOOCV), local LOOCV and
five-fold cross validation to evaluate the ability of NIRBMMDA based on the three datasets
including DrugVirus, MDAD and aBiofilm, respectively. As a result, the area under the
receiver operating characteristics curves (AUCs) of global LOOCV are 0.8666, 0.9413 and
0.9557 for three datasets, respectively. The AUCs of local LOOCV are 0.8512, 0.9204, and
0.9414 for three datasets, respectively. For five-fold cross validation, the average AUCs
and the standard deviations are 0.8569 ±0.0027, 0.9248 ±0.0014 and 0.9369 ±0.0020 for
three datasets, respectively. Furthermore, three case studies were performed to evaluate the
performance of NIRBMMDA. The result showed that 13 out of the top 20 predicted drugs
for SARS-CoV-2 were confirmed by searching literature. The other two case studies showed
that 17 and 17 out of the top 20 predicted microbes for ciprofloxacin and minocycline were
verified by finding published literature, respectively.

MATERIALS & METHODS
Microbe-drug association
In this article, three different datasets of MDAD (Sun et al., 2018), aBiofilm (Rajput et
al., 2018) and DrugVirus (Andersen et al., 2020) were used to test predictive ability of
NIRBMMDA. The MDAD dataset presented in the model contains 2,470 associations
between 1,373 drugs and 173 microbes that was collected from MDAD database (Sun et
al., 2018). Furthermore, the aBiofilm dataset used in the model includes 2,884 associations
between 1,720 drugs and 140 microbes collected from aBiofilm database (Rajput et al.,
2018). Also, Andersen et al. (2020) built the DrugVirus database for exploration and
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Table 1 The statistics of three microbe-drug associations datasets.

Datasets Microbes Drugs Associations

MDAD 173 1373 2470
aBiofilm 140 1720 2884
DrugVirus 95 175 933

analysis of broad-spectrum antiviral drugs, in which summarized experimentally verified
virus-drug associations. Therefore, the dataset of DrugVirus built here includes 933
associations between 175 drugs and 95 viruses. The statistics of three datasets above are
shown in Table 1. Here, we built an adjacency matrix A∈Rnd×nm to preserve microbe-drug
association information, where nd represents the number of drugs and nm denotes the
number of microbes. If drug di associated with microbe mj , the value of entity Aij is 1.
Otherwise, the value is 0.

Aij =

{
1, if durg di associated with microbe mj

0, otherwise
. (1)

Drug structural similarity
In this article, SIMCOMP2 search was employed to compute the drug structural similarity
(Hattori et al., 2010). SIMCOMP2 search (https://www.genome.jp/tools/simcomp2/), a
chemical structure search server, can provide links to the KEGG PATHWAY database that
contains manually drawn pathway maps with information about molecular interaction,
reaction and relation (Wrzodek, Dräger & Zell, 2011). In SIMCOMP2 search, by mapping
drugs of datasets to those in KEGG, we can obtain drug structural similarity with 0.01
of cut off score that filtrate drug structural similarity score of 0.01 or higher (Long et al.,
2020a). Then, we defined a matrix DS1 to save drug structural similarity where element
DS1

(
i,j
)
denotes the similarity value between drug di and drug dj .

Drug side effect similarity
The drug-side effect association dataset used in this article were downloaded from SIDER
(Kuhn et al., 2016). SIDER (http://sideeffects.embl.de/), a side effect resource database,
collects information on marketed drugs and their recorded adverse drug reactions. In the
dataset, we used N (i) to represent the side effect set associated with drug di and employed
N (j) to indicate the side effect set of drug dj . Based on the assumption that the more side
effect two drugs share, the more similar between the two drugs. If two drugs do not have
the same side effects, the score of side effect similarity between the two drugs is equal to 0.
We applied Jaccard score to compute drug side effect similarity, which described as Eq. (2)
(Gottlieb et al., 2011). After that, the matrix DS2 was defined to save the drugs side effect
similarity and the entity DS2(i,j) denotes the side effect similarity between drug di and
drug dj .

DS2= Jaccard score=
∣∣∣∣Ni∩Nj

Ni∪Nj

∣∣∣∣. (2)
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Microbe sequence similarity
In the model, three different datasets for known microbe-drug associations were used. For
95 viruses in the DrugVirus dataset, we downloaded their complete genome sequences from
the National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/)
based on FASTA format. Then, we employed MAFFT, a multiple sequence alignment
program, to align the genome sequence of viruses (Katoh et al., 2002). Since the MAFFT
introduces the approximate distance calculation algorithm and the fast Fourier alignment
algorithm, its performs well in accuracy of alignments compared with other multiple
sequence alignment software including TCoffee version 2 and CLUSTAL W (Katoh et al.,
2005). Based on aligned genome sequence of virus, we further used BioEdit to derive the
virus sequence similarity matrix. BioEdit, a gratis sequence analysis tool, can compute
sequence similarity matrix by using the function of sequence identify matrix (Tippmann,
2004). Specially, for microbes in MDAD dataset or aBiofilm dataset, because of the lack
of complete genome sequences in NCBI for nearly all microbes, we downloaded another
FASTA format of whole genome shotgun sequence of microbe in NCBI. Then, microbe
sequence similarity can further be calculated based on MAFFT and BioEdit. According
to the idea that more common sequence two microbes share, the more similar between
the two microbes. Therefore, the value of microbe sequence similarity score is equal to 0
when the two microbes have no common sequence. Here, the matrix MS was defined as
microbe sequence similarity matrix and MS(mi,mj) represented the sequence similarity
value between microbe mi and microbe mj .

Gaussian interaction profile kernel similarity for drugs and microbes
According the former study (Van Laarhoven, Nabuurs & Marchiori, 2011), we computed
Gaussian interaction profile kernel similarity for drugs and microbes based on the known
microbe-drug association matrix A. First, we used IV (di) to denotes the i− th row vector
of matrix A and IV (mj) to represent the j− th column vector of matrix A. Then, Gaussian
interaction profile kernel similarity for drugs and microbes can be computed by using
Eqs. (3) and (4), respectively. Here,

∥∥IV (di)− IV (dj)∥∥ can be considered as the Euclidean
distance for IV (di) and IV

(
dj
)
. Similarly,

∥∥IV (mi)− IV
(
mj
)∥∥ can represent Euclidean

distance for IV (mi) and IV
(
mj
)
.

GD
(
di,dj

)
= exp

(
−βd

∥∥IV (di)− IV (dj)∥∥2) (3)

GM
(
mi,mj

)
= exp

(
−βm

∥∥IV (mi)− IV
(
mj
)∥∥2) (4)

where ‖·‖2 is 2-norm, the βd and βm are normalized kernel bandwidth and are defined as
follows:

βd =β
′

d/

(
1
nd

nd∑
i=1

‖IV (di)‖2
)

(5)

βm=β
′

m/

(
1
nm

nm∑
i=1

‖IV (mi)‖
2

)
(6)
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where ‖·‖2 is 2-norm, β ′d and β
′
m are the original bandwidths, them are set as 1.

Integrated similarity for drugs and microbes
To derive the integrated drug similarity, we combined the drug side effect similarity, drug
structural similarity and Gaussian interaction profile kernel similarity of drug. If drug di
and drug dj have drug structural similarity or drug side effect similarity, the integrated
drug similarity is equals to the average of drug structural similarity and drug side effect
similarity. Otherwise, the integrated drug similarity is Gaussian interaction profile kernel
similarity of drug. Here, we created matrix SD to save integrated drug similarity. The
equation of integrated drug similarity is as follows:

SD(di,dj)=
{DS1(di,dj)+DS2(di,dj)

2
diand dj have structural similarity or side effect similarity

GD(di,dj) otherwise
. (7)

For integrated microbe similarity, we could obtain the integrated microbe similarity
by integrating the microbe sequence similarity and Gaussian interaction profile kernel
similarity of microbe. The integrated formula is as follows:

SM (mi,mj)=

{
MS(mi,mj) miandmjhave sequence similarity
GM (mi,mj) otherwise

. (8)

NIRBMMDA
In this article, we proposed a computational model of NIRBMMDA by employing multiple
biological data including drug similarity, microbe similarity and known microbe-drug
associations. In the model, we carried out NI and RBM to identify potential microbe-drug
associations, respectively. Then, an ensemble learning was implemented to integrate the
two models for gaining final score of potential microbe-drug associations. The whole
flowchart of the NIRBMMDA is shown as Fig. 1. The details of the NIRBMMDA are shown
as follows.

Neighborhood-based inference
The neighborhood-basedmethod is a collaborative filtering algorithm and can recommend
potential preference for a user based on preference of similar users (Su & Khoshgoftaar,
2009). In this article, we presented a based model of NI for predicting new microbe-drug
associations. First, we constructed NI model based on integrated drug similarity. For a drug
di,i=1,2...,nd , its neighbors can be obtained by filtering similarity scores based on threshold
σ . The set of neighbors for drug di can be defined as {di|IDSu,i>σ,u 6= i}. Based on the
set above, the potential association score score1i,j between drug di and microbe mj can be
obtained by computing the sum associations between the microbe mj and neighbors of
drug di, which can be described as Eq. (9).

score1i,j =

∑nd
i=1
∑nm

j=1,u6=i,IDSu,i≥σ Au,j× IDSu,i∑nd
i=1
∑nm

j=1,u6=i,IDSu,i≥σ IDSu,i
(9)

where nd represents the number of drug, nm represents the number of microbe, Au,j

denotes the element of the u− th row and j− th column in A, and AT represents the
transpose of A. The IDSu,j denotes integrated drug similarity between drug du and drug dj .
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Figure 1 Flowchart of the computational model of NIRBMMDA.
Full-size DOI: 10.7717/peerj.13848/fig-1

Since a model of neighborhood-based inference was build based on threshold σ , we
generate multiple thresholds {σ1,σ2,...,σns} to build multiple basic models for reducing
the bias of neighbor selection. The value of thresholds σi(i =1 ,2,. . . ,ns) is between 0 and
0.5 with step size 0.05. After that, an upper bound parameter σupper is used for determining
the multiple thresholds that are defined as σthreshold = {σi|σi ≤ σupper ,i= 1,2,...,n}(ns=
|σthreshold |). In this way, ns thresholds {σ1,σ2,...,σns} are used to build ns basic models.

Then, we integrated ns basic models to predict potential microbe-drug associations
score by using average strategy, which can be described as follows:

M_IDS=
∑ns

k=1 score1_k
ns

(10)

where ns denotes the number of basic models, score1_k represents predicted microbe-
drug associations score based on the k− th threshold, and M_IDS denotes potential
microbe-drug associations score based on drug similarity.

Moreover, we constructed a NI model based on integrated microbe similarity. The
process of building NI model based on integrated microbe similarity is similar to the
process of NI model based on integrated drug similarity. For microbe mj , its neighbors
can be filtrated through using integrated microbe similarity with threshold σ . The set of
neighbors for microbe mj is defined as {mj |IMSt ,j > σ,t 6= j}. Based on the set above,
the potential association score score2i,j between drug di and microbe mj was obtained by
calculating the sum of associations between the drug di and neighbors of microbe mj as
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follows:

score2i,j =

∑nd
i=1
∑nm

j=1,t 6=j,IMSt ,j≥σ Ai,t × IMSt ,j∑nd
i=1
∑nm

j=1,t 6=j,IMSt ,j≥σ IMSt ,j
(11)

where nm represents number of microbe, nd represents number of drug and Ai,t denotes
the element of the i−th row and t−th column of A. The IMSt ,j denotes integrated microbe
similarity between microbe mt and microbe mj .

We used multiple thresholds to build multiple basic models for reducing the bias caused
by neighbor selection. Then, we integrated multiple basic models to predict potential
microbe-drug associations score by using average strategy, which can be described as
follows:

M_IMS=
∑ns

k=1 score2_k
ns

(12)

where ns denotes number of basic models and score2_k represents predicted microbe-drug
associations score based on the k−th threshold andM_IMSdenotes potentialmicrobe-drug
associations score based on microbe similarity.

At last, we obtained final prediction score S1 based on integrated drug similarity and
integrated microbe similarity, which can be described as follows:

S1=
M_IDS+M_IMS

2
. (13)

Restricted Boltzmann machine model
Restricted Boltzmann Machine (RBM), a stochastic neural network, can be used to
learn potential probability distribution (Smolensky, 1986). Recently, RBM have been
used in numerous fields including movie recommendation, image identification, speech
recognition and association prediction in bioinformatics (Hinton, 2012; Wang & Zeng,
2013). In this article, we employed RBM to build a based model for predicting potential
microbe-drug associations. As depicted in Fig. 2, RBM is a two-layer network including
visible layer and hidden layer, where each layer includesmany units. For a RBM, assume that
there is a total of nm visible layer units and s hidden layer units. We used v= (vi,v2,...,vnm)
to denote set of visible layer units and employed h= (h1,h2,...,hs) to denote set of hidden
layer units. Because there is no intra-layer connection for visible layer units or hidden layer
units of the RBM, the energy function between v and h can be defined as follows.

E(v,h)=−
∑nm

i=1
bivi−

∑s

j=1
cjhj−

∑i=nm

i=1

∑s

j=1
wijvihj (14)

where nm denotes number of visible layer units, s represents number of visible layer units,
bi is bias of i−th visible layer unit vi, cj is bias of j−th hidden layer unit hj andwij represents
weight between vi and hj .

Based on Eq. (14), we obtainedmarginal distribution over visible layer units by following
equation.

P(v)=
∑
h

P(v,h)=
1
Z

∑
h

e−E(v,h) (15)
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Figure 2 Structure diagram of a restricted Boltzmannmachine.
Full-size DOI: 10.7717/peerj.13848/fig-2

where Z is called the partition function as follows.

Z =
∑nm

i=1

∑s

j=1
e−E(vi,hj ). (16)

Because distributions of units in each layer of RBM are independent, the conditional
probabilities of visible layer units and hidden layer units can be defined respectively as
follows.

P(vi= 1|h)= σ (
∑s

j=1
wijhj+bi) (17)

P(hj = 1|v)= σ (
∑nm

i=1
wijvi+ cj) (18)

where σ (x)= 1/(1+e−x) is sigmoid function.
Given a dataset with nm microbes, nd drugs and known microbe-drug associations,

a RBM with nm visible layer units and s hidden layer units is built to predict potential
microbe-drug associations. For each drug, the observation dk = {ek,1,ek,2,...,ek,nm} with
binary value denotes whether drug dk is associated with nmmicrobes. For example, value of
ek,1 is 1 when drug dk is associated withmicrobem1. Finally, nd drugs have nd observations.
When predicting potential associated microbes for a drug, its observation is employed as
input of RBM. After that, the prediction is conducted by following two equations.

Pj = P(hj = 1|ek,1,ek,2,...,ek,nm)= σ (
nm∑
i=1

wijek,i+ cj),j = 1,2,...,s (19)

e
′

k,i= P(vi|P1,P2,...,Ps)= σ (
s∑

j=1

wijPi+bi),i= 1,2,...,nm (20)

where σ (x) = 1/(1+ e−x) is sigmoid function. The output of RBM is defined as
scorek, k= 1 ,2,. . . ,nd = {ek,1′,ek,2′,...,ek,nm′} which denotes the predicted association score
between drug dk and nmmicrobes. Here, we defined S2 to save the predicted microbe-drug
associations score.
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Ensemble learning
Because generalization ability of individual predictor is poor, ensemble learning usually
is used to integrate the several wake predictors to obtain a more stronger predictor
(Zhou, 2009). Over the last decades, ensemble learning has been successfully employed to
solve many problems including feature selection, computer-aided medical diagnosis and
text categorization (Keyvanpour & Imani, 2013; Mohebian et al., 2017; Polikar, 2012). In
this article, we used ensemble learning to integrate NI and RBM for inferring potential
microbe-drug associations. To obtain common scale score ranged from 0 to 1, prediction
scores of NI and RBM are normalized by following two functions (Polikar, 2006).

SNI =
(tanh(0.1× ( S1−µ1

σ1
))+1)

2
(21)

SRBM =
(tanh(0.1× ( S2−µ2

σ2
))+1)

2
(22)

where µ1 and σ1 are mean and standard deviation of scores produced by the NI.
Similarly, µ2 and σ2 are mean and standard deviation of scores produced by the RBM.
Subsequently, the different weights were allocated for NI and RBM to derive better
prediction performance. Here, we created matrix S to save the potential microbe-drug
association score as follows.

S=w1SNI +w2SRBM (23)

where w1 is weight for NI and w2 is weight for RBM. The sum of w1 and w2 is 1.

RESULTS
Performance evaluation
We employed global LOOCV, local LOOCV and five-fold cross validation to evaluate the
predicted performance of NIRBMMDA based on the three datasets of DrugVirus (Andersen
et al., 2020; Long et al., 2020a), MDAD (Sun et al., 2018) and aBiofilm (Rajput et al., 2018),
respectively. In LOOCV, each known microbe-drug association was selected in turn as test
sample and remaining known microbe-drug associations were used as training samples.
For global LOOCV, all unknown microbe-drug pairs were employed as candidate samples.
Then, we used training samples to train model and used the trained model to predict
score of test samples and candidate samples. We further ranked test sample with candidate
samples based on predicted scores in global LOOCV. At last, we obtained the ranking of
all test samples. In local LOOCV, score of test sample was ranked with scores of candidate
samples which included the investigated drug of the test samples. At last, we also obtained
the ranking of all test samples. In five-fold cross validation, the known microbe-drug
associations were randomly divided into five subsets where each subset was regarded as test
sample in turn and other four subsets were considered as training samples. All unknown
microbe-drug pairs would be treated as candidate samples. Subsequently, we ranked score
of each test sample with scores of candidate samples. Finally, we obtained the ranking of
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Table 2 AUC and standard deviation (SD) of ensemble learning (EL) in 11 groups of weights for NI
and RBM based on dataset of DrugVirus, MDAD and aBiofilm. Bolded values indicate the best result in
11 groups of results.

Datasets EL The 11 Groups Weights

groups 1 2 3 4 5 6 7 8 9 10 11
NI 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
RBM 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DrugVirus AUC 0.8282 0.8464 0.8540 0.8568 0.8569 0.8552 0.8521 0.8521 0.8478 0.8424 0.8261
SD 0.0040 0.0032 0.0029 0.0027 0.0027 0.0026 0.0027 0.0027 0.0027 0.0028 0.0035

MDAD AUC 0.9169 0.9246 0.9248 0.9239 0.9226 0.9209 0.9190 0.9167 0.9139 0.9099 0.9021
SD 0.0018 0.0015 0.0014 0.0014 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0012

aBiofilm AUC 0.9323 0.9364 0.9369 0.9363 0.9354 0.9343 0.9329 0.9313 0.9291 0.9259 0.9183
SD 0.0028 0.0024 0.0020 0.0018 0.0016 0.0015 0.0015 0.0015 0.0014 0.0014 0.0014

all test samples. Particularly, the five-fold cross validation was performed 100 times for
avoiding bias caused by random sample divisions. If the ranking of test sample exceeded
the given threshold, NIRBMMDA would be considered to achieve a correct prediction.
Further, receiver operating characteristics (ROC) curve was plotted through true positive
rate (TPR, sensitivity) against false positive rate (FPR, 1-specificity) at diverse thresholds.
Sensitivity is the proportion of the test samples which rank over the pre-set threshold,
while the specificity is the percentage of candidate samples whose ranking are lower than
the appointed threshold. AUC could be used to evaluate the predictive performance of
NIRBMMDA. The NIRBMMDA’s prediction is random when the value of AUC is 0.5. If
the AUC’s value is 1, the predictive result of NIRBMMDA is perfect.

Because NIRBMMDA integrated two based model of NI and RBM, weights of NI and
RBM would affect the performance of NIRBMMDA. We tested 11 group of wights of
NI and RBM with a range from 0 to 1 (step size 0.1) for three datasets of DrugVirus,
MDAD and aBiofilm respectively based on five-fold cross validation (see Table 2).
For DrugVirus, the result showed that NIRBMMDA obtained the best performance of
AUC and standard deviation with 0.8569 ±0.0027 when weight of NI is 0.6 and weight
of RBM is 0.4. Based on the selected two weights, we compared the performance of
NIRBMMDA with other four classical models of HGIMDA (Chen et al., 2016), IMCMDA
(Chen et al., 2018a), KATZMDA (Chen et al., 2017) and MDGHIMDA (Chen et al., 2018b)
according to five-fold cross validation. The evaluation result showed that our model is
better than HGIMDA (0.6995±0.0024), IMCMDA (0.6776±0.0034), KATZMDA (0.8229
±0.0022) and MDGHIMDA (0.8293 ±0.0033). Then, according to the two selected
weights mentioned above, we compared NIRBMMDA with the four identical comparison
models based on global LOOCV and local LOOCV, respectively. In the global LOOCV,
NIRBMMDA obtained better performance with AUC of 0.8666 than HGIMDA (0.7048),
IMCMDA (0.6901), KATZMDA (0.8305), MDGHIMDA (0.8518) (see Fig. 3). In the local
LOOCV, the AUC of NIRBMMDA is 0.8512, which is better than HGIMDA (0.7537),
IMCMDA (0.7425), KATZMDA (0.8216), MDGHIMDA (0.8509) (see Fig. 3).
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Figure 3 Comparison of prediction performance between NIRBMMDA and other four models
(HGIMDA, IMCMDA, KATZMDA,MDGHIMDA) based on the DrugVirus dataset. (A) In terms of
ROC curves and AUCs based on global LOOCV. (B) In terms of ROC curves and AUCs based on local
LOOCV.

Full-size DOI: 10.7717/peerj.13848/fig-3

For MDAD dataset, based on five-fold cross validation, NIRBMMDA obtained the
best AUC and standard deviation of 0.9248 ±0.0014 when weight of NI is 0.8 and
weight of RBM is 0.2 (see Table 2). As comparison algorithms, AUCs and the standard
deviation of HGIMDA (0.8152 ±0.0012), IMCMDA (0.7849 ±0.0025), KATZMDA
(0.9173 ±9.6340e−04) and MDGHIMDA (0.8153 ±0.0019) are less than the evaluation
result of NIRBMMDA. Then, based on weights used in five-fold cross validation, we
calculated AUCs of global LOOCV and local LOOCV for NIRBMMDA, HCIMDA,
IMCMDA, KATZMDA and MDGHIMDA, respectively. As a result, in the global LOOCV,
NIRBMMDA obtained the AUC with 0.9413, which is better than HCIMDA (0.8173),
IMCMDA (0.7891), KATZMDA (0.9247) and MDGHIMDA (0.8446) (see Fig. 4). In the
local LOOCV, the AUCs of HCIMDA (0.8301), IMCMDA (0.8035), KATZMDA (0.9119)
and MDGHIMDA (0.8537) are less than NIRBMMDA (0.9204) (see Fig. 4).

For aBiofilm dataset, based on five-fold cross validation, the NIRBMMDA obtained the
best AUC and the standard deviation with 0.9369 ±0.0020 when NI’s weight is 0.8 and
RBM’s weight is 0.2 (see Table 2). As comparison algorithms, HGIMDA (0.8412±0.0014),
IMCMDA (0.7509 ±0.0073), KATZMDA (0.9305 ±8.0311e−04), MDGHIMDA (0.8201
±0.0022) are less than NIRBMMDA (0.9369±0.0020). Subsequently, based on the selected
two weights mentioned above, we computed the AUCs of global LOOCV and local LOOCV
for NIRBMMDA, HCIMDA, IMCMDA, KATZMDA and MDGHIMDA, respectively. In
the global LOOCV,NIRBMMDAderived anAUCof 0.9557, which is higher thanHCIMDA
(0.8482), IMCMDA (0.7584), KATZMDA (0.9378) andMDGHIMDA (0.8491) (see Fig. 5).
In the local LOOCV, NIRBMMDA obtained better AUC with 0.9414 than AUCs of other
four classical models for HCIMDA, IMCMDA, KATZMDA andMDGHIMDAwith 0.8837,
0.7718, 0.9302 and 0.8707 respectively (see Fig. 5).

In summary, NIRBMMDA obtained better prediction accuracy compared with four
state-of-the-art models for datasets of DrugVirus, MDAD and aBiofilm based on LOOCV
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Figure 4 Comparison of prediction performance between NIRBMMDA and other four models
(HGIMDA, IMCMDA, KATZMDA,MDGHIMDA) based onMDAD dataset. (A) In terms of ROC
curves and AUCs based on global LOOCV. (B) In terms of ROC curves and AUCs based on local LOOCV.

Full-size DOI: 10.7717/peerj.13848/fig-4

Figure 5 Comparison of prediction performance between NIRBMMDA and other four models
(HGIMDA, IMCMDA, KATZMDA,MDGHIMDA) based on the aBiofilm dataset. (A) In terms of ROC
curves and AUCs based on global LOOCV. (B) In terms of ROC curves and AUCs based on local LOOCV.

Full-size DOI: 10.7717/peerj.13848/fig-5

and five-fold cross validation. These results indicated that NIRBMMDA has an outstanding
and stable performance in predicting potential microbe-drug associations.

Discussing parameters of model
For NIRBMMDA, there are some key parameters needed to be determined including
threshold σupper used in NI. According to the previous study (Zhang et al., 2016), we tested
10 candidate values of σupper with a range from 0.05 to 0.5 (step 0.05) and calculated
corresponding 10 AUPR scores based on five-fold cross validation on the training samples.
After that, the σupper with the best AUPR score was selected to predict potential microbe-
drug associations based on test sample.
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Table 3 Computational procedures of the contrastive divergence (CD) algorithm.

Algorithm: CD

Input: training set of N batch vNn=1, number of hidden units s, number of visible units nm
Output: bi,cj ,wij

1 Initialize: bi = 0,cj = 0, wij was randomly initialized, k = 50,ε = 0.1
2 for t = 1,2,...,k do
3 for each batch vn,n=1 ,2,...,N do
4 for j = 1,2,...,s do // from visible layer to hidden layer
5 P(h∗j = 1|v) = σ (wijvi + cj)
6 end for
7 for i = 1,2,...,nm do // from hidden layer to visible layer
8 P(v∗i = 1|h) = σ (wijhj + bi)
9 end for
10 wij = wij + ε ∗ [p(hi = 1|v)vTj − p(h∗i = 1|v∗)v∗Tj ]
11 bj = bj + ε(vj − v∗j )
12 ci = ci + ε ∗ [p(hi = 1|v) − p(h∗i = 1|v∗)]
13 end for
14 end for

Similarly, for another parameter s used in RBM, we tested 11 candidate values ranging
from 20 to 120 with step size 10, computed corresponding 11 AUPR scores and employed
the s with the best AUPR score to carry out prediction. Moreover, visible layer units bias bi,
hidden layer units bias cj as well as weight wij between i− th visible layer unit vi and j− th
hidden layer unit hj are also used in RBM. The contrastive divergence (CD) algorithm
(Hinton, 2002) is employed to determined bi, cj and wij on the basis of training temples.
The specific process of the CD algorithm is illustrated in Table 3.

Case studies
To further validate the prediction performance of NIRBMMDA, we implemented three
type of case studies. In first type of case study, we predicted potential drugs for SARS-COV-2
through implementing NIRBMMDA based on the DrugVirus dataset. For the second and
third type of case studies, we predicted potentialmicrobes for ciprofloxacin andminocycline
through implementing NIRBMMDA based on theMDAD dataset and the aBiofilm dataset,
respectively. Our main research interest is in computational bioinformatics. Therefore, we
usually confirmed the predicted results presented in case study by databases and published
literatures. For some predicted association information that is not validated by any study,
we hope the predicted associations can be further confirmed by biologist based on biological
experiments in the future.

SARS-COV-2 is a kind of coronavirus with high transmission efficiency, which emerged
at the end of 2019 and posed a huge threat to human health (Hu et al., 2021; Hui et
al., 2020; Wu, Leung & Leung, 2020). SARS-CoV-2 can cause severe respiratory lesions
and lung damages after entering cells (Zhu et al., 2020). Therefore, it is an urgent need
to found effective drugs for SARS-CoV-2. Hu, Frieman &Wolfram (2020) found that
chloroquine may have effect for treating for COVID-19 caused by SARS-CoV-2 based
on study of nanomedicine. Moreover, Shannon et al. (2020) found that favipiravir can
exerts an antiviral effect for SARS-CoV-2 by slowing RNA synthesis. Here, we used
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Table 4 Prediction of the top 20 predicted drugs associated with SARS-COV-2 based on the DrugVirus
dataset. The first column records top 1–10 related drugs. The second column records the top 11–20 re-
lated drugs.

Drug name Evidence Drug name Evidence

Erlotinib Unconfirmed Inosine pranobex PMID: 33339426
Didanosine Unconfirmed Cidofovir PMID: 33594342
Amiodarone PMID: 32737841 Alisporivir PMID: 32409832
Idoxuridine PMID: 34188314 Aciclovir Unconfirmed
Azacitidine Unconfirmed Anisomycin PMID: 33289002
Glycyrrhizin PMID: 33918301 Amantadine PMID: 33040252
Berberine PMID: 33670363 Irbesartan PMID:33735271
Amprenavir PMID: 34344455 ABT-263 Unconfirmed
Labyrinthopeptin A1 Unconfirmed Foscarnet Unconfirmed
Doxycycline PMID: 32873175 Darunavir PMID: 32889701

NIRBMMDA to predict potential drug for SARS-COV-2. Then, we ranked predicted
drugs for SARS-COV-2 based on predicted score and further verified the top 20 potential
drugs by finding literatures on PubMed. The result showed 13 of the first 20 predicted
drugs for SARS-COV-2 were verified (see Table 4). For example, the association between
SARS-COV-2 and idoxuridine was predicted and ranked fourth. Idoxuridine is a nucleoside
analog and have been used as an antiviral drug for herpes (Almalki et al., 2021). Almalki
et al. (2021) found that idoxuridine has significant antiviral activity for SARS-COV-2
through using molecular docking. Moreover, the association between SARS-COV-2 and
glycyrrhizin was predicted and ranked sixth. Glycyrrhizin, also named glycyrrhizic acid, is
a bioactive substance extracted from a medicinal herb of glycyrrhiza (He et al., 2019). Yu
et al. (2021) found that glycyrrhizin was an efficient and nontoxic anti-SARS-COV-2 drug
by using computer-aided drug design and biological verification.

Ciprofloxacin, second generation fluoroquinolone, shows outstanding antimicrobial
activity with few side effects for treating bacterial infections over 30 years (Zhang et
al., 2018). In this article, we employed NIRBMMDA to predict ciprofloxacin-related
microbes. Then, we ranked the ciprofloxacin-related microbes according to predicted
score and confirmed the top 20 potential associated microbes for ciprofloxacin by finding
the literature on PubMed. The result showed that 17 out of the top 20 ciprofloxacin-
related microbes were confirmed (see Table 5). For example, the top-ranked microbe
for ciprofloxacin is Serratia marcescens. Serratia marcescens, a Gram-negative and non-
sporulating bacillus, could cause lung infection, otitis and sepsis (Veraldi & Nazzaro,
2016). Veraldi & Nazzaro (2016) found ciprofloxacin can treat skin ulcers caused by
Serratia marcescens through investigating three patients in hospital. Moreover, the
association between Mycobacterium avium and ciprofloxacin was predicted and ranked
third. Mycobacterium avium is an environmental microbe which exists in water, soil,
bird and mammal hosts (Sangari, Parker & Bermudez, 1999). Klopman et al. (1993) found
ciprofloxacin show activity against the Mycobacterium avium by using the microdilution
method.
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Table 5 Prediction of the top 20 predicted microbes associated with Ciprofloxacin based on theMDAD dataset. The first column records top 1–
10 related microbes. The second column records the top 11–20 related microbes.

Microbe name Evidence Microbe name Evidence

Serratia marcescens PMID:27052490 Klebsiella pneumoniae PMID: 27257956
Candida albicans PMID:19109335 Streptococcuspneumoniae serotype 4 Unconfirmed
Mycobacterium avium PMID: 8239587 Vibrio harveyi PMID: 27247095
Clostridium perfringens PMID: 24944124 Enterococcus faecium PMID: 30015506
Human immunodeficiency virus 1 PMID: 9566552 Enterococcus faecalis PMID: 30015506
Enteric bacteria and other eubacteria PMID: 31321030 Staphylococcus epidermidis PMID: 9111541
Streptococcus PMID: 30502964 Plasmodium falciparum PMID: 31451506
Listeria monocytogenes mutans PMID: 22003016 Actinomyces oris Unconfirmed
Streptococcus pneumoniae PMID: 12917240 Proteus mirabilis PMID:26953206
Human immunodeficiency virus Unconfirmed Candida spp. PMID:30781782

Minocycline, second generation tetracycline derivative, has good antibacterial activity
(Jonas & Cunha, 1982; Nagarakanti & Bishburg, 2016). In addition, minocycline has been
found to have non-antibiotic effects for inflammatory diseases based on open clinical
trials (Garrido-Mesa, Zarzuelo & Gálvez, 2013). Particularly, minocycline has emerged
effect in neuroprotection demonstrated by various studies in animal models (Garrido-
Mesa, Zarzuelo & Gálvez, 2013; Romero-Miguel et al., 2021). Therefore, minocycline has
been used for treating acne and could be a potential drug for neurodegenerative and
inflammatory diseases such as dermatitis, Parkinson’s disease and Alzheimer’s disease
(Garrido-Mesa, Zarzuelo & Gálvez, 2013; Romero-Miguel et al., 2021). In this case study,
via the implementation of NIRBMMDA, we can predict potential microbes associated
with drug of minocycline. Subsequently, we sorted predicted microbes for minocycline
according to the predicted score and verified the top 20 potential microbes by finding the
published literature. The result showed that 17 out of the top 20 microbes for minocycline
were confirmed (see Table 6). Among the top 20 predicted microbes for minocycline,
Pseudomonas aeruginosa was predicted with the first ranking. Pseudomonas aeruginosa, a
common Gram-negative bacterium, can lead to severe infections for human (Chevalier
et al., 2017). Chen et al. (2019) found that minocycline possessed antimicrobial activity
for Pseudomonas aeruginosa in vitro experiment. Furthermore, the association between
Streptococcus mutans and minocycline was predicted and ranked third. Streptococcus
mutans possesses strong virulence factors including high acid production, ability to form
compact biofilm and production of glucans (Abdel-Aziz, Emam & Raafat, 2020). Baker et
al. (1983) found that minocycline can inhibit plaque formation caused by Streptococcus
mutans in vitro pure cultures.

DISCUSSION
Because the emergence of antimicrobial drug resistance and long development cycle of new
drugs, an increasing number of researchers have been focused on the problem of potential
association prediction between microbes and drugs based on computational models. In
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Table 6 Prediction of the top 20 predicted microbes associated withMinocycline based on the aBiofilm dataset. The first column records top 1–
10 related microbes. The second column records the top 11–20 related microbes.

Microbe name Evidence Microbe name Evidence

Pseudomonas aeruginosa PMID: 30817887 Salmonella enterica PMID: 34475718
Candida albicans PMID: 28367877 Streptococcus pyogenes PMID: 28161292
Streptococcus mutans PMID: 6580410 Vibrio harveyi PMID: 28252178
Escherichia coli PMID: 30129883 Listeria monocytogenes PMID: 30267005
Staphylococcus epidermis PMID: 30226742 Streptococcus sanguis Unconfirmed
Staphylococcus epidermidis PMID: 8592428 Actinomyces oris PMID: 29782813
Enterococcus faecalis PMID: 32944085 Corynebacterium ammoniagenes Unconfirmed
Serratia marcescens mutans PMID: 25468904 Aggregatibacter actinomycetemcomitans PMID: 21405933
Bacillus subtilis PMID: 34124228 Pseudomonas libaniensis Unconfirmed
Vibrio cholerae PMID: 28062293 Burkholderia pseudomallei PMID: 15509614

this article, we proposed a computational model of NIRBMMDA to identify potential
microbe-drug associations by using ensemble learning method based on NI and RBM.

The outstanding performance of NIRBMMDA mainly come from the following several
key factors. First, NI and RBM was used as based predictors. NI can efficiently utilize
similarity data to predict new microbe-drug associations by adopting different thresholds
to filtering neighbors. RBM is a two-layer generative stochastic artificial neural network
that can effectively extract the latent features of known microbe-drug associations. Second,
experimentally confirmed microbe-drug associations used in the model were downloaded
from three highly reliable databases includingDrugVirus,MDADand aBiofilm. In addition,
some reliable biological data used in the model, including Gaussian interaction profile
kernel similarity for drugs and microbes, drug side effect similarity, drug structural
similarity and microbe sequence similarity, which can greatly increase predicted accuracy
of the model. Third, the success of NIRBMMDA also follows the implementation of
ensemble learning which can integrate weak predictor including NI and RBM for obtaining
a stronger predictor.

However, there are still some limitations in NIRBMMDA that need to be overcome in
the future. First, the number of experimentally confirmed microbe-drug associations from
databases of DrugVirus, MDAD and aBiofilm is not enough. More known microbe-drug
associations need to be confirmed by experiment, which can further improve predicted
accuracy of NIRBMMDA. Second, some microbes lack genome sequences on NCBI, which
would influence predicted accuracy of the proposed model. We hope that the missing
microbe genome sequences will be experimentally measured in the future. Third, the
two based predictor used in the model may not be enough and more based predictor are
employed may contribute to improve predicted accuracy.

CONCLUSIONS
We proposed a model named NIRBMMDA to predict potential microbe-drug association.
In the model, NI and RBM were used to predict potential microbe-drug associations,
respectively. Considering generalization ability of individual model may be poor, we
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used an ensemble learning method to predict potential microbe-drug associations through
integrating predicted associationsmatrices of NI andRBM.Moreover, we used LOOCV and
five-fold cross validation to evaluate performance of NIRBMMDA based on three datasets
including DrugVirus, MDAD, aBiofilm. Results indicated that NIRBMMDA obtained
better performance compared with HCIMDA, IMCMDA, KATZMDA and MDHGI.
Further, implementation of three case studies for SARS-COV-2, drug ciprofloxacin and
drug minocycline illustrated that NIRBMMDA is an effective prediction model. Although
NIRMBMDA achieved good predictive performance in case studies, it may depend on the
database or the choice of microbes. As it is known, the dataset used to train the model
can affect the performance of the model. The more known microbe-drug associations,
the higher the accuracy of the model. Moreover, the number of known microbe-drug
associations is different for datasets of DrugVirus, MDAD and aBiofilm, which affects the
Gaussian interaction profile kernel similarity inputted into the model and leads to different
prediction performance for model on three datasets. Also, abundant similarity data can
contribute to improve the prediction accuracy of model.
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