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In joint models for item response times (RTs) and response accuracy (RA), local item

dependence is composed of local RA dependence and local RT dependence. The two

components are usually caused by the same common stimulus and emerge as pairs.

Thus, the violation of local item independence in the joint models is called paired local

item dependence. To address the issue of paired local item dependence while applying

the joint cognitive diagnosis models (CDMs), this study proposed a joint testlet cognitive

diagnosis modeling approach. The proposed approach is an extension of Zhan et al.

(2017) and it incorporates two types of random testlet effect parameters (one for RA and

the other for RTs) to account for paired local item dependence. The model parameters

were estimated using the full Bayesian Markov chain Monte Carlo (MCMC) method.

The 2015 PISA computer-based mathematics data were analyzed to demonstrate the

application of the proposed model. Further, a brief simulation study was conducted to

demonstrate the acceptable parameter recovery and the consequence of ignoring paired

local item dependence.

Keywords: cognitive diagnosis models, response time models, response times, local item dependence, testlet,

DINA model, PISA

INTRODUCTION

Nowadays, it becomes a common practice to collect response time (RT) data as the computer-
based tests are applied to large-scale assessments. RT represents the amount of time a respondent
spends on an item. It serves as an additional source of information about the working speed
of a respondent as well as the time intensity of an item. In the past few decades, a number
of studies have been done to model the RTs. Before the year of 2007, the RT modeling studies
such as Thissen (1983), Verhelst et al. (1997), and Wang and Hanson (2005) were motivated by
the speed-accuracy trade-off (Luce, 1986). However, this trade-off only reflected a within-person
relationship between speed and accuracy (van der Linden, 2009) where, given a fixed set of items,
a respondent’s speed is dependent on his or her accuracy. Therefore, the relationship between
speed and accuracy should be modeled at a higher level. To this end, van der Linden (2007)
proposed a hierarchical modeling framework to explain the higher-level relationship between
speed and accuracy. In this framework, RTs and RA were separately modeled at the first level
whereas two correlational structures were modeled at the second level. The correlational structures
accounted for either the dependence between person latent speed and latent ability parameters
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and that between item accuracy-related and item time-related
parameters. A comparison study suggested that the hierarchical
modeling framework yielded more reasonable outcomes in both
real and simulated data than other RTmodeling approaches (Suh,
2010). The hierarchical modeling framework was generalized
to integrate different measurement models due to its flexible
nature (e.g., Klein Entink et al., 2009a,b; Wang et al., 2013; Meng
et al., 2015; Molenaar et al., 2015; Wang and Xu, 2015; Fox and
Marianti, 2016). However, almost all the previous studies in RT
modeling were based on unidimensional item response theory
(IRT) models but none used multidimensional measurement
models.

Multidimensional tests and cognitive diagnostic assessments
become more and more prevalent given the increasing demand
for diagnostic test feedback containing refined information.
In general, cognitive diagnostic assessments aim at evaluating
respondent’s mastery status (e.g., mastery or non-mastery) of
latent skills or attributes. This information can be provided
to teachers or clinicians so that they can determine the
remedial instructions or targeted interventions accordingly.
Although numerous cognitive diagnosis models (CDMs) have
been developed (for review, see Rupp et al., 2010) based on
various cognitive and psychological assumptions, almost all of
them only utilized information on RA. Recently, Zhan et al.
(2017) proposed a joint cognitive diagnosis modeling approach
to simultaneously model RTs and RA. In the study of Zhan
et al. (2017), the deterministic-inputs, noisy “and” (DINA)
model (Macready and Dayton, 1977; Haertel, 1989; Junker and
Sijtsma, 2001) and the lognormal RT model (van der Linden,
2006) were used as the measurement models for RA and RTs,
respectively. A higher-order latent structure (de la Torre and
Douglas, 2004) was introduced to account for the relationship
between latent attributes and a continuous higher-order latent
ability. Furthermore, a bivariate normal distribution was used
to model the relationship between the higher-order latent ability
and the latent speed. A similar approach was proposed by
Minchen (2017). Unlike Minchen’s approach, Zhan et al. (2017)’s
approach explicitly modeled the correlation between different
item parameters (i.e., within-item characteristic dependency;
Fox, 2010; Zhan et al., manuscript submitted for publication) by
assuming that they followed a multivariate normal distribution.

A key assumption in the joint models of RA and RTs is
local item dependence. Specifically, the observed RA responses
are conditionally independent of each other given an individual
score in latent ability or a specific latent attribute mastery status,
which is denoted as local RA independence; in the meanwhile,
all the RTs are conditionally independent of each other given
the an individual score in latent speed, which is denoted as
local RT independence. In other words, in the joint models,
local item independence is composed of local RA independence
and local RT independence, which is known as paired local
item independence. However, the assumption of local item
independence is often violated in educational tests, resulting in
local item dependence. One of the most common scenarios that
lead to local item dependence is the presence of testlet, where
several items are based on a common context (Wainer and Kiely,
1987).

A testlet is defined as a cluster of items that share a common
stimulus. The local item dependence resulted from a testlet
is called testlet effect. Testlet has been widely adopted in
educational tests. For example, in a reading comprehension test,
a testlet is formed when a bundle of items are based on the
same reading passage. The testlet design makes the assessment
process more efficient (DeMars, 2012). While responding to the
items within the same testlet, the students only need to process
the scenario once and the context information can be applied to
all the items in the testlet. However, the testlet design makes it
more difficult to measure student’s reading ability as the student’s
performance may be affected by their knowledge or interest in
the reading passage content besides their reading ability (Yen,
1993). Thus, item responses within the same testlet may be locally
dependent on each other.

Testlet response theory modeling (Wang and Wilson, 2005;
Wainer et al., 2007) is one of the most popular approaches to
handle testlet effect or local item dependency. As a bi-factor
multidimensional IRT model (DeMars, 2006; Li et al., 2006), the
testlet response theory model assumes that all the item responses
are accounted for by a common factor of latent ability, while
the responses within a testlet are further explained by a random
testlet effect factor. It has been demonstrated that the presence of
testlet effect affects model parameter estimates, equating process,
and test reliability estimates (e.g., Sireci et al., 1991; Bradlow et al.,
1999; Wang and Wilson, 2005; Wainer et al., 2007; Jiao et al.,
2012, 2013; Zhan et al., 2014; Jiao and Zhang, 2015; Tao and Cao,
2016). However, all the studies above only addressed the local RA
dependence but none accounted for the local RT dependence.

As aforementioned, the paired local item independence is
composed of local RA independence and local RT independence.
Given that the item clusters which cause local RA dependence
would also result in local RT dependence, and local RA
dependence and local RT dependence should emerge in pairs.
Thus, the violation of paired local item independence is
called paired local item dependence. In other words, local RA
dependence and its corresponding local RT dependence are
caused by the same stimulus but are reflected in different forms
(i.e., RA and RTs). To address the paired local item dependence
in the IRT framework, Im (2017) proposed a hierarchical
testlet model, in which local RA dependence was handled by a
testlet response theory model whereas local RT dependence was
handled by a lognormal RT testlet model.

In cognitive diagnosis, however, only a few studies focused on
accounting for local RA dependence (e.g., Hansen, 2013; Zhan
et al., 2015; Hansen et al., 2016), and, to our knowledge, none
examined local RT dependence. As aforementioned, the joint
CDMs assume paired local item independence. Thus, the purpose
of this study is to extend the joint cognitive diagnosis modeling
approach (Zhan et al., 2017) in order to address the potential
paired local item dependence in RTs and RA. The rest of the
paper starts with a review of the testlet-DINA model (Zhan et al.,
2015) and the lognormal RT testlet model (Im, 2017). Then the
proposed joint testlet-DINA model is introduced. It is followed
by a real data analysis using the Program for International
Student Assessment (PISA) 2015 computer-based mathematics
data, which serves to demonstrate the application of the proposed
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model. Finally, a brief simulation study is presented used to
demonstrate the model parameter recovery and the consequence
of ignoring paired local item dependence.

JOINT TESTLET COGNITIVE DIAGNOSIS
MODELING

The Testlet-DINA Model
To account for the local RA dependence in cognitive diagnosis,
Hansen (2013) and Hansen et al. (2016) proposed a higher-
order, hierarchical CDM which can be viewed as a combination
of the two-tier item factor model (Cai, 2010) and the log-linear
CDM (Henson et al., 2009). Like the two-tier item factor model,
Hansen’s model could only account for local RA dependence
which was resulted from a single source. Zhan et al. (2015)
proposed two within-item multidimensional testlet effect CDMs
which was able to account for local RA dependence that was
resulted from multiple sources simultaneously (Rijmen, 2011;
Zhan et al., 2014). The two models included a compensatory
model which allowed attributes to compensate each other and a
non-compensatory model which assumed that respondents need
tomaster all the required attributes in order to have a high correct
response probability. For simplicity, the testlet-DINA model in
this study only refers to the non-compensatory model, which is
written as

logit(P(Yni = 1)) = βi + δi

∏K

k=1
α
qik
nk

+
∑M

m=1
uimγnm, (1)

where Yni denotes the dichotomous response of person n to item
i; αn = (αn1, . . . , αnK)

′denotes person n’s attribute pattern, K
is the number of required attributes; βi and δi are the intercept
and interaction parameters for item i, respectively; The Q-matrix
(Tatsuoka, 1983) is an I-by-K confirmatory matrix with element
qik indicating whether the attribute k is required to correctly
answer the item i (i.e., qik = 1 if the attribute is required,
and 0 otherwise); γnm ∼ N(0, σ 2

γm
)is the RA testlet effect of

the mth testlet, which represents the interaction effect between
person n and items within testlet m on RA. Usually, the value of
σ 2

γm
indicates the magnitude of testlet effect (Wang and Wilson,

2005; Wainer et al., 2007). A large variance is associated with a
large testlet effect. All the γnms are assumed to be independent
with each others; LetM be the total number of testlets in the test,
the U-matrix (Zhan et al., 2014) is an I-by-M confirmatorymatrix
with element uim indicating whether item i belongs to testlet m
(i.e., uim = 1 if item i belongs to testletm, and 0 otherwise).

Obviously, when all elements in the U-matrix equal to 0
(means no tesltet in the test) or all σ 2

γm
= 0 (means no testlet

effect), the testlet-DINA model reduces to the reparameterized
DINA model (DeCarlo, 2011; von Davier, 2014).

The Lognormal RT Testlet Model
To account for the local RT dependence, Im (2017) proposed the
lognormal RT testlet model. The lognormal RT testlet model is
an extension of the regular lognormal RTmodel (van der Linden,
2006) by introducing a random testlet effect parameter, but it can
also be taken as a special case of the multidimensional lognormal
RT model (Zhan et al., manuscript submitted for publication).

Let Tni be the observed RT of person n to item i, the lognormal
RT testlet model can be expressed as

Tni ∼ f (tni; τn,λnm,ωi, ξi)

= ωi

tni
√
2π

exp(−1

2
(ωi(log tni − (ξi − τn − λnm)))

2), (2)

where logtni be the logarithm of RT, which is used to transform
the positively skewed distribution of RT to a more symmetric
shape; τn be the latent speed of person n; ξi be the time-intensity
of item i; ωi be the discriminating power of item i, which can
be treated as a time-kurtosis parameter; λnm ∼ N(0, σ 2

λm
)be the

mth RT testlet effect parameter to address local RT dependence,
which represents the interaction between person n and items
within testlet m in RT. The larger the variance, the larger the
testlet effect is. All λnms are assumed to be independent of each
other.

Equation (2) can be extended to account for potential within-
item multidimensional testlet effect

Tni ∼ f (tni; τn,λn,ωi, ξi)

= ωi

tni
√
2π

exp(−1

2
(ωi(log tni − (ξi − τn −

∑M

m=1
uimλnm)))

2

),

(3)

where all the parameters have been defined above. Equation (3)
is regarded as the within-item multidimensional testlet effect
lognormal RT model, which can be seen as a special case of the
multidimensional lognormal RT model (Zhan et al., manuscript
submitted for publication). For simplicity, Equation (3) can be
equivalently expressed as

logTni ∼ N(ξi − τn −
∑M

m=1
uimλnm,ω

−2
i ). (4)

When there is only one source of local RT dependence, the
within-item multidimensional testlet effect lognormal RT model
reduces to the lognormal RT testlet model (Im, 2017). Further,
when all the elements in the U-matrix equal to 0 or σ 2

λm
= 0for all

testlets, the within-itemmultidimensional testlet effect lognormal
RT model reduces to the regular lognormal RT model (van der
Linden, 2006).

The Joint Testlet-DINA Model
The joint testlet-DINA model is specified as follows: Yni and
logTni are separately modeled at the first level following the
convention of joint cognitive diagnosis modeling approach
and the hierarchical testlet model; a higher-order latent
structural model is used to account for the relationship between
binary latent attributes and a continuous higher-order latent
ability; further, at the higher level, three variance-covariance
structures are imposed to model the dependencies among person
parameters, item parameters, and testlet effect parameters. A
graphical representation of the joint testlet-DINA model is given
in Figure 1.

First, the testlet-DINA model (Equation 1) and the within-
item multidimensional testlet effect lognormal RT model
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FIGURE 1 | A graphical representation of the joint testlet-DINA model.

(Equation 4) are used as the measurement models for RA and
RTs, respectively.

Then, the higher-order latent structural model is used to link
the correlated attributes, which is given by

logit(P(αnk = 1)) = νkθn − κk, (5)

where P(αnk = 1) is the probability of mastery of attribute k
by person n; θn is a higher-order (general) ability of person n,
which is assumed to follow a standard normal distribution for
identification purpose; and νk and κk are the slope and difficulty
parameters for attribute k.

Further, item parameters are assumed to follow a trivariate
normal distribution

9 i =





βi
δi
ξi



 ∼ N









µβ

µδ

µξ



 ,6item



 . (6)

Additionally, since the residual error variance,ω−2
i , is assumed to

be independently distributed (Zhan et al., 2017), it is not included
in 9 i.

Likewise, person parameters are assumed to follow a bivariate
normal distribution

2n =
(

θn
τn

)

∼ N

((

µθ

µτ

)

,6person

)

. (7)

In addition, testlet effect parameters in testlet m are assumed to
follow a bivariate normal distribution

Ŵnm =
(

γnm
λnm

)

∼ N

((

0
0

)

,6testlet,m

)

. (8)

If there are M testlets, there will be M bivariate normal
distributions. In addition, it should be noted that, in the proposed
model, the uim in RT model (Equation 3) has the same value
as the uim in RA model (Equation 1) because of the paired

local item dependence. In summary, Equations (1, 4–8), together,
constitute the joint testlet-DINA model. Constraints are set for
identification purpose (i.e., µθ = 0, σ 2

θ = 1;µτ = 0). The first
two constraints are consistent with those set in the higher-order
latent trait model while the third removes the tradeoff between ξi
and τn from a lognormal model. After addressing the paired local
item dependence, four conditional independence assumptions
are made: the αnk are conditionally independent given θn; the Yni

are conditionally independent given αn and γnm; the logTni are
conditionally independent given τn and λnm; and Yni and logTni

for a particular item i are conditionally independent given person
parameters and testlet effect.

Bayesian Parameter Estimation
Parameters in the joint testlet-DINA model can be estimated
using the full Bayesian approach with the Markov chain Monte
Carlo (MCMC) method. In this study, free software JAGS
(Version 4.3.0; Plummer, 2015) was used to estimate the
parameters. JAGS uses a default option of the Gibbs sampler
(Gelfand and Smith, 1990). Sample code were presented in
Appendix. A tutorial of using JAGS for Bayesian CDM estimation
can be found in Zhan (2017).

To begin with, under the assumption of local independence,
Yni, logTni and αnk are independently distributed, which is
written as

Yni ∼ Bernoulli(P(Yni = 1)),

logTni ∼ N(ξi − τn −
∑M

m=1
uimλnm,ω

−2
i ),

αnk ∼ Bernoulli(P(αnk = 1)).

The priors of item parameters are assumed to be a trivariate
normal distribution, written as





βi
δi
ξi



 ∼ N









µβ

µδ

µξ



 ,6item



 ,ω−2
i ∼ InvGamma(1, 1). (9)
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Further, the hyper priors are specified as

µβ ∼ N(−2.197, 2),

µδ ∼ N(4.394, 2)I(µδ > 0),

µξ ∼ N(3, 2),

6item ∼ InvWishart(Ritem, 3),

where Ritem is a tridimensional identity matrix.
The priors of person parameters are set as

(

θn
τn

)

∼ N

((

0
0

)

,6person

)

.

As suggested by Zhan et al. (2017), the Cholesky decomposition
of the 6person is used

6person = 1person1
′
person

where

1person =
(

1 0
ϕ ψ

)

is a low triangular matrix with positive entries on the diagonal
and unrestricted entries below the diagonal; 1’person is the
conjugate transpose of 1person. The priors of the elements in
1person are specified as ϕ ∼ N(0, 1),ψ ∼ Gamma(1, 1).

Then, the priors of the higher-order structural parameters are
specified as

κk ∼ N(0, 4), νk ∼ N(0, 4)I(νk > 0).

In addition, the priors of testlet effect parameters in testlet m are
specified as

(

γnm
λnm

)

∼ N

((

0
0

)

,6testlet,m

)

,

with the hyper priors of 6testlet,m ∼ InvWishart(Rtestlet,m, 2),
where Rtestlet,m is a two-dimensional identity matrix for
testletm.

Finally, the posterior mean and the posterior mode are used as
the estimates for the continuous parameters (e.g., βi, δi, θn, and
τn) and categorical parameters (e.g., αnk), respectively.

REAL DATA ANALYSIS

Data
In this study, the PISA 2015 computer-based mathematics data
were used. 17 computer-scored dichotomous items from M1
and M2 testing clusters were selected and used in the analysis.
The complete-case method was implemented to handle the
missing data. That is, only the respondents without missing
values in any of the 17 items were used. As a result, the
dataset used for analysis contained the dichotomous response
data and continuous RT data for 8,606 respondents from
58 countries/economies. The natural logarithm of RTs (i.e.,

log RTs) were used for modeling. According to the PISA
2015 mathematics assessment framework (OECD, 2016), 11
attributes were assessed, including change and relationships
(α1), space and shape (α2), quantity (α3), uncertainty and data
(α4), personal (α5), occupational (α6), societal (α7), scientific
(α8), formulating situations mathematically (α9), employing
mathematical concepts, facts, procedures and reasoning (α10),
and interpreting, and applying and evaluating mathematical
outcomes (α11). The first four attributes are associated with
the mathematical content knowledge that is targeted for use
in the items. The next four attributes are associated with
the mathematical context that is needed to place additional
demands on the problem-solver (Watson and Callingham,
2003; OECD, 2016). The last three attributes are associated
with the mathematical processes that connect the context of
the mathematics problem with problem-solving (OECD, 2016).
In addition, the 17 items contained four testlets, namely,
population pyramids (m1), diving (m2), cash withdrawal (m3),
and chair lift (m4). Only one source of local item dependence
was considered in this study (i.e., an item only belongs to
one testlet). The Q-matrix and the U-matrix are presented in
Table 1.

Analysis
In addition to the joint testlet-DINA model, the joint responses
and times DINA (denoted as the JRT-DINA) model (Zhan et al.,
2017) was also used to fit the data for comparison purpose. The
JRT-DINA model can be seen as a special case of the joint testlet-
DINA model where all random testlet effect parameters are set
to be zero. For both models, two Markov chains with random
starting points were used and 10,000 iterations were run for each
chain. The first 5,000 iterations in each chain were discarded as
burn-in. In order to save space in memory1, the thinning interval
was set to be five. As a result, 2,000 iterations were retained
for model parameter inferences. The potential scale reduction
factor (PSRF; Brooks and Gelman, 1998) was computed to assess
the convergence of each parameter. PSRF values lower than 1.1
or 1.2 were used as convergence criteria in previous studies
(Brooks and Gelman, 1998; de la Torre and Douglas, 2004). In
this study, the PSRFs were generally lower than 1.05, indicating
good convergence in the specific setting.

The AIC (Akaike, 1974), BIC (Schwarz, 1978), and DIC
(Spiegelhalter et al., 2002) were computed for model comparison.
Posterior predictive model checking (PPMC; Gelman et al.,
2014) was used to evaluate model-data fit. Posterior predictive
probability (PPP) values near 0.5 indicate that there are no
systematic differences between the observed and predicted
values, suggesting an adequate model-data fit. As the research in
the absolute model-fit statistics for joint models was limited, this
study followed Zhan et al. (2017) to evaluate the model fit of the
RA and RT models separately. The sum of the squared Pearson
residuals for person n and item i (Yan et al., 2003) was used as a
discrepancy measure to evaluate the overall fit of the RA model,

1All calculations were conducted on a laptop with 32GB of memory. Insufficient

space of memory was caused by no thinning.
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TABLE 1 | Q- and U-matrix for PISA 2015 computer-based mathematics items.

Items Q-matrix U-matrix

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 m1 m2 m3 m4

CM033Q01 1 1 1

CM474Q01 1 1 1

CM155Q01 1 1 1 1

CM155Q04 1 1 1 1

CM411Q01 1 1 1 1

CM411Q02 1 1 1 1

CM803Q01 1 1 1

CM442Q02 1 1 1

CM034Q01 1 1 1

CM305Q01 1 1 1

CM496Q01 1 1 1 1

CM496Q02 1 1 1 1

CM423Q01 1 1 1

CM603Q01 1 1 1

CM571Q01 1 1 1

CM564Q01 1 1 1 1

CM564Q02 1 1 1 1

Blank means “0.”

TABLE 2 | Models fit for PISA 2015 computer-based mathematics.

Model −2LL AIC BIC DIC NP ppp_RA ppp_RT

Joint testlet-DINA 387466 387648 388291 525481 91 0.486 0.547

JRT-DINA 414438 414596 415154 530742 79 0.521 0.539

−2LL,−2 log-likelihood; AIC, Akaike’s information criterion; BIC, Bayesian information criterion; NP, number of parameters; ppp, posterior predictive p-value; RA, item response accuracy;

RT, item response time.

which is written as

D(Yni;αn, βi, δi) =
N

∑

n=1

I
∑

i=1

(

Yni − P(Yni = 1)√
P(Yni = 1)(1− P(Yni = 1))

)

2

,

where P(Yni = 1) has the same definition as that in Equation (1).
On the other hand, the sum of the standardized error function
of logTni for person n and item i (Marianti et al., 2014; Fox and
Marianti, 2017) was used as a discrepancy measure to evaluate
the overall fit of the RT model, which is given by

D(logTni; ξi, τn,ωi)

=
N

∑

n=1

I
∑

i=1

(

ωi(logTni − (ξi − τn −
∑M

m=1
uimλnm))

)2

.

Results
The joint testlet-DINA model was favored based on the
AIC, BIC, and DIC, as is shown in Table 2. In addition,
the likelihood deviances (i.e., −2 log likelihood or −2LL)
of these two models were 387,466 and 414,438, respectively
(1 −2LL = 26,972, df = 12, p < 0.001). Therefore, the

TABLE 3 | Item mean vector and variance and covariance matrix estimates for

PISA 2015 computer-based mathematics items.

µitem 6item β δ ξ

µβ −1.232 (0.278) β 1.436 (0.558) −0.645 −0.700

µδ 2.394 (0.231) δ −0.749 (0.384) 0.938 (0.377) 0.450

µξ 4.197 (0.113) ξ −0.408 (0.198) 0.212 (0.146) 0.236 (0.092)

Covariance in lower triangular matrix and correlation coefficient in upper triangular matrix,

respectively, in 6 item; standard error (standard deviation of the posterior distribution) is in

parentheses; β, item intercept; δ, item interaction; ξ, item time-intensity.

joint testlet-DINA model fitted the data significantly better
than the JRT-DINA model, indicating that paired local item
dependence existed among items within testlets. In the joint
testlet-DINA model, the PPP values of the RA model and
the RT model were 0.486 and 0.547, respectively, which
indicated an adequate model-data fit. Thus, only the results
pertaining to the joint testlet-DINA model are discussed next
(the difference between two models see Figures S1, S2 in
Appendix).
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Table 3 presents the estimated item mean vector and the
estimated item variance-covariance matrix. ρβδ was estimated to
be −0.645, which means that higher item intercept parameters
were associated with lower item interaction parameters. ρβξ

and ρδξ were estimated to be −0.700 and 0.450, respectively,
indicating that items with higher intercept parameters tended
to have lower time-intensity parameters; by contrast, items with
higher interaction parameters tended to be have higher time-
intensity parameters. Further, Figure 2 presents the estimated
item parameters. All the βi estimates were negative except
the 1st and the 13th items, which means that the guessing

probabilities (i.e.,
exp(βi)

1+exp(βi)
) of these two items were higher

than 0.5.
Table 4 presents the estimated person variance and covariance

matrix. ρθτ was estimated to be −0.196, which means that

a low negative correlation was observed between the higher-
order ability and the latent speed parameters. The negative

correlation was consistent with the results in Zhan et al. (2017).
One reasonable explanation is that low-ability respondents

lack motivation in taking the low-stakes test (Wise and
Kong, 2005). Thus, the low-ability respondents may have
shorter RTs and a greater number of incorrect responses
than the high-ability respondents. In addition, the variance
of latent speed was quite small (i.e., 0.073), which means
the variability in latent speed among all respondents was
small.

Table 5 presents the four estimated testlet effect
variance-covariance matrices. As aforementioned, a larger
variance of testlet effect parameters indicates a larger testlet
effect. The variances of the four RA testlet effect parameters
were estimated to be 0.438, 0.260, 2.800, and 0.414, respectively.
Compared to the variance of the latent trait (i.e., 1.00), the
RA testlet effects ranged from small to large2. By contrast, the
variances of the four RT testlet effect parameters were estimated
to be 0.110, 0.083, 0.226, and 0.212, respectively. Although the
RT testlet effects were small in terms of the absolute values,
their ratios to the variance of latent speed (i.e., 0.073) were

TABLE 4 | Person variance and covariance matrix estimates for PISA 2015

computer-based mathematics items.

6person θ τ

θ 1 −0.196

τ −0.053 (0.004) 0.073 (0.001)

Covariance in lower triangular matrix and correlation coefficient in upper triangular

matrix, respectively; standard error (standard deviation of the posterior distribution) is in

parentheses.

2According to previous studies (e.g., Wainer and Wang, 2000; Wang and Wilson,

2005), the value of 0.25, 0.5, and 1.0 is corresponding to small, moderate, and large

testlet effect, respectively.

FIGURE 2 | Item parameter estimates for PISA 2015 computer-based mathematics items. β, item intercept; δ, item interaction; ξ, item time-intensity; ω, item

time-kurtosis.

TABLE 5 | Testlet effect variance and covariance matrix estimates for PISA 2015 computer-based mathematics items.

m1: population pyramids m2: diving m3: cash withdrawal m4: chair lift

6testlet γ λ γ λ γ λ γ λ

γ 0.438 (0.072) −0.268 0.260 (0.070) −0.065 2.800 (0.220) 0.022 0.414 (0.067) −0.187

λ −0.059 (0.012) 0.110 (0.007) −0.010 (0.010) 0.083 (0.005) 0.018 (0.022) 0.226 (0.008) −0.056 (0.013) 0.212 (0.008)

Covariance in lower triangular matrix and correlation coefficient in upper triangular matrix, respectively; standard error (standard deviation of the posterior distribution) is in parentheses.
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around 1.507, 1.137, 3.096, and 2.904, respectively, indicating
that the RT testlet effects were large in this dataset. In addition,
low correlation was observed between each pair of RA testlet

effect and RT testlet effect, indicating that these two types of

testlet effects were separable. This is an unexpected result. A
moderate or a high correlation was expected since, theoretically
speaking, local RA dependence and local RT dependence should
be caused by the same stimulus. More practical evidence needs
to be accumulated from future studies to explain the results.

Figure 3 presents the posterior mixing proportions of the
20 most frequent attribute patterns out of the 2,048 possible
attribute patterns. Only 73 patterns were observed in the
estimated attribute profiles. Attribute pattern (11111111111) was
the most prevalent with a percentage of 40.19%; the second
most prevalent pattern was (10100100000) with a percentage of
23.41%.

A BRIEF SIMULATION STUDY

Design and Data Generation
Abrief simulation study was conducted to examine the parameter
recovery of the proposed model and the consequence of ignoring
the potential paired local item dependence in analysis. The
simulated dataset contained 1,000 respondents and 30 items

measuring five attributes. The Q-matrix is presented in Figure 4.
The last 20 items were evenly divided into 4 testlets. Specifically,
testlet 1 consisted of items 11∼ 15, testlet 2 consisted of items 16
∼ 20, testlet 3 consisted of items 21∼ 25, and testlet 4 consisted of
items 26 ∼ 30. For simplicity, the four pairs of RA and RT testlet
effects were generated from a same bivariate normal distribution,

(

γnm
λnm

)

∼ N

((

0
0

)

,

(

0.50
−0.25 0.50

))

,

where ργλ = −0.5. Typically, setting the testlet effect as 0.5
indicates a moderate testlet effect (Wang and Wilson, 2005;
Wainer et al., 2007). In addition, each item was assumed to
belong to only one testlet. Item parameters were generated from
a trivariate normal distribution,





βi
δi
ξi



 ∼ N









−2.197
4.394
4.000



 ,





1.00
−0.80 1.00
−0.25 0.15 0.25







 ,

where ρβδ = −0.8, ρβξ = −0.5, and ρδξ = 0.3, which were set
according to the estimates from the real data analysis (Zhan et al.,
2017); ωi were generated from N(2, 0.25). Person parameters

FIGURE 3 | Posterior mixing proportions for PISA 2015 computer-based mathematics items. only the 20 most frequent attribute patterns are displayed.

FIGURE 4 | K-by-I Q’ matrix for simulation study. blank means “0,” gray means “1”.
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FIGURE 5 | Bias for item parameter in simulation study. Jt, joint testlet-DINA model; JRT, JRT-DINA model; β, item intercept; δ, item interaction; ξ, item time-intensity;

ω, item time-kurtosis.

FIGURE 6 | Root mean square error (RMSE) for item parameter in simulation study. Jt, joint testlet-DINA model; JRT, JRT-DINA model; β, item intercept; δ, item

interaction; ξ, item time-intensity; ω, item time-kurtosis.

were generated from a bivariate normal distribution,

(

θn
τn

)

∼ N

((

0
0

)

,

(

1.00
−0.25 0.25

))

,

where ρθτ = −0.5. For higher-order structural parameters, νk
= 1.5 for all the attributes and κk = (−1.0, −0.5, 0.0, 0.5, 1.0),
indicating moderate correlations among attributes. The mastery
status of each person on each attribute was generated from a
Bernoulli distribution with the parameter, P(αnk = 1) which was
computed based on Equation (5).

Analysis
Thirty replications were implemented. Both the joint testlet-
DINA model and the JRT-DINA model were fit to the simulated

data. In each replication, the number of chains, burn-in
iterations, and post-burn-in iterations were consistent with
those in the real data analysis. Convergence was well achieved
(see Figure S3 in Appendix). The bias and root mean square
error (RMSE) were used to evaluate parameter recovery, which

were calculated as bias(υ̂) =
∑R

r=1
υ̂r−υ
R and RMSE(υ̂) =

√

∑R
r=1

(υ̂r−υ)2

R , where υ̂ and υ are the estimated and true
value of model parameters, respectively; R is the number of
replications. In addition, the correlation between the true and
estimated value of model parameters was computed. In terms
of the classification accuracy, the attribute correct classification
rate (ACCR) and pattern correct classification rate (PCCR)

were computed as ACCR =
∑R

r=1

∑N
n=1 Wnk

R×N and PCCR =
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∑R
r=1

∑N
n=1

∏K
k=1 Wnk

R×N , where Wnk = 1 if αnk = α̂nk, and Wnk = 0
otherwise.

Results
In all the 30 replications, the joint tesltet-DINA model
was favored by AIC, BIC and DIC, which indicates that
the three fit indices can select the best-fitting model
correctly.

Figures 5, 6 display the recovery of the item parameters
for the two models. According to the results of the last
20 items with testlet structure, the performance of the JRT-
DINA model was significantly affected by the paired local item
dependence. Specifically, ignoring paired local item dependence
in analysis would result in overestimation of item intercept
parameters, underestimation of item interaction parameters, and
underestimation of item time-kurtosis parameters. However, it
had little effect on the recovery of item time-intensity parameters.
In addition, most of the 10 items without testlet structure had
smaller absolute bias in parameter estimates from the joint
testlet-DINA model than from the JRT-DINA model; the RMSE
of the parameter estimates from the joint testlet-DINAmodel was
equal to or smaller than those from the JRT-DINAmodel.Table 6
further summarizes the item parameter recovery by presenting
the mean absolute bias, the mean RMSE, and the correlation
between estimated and true values of all the items. Again, it
can be seen that ignoring the paired local item dependence
mainly affected the recovery of item time-kurtosis parameters. In
addition, the item RT parameters were recovered better than the
item RA parameters in joint models.

Figures 7, 8 display the recovery of the person parameters
for the two models. The two models performed similarly on
recovering the higher-order ability parameter. In terms of the
latent speed parameters, the bias was similar for the two models,
but the RMSE from the JRT-DINAmodel was significantly larger
than that from the joint testlet-DINA model. The results indicate
that ignoring the paired local item dependence in analysis would

result in large variability in latent speed parameters but had little
effect on the recovery of higher-order ability parameters. Table 7
further summarizes the recovery of person parameters. The two
models mainly differed in the mean RMSE of latent speed across
person. In addition, the recovery of latent speed parameters was
better than that of the higher-order ability parameters.

Table 8 presents the recovery of individual attributes and
attribute patterns. The joint testlet-DINA model was higher than
the JRT-DINA model in both ACCR and PCCR, which indicates
that ignoring the paired local item dependence would slightly
reduce attribute and pattern correct classification rates (PCCRs).

Table 9 presents the recovery of item, person and testlet
variance-covariancematrices. First, in terms of the item variance-
covariance matrix, the bias was similar for the two models, but

TABLE 6 | Summary of the item parameter recovery in simulation study.

Index Item parameter Joint testlet-DINA JRT-DINA

MA_Bias β 0.025 0.127

δ 0.029 0.225

ξ 0.004 0.004

ω 0.017 0.572

M_RMSE β 0.158 0.214

δ 0.277 0.374

ξ 0.029 0.029

ω 0.052 0.591

Correlation β 0.986 0.982

δ 0.958 0.946

ξ 0.999 0.999

ω 0.973 0.123

MA_Bias, mean absolute value of bias across all items; M_RMSE, mean value of root

mean square error across all items; Correlation, correlation between estimated and true

values of all items; β, item intercept; δ, item interaction; ξ, item time-intensity; ω, item

time-kurtosis; JRT-DINA, joint responses and times DINA model.

FIGURE 7 | Bias for person parameter in simulation study. Jt, joint testlet-DINA model; JRT, JRT-DINA model; θ, higher-order latent ability; τ , latent speed.
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FIGURE 8 | Root mean square error (RMSE) for person parameter in simulation study. Jt, joint testlet-DINA model; JRT, JRT-DINA model; θ, higher-order latent ability;

τ , latent speed.

TABLE 7 | Summary of the person parameter recovery in simulation Study.

Index Item parameter Joint testlet-DINA JRT-DINA

MA_Bias θ 0.088 0.088

τ 0.020 0.026

M_RMSE θ 0.593 0.595

τ 0.137 0.175

Cor θ 0.803 0.801

τ 0.961 0.939

MA_Bias, mean absolute value of bias across all persons; M_RMSE, mean value of root

mean square error across all persons; Correlation, correlation between estimated and true

values of all persons; θ, higher-order latent ability; τ , latent speed.

TABLE 8 | Attribute and pattern correct classification rate in simulation study.

Analysis model ACCR PCCR

α1 α2 α3 α4 α5

Joint testlet-DINA 0.974 0.961 0.968 0.973 0.980 0.872

JRT-DINA 0.974 0.961 0.967 0.973 0.979 0.870

ACCR, attribute correct classification rate; PCCR, pattern correct classification rate.

the RMSE from the joint testlet-DINA model was larger than
that from the JRT-DINAmodel. Second, the latent speed variance
was recovered better in the joint testlet-DINA model than in the
JRT-DINA model. Third, all the four testlet variance-covariance
matrices were well recovered. The recovery of the RT testlet effect
variance parameters was better than that of the RA testlet effect
variance parameters.

Table 10 presents the recovery of item mean vector
components and higher-order structural parameters. The

item mean vector component estimates from the joint testlet-
DINA model had smaller absolute bias and RMSE than those
from the JRT-DINA model. The two models performed similarly
on recovering the higher-order structural parameters. The
results indicate that ignoring the paired local item dependence in
analysis would result in less precise itemmean vector component
estimates, but had little effect on the higher-order structural
parameter recovery.

Overall, the model parameters of the joint testlet-DINA
model were well recovered by using the proposed MCMC
estimation algorithm. Additionally, ignoring the paired local
item dependence in analysis would result in biased model
parameter estimates and lower correct classification rates.
Specifically, it would result in overestimation of item intercept
parameters, underestimation of item interaction parameters, and
underestimation of item time-kurtosis parameters. It would lead
to less precise estimates of latent speed parameters and item
mean vector components. It would also reduce attribute and
PCCRs. However, it had little effect on the recovery of item time-
intensity parameters, the higher-order ability parameters, or the
higher-order structural parameters.

CONCLUSION AND DISCUSSION

To address the paired local item dependence in RT and RA
when applying the joint CDMs, this study proposed a joint testlet
cognitive diagnosis modeling approach. As an extension of the
joint cognitive diagnosis modeling approach (Zhan et al., 2017),
the proposed approach modeled the relationship between each
pair of RA testlet effect and RT testlet effect using correlational
structure. Specifically, the testlet-DINA model and the within-
item multidimensional testlet effects lognormal RT model were
adopted as the RA model and RT model, respectively. The
model parameters were estimated using the full Bayesian MCMC
method. The 2015 PISA computer-based mathematics data were
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TABLE 9 | Recovery of Variance and Covariance Matrices in Simulation Study.

Parameter Joint testlet-DINA JRT-DINA

Bias RMSE Bias RMSE

6 item Variance of intercept σ2
β

0.043 0.230 −0.032 0.208

Covariance of intercept and interaction σβδ −0.001 0.211 0.057 0.202

Covariance of intercept and time-intensity σβξ −0.008 0.096 0.004 0.089

Variance of interaction σ2
δ

0.035 0.253 −0.033 0.242

Covariance of interaction and time-intensity σδξ 0.007 0.099 −0.004 0.089

Variance of time-intensity σ2
ξ

0.062 0.088 0.062 0.088

6person Covariance of ability and speed σθτ 0.004 0.020 0.003 0.021

Variance of speed σ2τ −0.001 0.010 0.019 0.022

6testlet,1 Variance of 1st RA testlet effect σ2
γ1 −0.010 0.098

Covariance of 1st pair of testlet effects σγ1λ1 0.008 0.048

Variance of 1st RT testlet effect σ2
λ1 0.002 0.032

6testlet,2 Variance of 2nd RA testlet effect σ2
γ2 0.013 0.104

Covariance of 2ndt pair of testlet effects σγ2λ2 0.000 0.038

Variance of 2nd RT testlet effect σ2
λ2 0.009 0.028

6testlet,3 Variance of 3rd RA testlet effect σ2
γ3 0.005 0.108

Covariance of 3rd pair of testlet effects σγ3λ3 0.009 0.034

Variance of 3rd RT testlet effect σ2
λ3 0.006 0.025

6testlet,4 Variance of 4th RA testlet effect σ2
γ4 0.014 0.107

Covariance of 4th pair of testlet effects σγ4λ4 −0.003 0.041

Variance of 4th RT testlet effect σ2
λ4 0.008 0.028

RMSE, root mean square error.

TABLE 10 | Recovery of item mean vector and higher-order structural parameters.

Parameter Joint testlet-DINA JRT-DINA

Bias RMSE Bias RMSE

µitem Mean intercept µβ −0.001 0.178 0.110 0.204

Mean interaction µδ −0.006 0.214 −0.229 0.311

Mean time-intensity µξ 0.012 0.094 0.013 0.095

κ Difficulty of attribute 1 κ1 0.008 0.114 0.008 0.119

Difficulty of attribute 2 κ2 0.002 0.108 0.002 0.107

Difficulty of attribute 3 κ3 −0.010 0.111 −0.010 0.111

Difficulty of attribute 4 κ4 0.048 0.121 0.048 0.119

Difficulty of attribute 5 κ5 0.007 0.103 0.002 0.099

ν Slope of attribute 1 ν1 −0.006 0.151 −0.006 0.150

Slope of attribute 2 ν2 0.049 0.191 0.052 0.198

Slope of attribute 3 ν3 −0.007 0.190 −0.008 0.189

Slope of attribute 4 ν4 0.105 0.230 0.106 0.227

Slope of attribute 5 ν5 −0.056 0.170 −0.060 0.168

RMSE, root mean square error.

analyzed to demonstrate the application of the proposed model.
The real data analysis results are summarized as follows: (a)
a negative correlation was observed between the higher-order
ability and latent speed; (b) a negative correlation was observed

between the item intercept parameters and the item time-
intensity parameters; (c) a positive correlation was observed
between the item interaction parameters and the item time-
intensity parameters; (d) the magnitude of RA testlet effects
varied from small to large whereas the magnitude of RT testlet
effects was large; and (e) low correlation coefficients between the
RA and RT testlet effects were found. Overall, most results in this
real data analysis were consistent with those in Zhan et al. (2017)
that used PISA 2012 computer-based mathematics data. Further,
a simulation study was conducted to examine model parameter
recovery of the proposed model and the consequence of ignoring
testlet effects. The results indicated that the model parameters of
the proposedmodel can be well recovered. Additionally, ignoring
the paired local item dependence in analysis would result in
biased model parameter estimates and low individual correct
classification rates.

Despite the promising results, further research is needed.
First, only a DINA-based testlet model and a lognormal RT-
based testlet model were used for illustration in this study. In
the future study, other CDMs (e.g., von Davier, 2008; Henson
et al., 2009; de la Torre, 2011) and RT models (e.g., Klein Entink
et al., 2009b; Wang et al., 2013) can be used as the measurement
models of RA and RTs. Second, in this study, the proposed model
was evaluated using a brief simulation where only a limited
number of factors were manipulated. More factors (e.g., test
length, number of attributes, magnitude of testlet effects, etc.)
and replications are recommended in future studies. Third, the
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model-data fit of RA and RT models was evaluated separately
because of the lack of model-data fit indices for the joint models.
In the future studies, absolutely model-fit indices designed for
joint models can be explored and further be applied to evaluate
the current modeling approach. Fourth, in educational and
psychological measurements, latent speed can be defined as the
ratio of the amount of labor spent on the items with respect
to time (van der Linden, 2011). Due to the multidimensional
nature of labors, latent speed may also be a multidimensional
concept, each dimension of which corresponds to a specific
type of labor. The latent speed was treated as a unidimensional
latent trait in this study although the RT testlet effect can be
regarded as a specific factor that is relevant to the working speed.
Recently, Zhan et al., Manuscript submitted for publication
proposed amultidimensional lognormal RTmodel to account for
the potential multidimensionality of latent speed. One possible
extension of the current joint modeling approach is to account
for the multidimensional latent speed. Fifth, as noted by one of
the anonymous reviewers, if there are many testlets, there will
be many bivariate covariance matrices to be estimated, leading
to large computational burden. Further exploration is needed to
deal with this challenging issue. Sixth, in this study, respondents
were assumed to be from the same population group, but, in
reality, they may be from different groups (e.g., male and female).
Multiple group joint modeling (e.g., Jiao et al., 2017) and mixture
modeling (e.g., von Davier, 2008) can be incorporated into the
current modeling approach in the future. Seventh, in practice,

students are nested within classrooms, and classrooms are further
nested within schools. Thus, multilevel modeling (e.g., Fox and

Glas, 2001; Jiao et al., 2012; Jiao and Zhang, 2015) extension
can also be a future direction. Finally, the generalizability of the
results from this study is limited given that only data from a low-
stakes test were analyzed. More empirical studies based on data
from other tests, especially high-stakes tests, are needed.
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