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Abstract: Due to its high morbidity and mortality, gastric cancer is a topic of a great concern
throughout the world. Major ways of treatment are gastrectomy and chemotherapy, unfortunately
they are not always successful. In a search for more efficient therapy strategies, viruses and their
potential seem to be an important issue. On one hand, several oncogenic viruses have been noticed in
the case of gastric cancer, making the positive treatment even more advantageous, but on the other,
viruses exist with a potential therapeutic role in this malignancy.
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1. Introduction

Gastric cancer is, according to different sources, the 5th most common cancer in the world [1].
According to the GLOBOCAN 2018 database, over 1 million cases were reported in 2018, including
781,631 deaths [1]. However, using this database, one can notice a downward trend in the incidence
of this particular type of cancer [2]. Tumors are caused not only by accidental errors in the process
of DNA replication and repair, but also by the body’s exposure to harmful physical and chemical
factors. Diet and activity have a significant impact on morbidity. All these factors affect a number
of cytogenetic changes leading to uncontrolled cell proliferation and, as a result, the formation of
tumors [1]. Viruses are known to possess oncogenic function, meaning that they are suspected of
causing cancer in about every 10th case [3]. The most prominent and frequent pathogens related
to cancers are human papillomavirus (HPV; associated with 640,000 cases), hepatitis B virus (HBV;
420,000 cases), hepatitis C virus (HCV; 170,000 cases) and Epstein–Barr virus (EBV; 120,000 cases) [3],
but the oncogenic role of several others have also been confirmed in different types of cancer (Table 1).

Nevertheless, viruses have two faces—apart from being a cancer factor, viruses can also kill
malignant cells, simultaneously sparring the healthy ones [4]. This oncolytic feature is interesting,
as it potentially may be translated into clinical/therapeutic advantage, showing, that viruses have a
double-sword role in gastric cancer.
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Table 1. Human oncogenic virus.

Family Virus Cancer Type References

1. DNA viruses

Hepadnaviridae HBV Hepatocellular carcinoma, cholangiocarcinoma *,
non-Hodgkin lymphoma *, gastric cancer * [5–12]

Herpesviridae

EBV/HHV-4

Nasopharyngeal carcinoma, Burkitt lymphoma,
immune-suppression-related non-Hodgkin
lymphoma, extranodal natural killer/T-cell

lymphoma (nasal type), posttransplant
lymphoproliferative disorder, Hodgkin lymphoma,
breast cancer *, gastric cancer *, leiomyosarcomas *,

AIDS-associated lymphomas *

[5–15]

KSHV/HHV-8
Kaposi sarcoma, primary effusion lymphoma,
AIDS-related lymphoproliferative disorder *,

multicentric Castleman’s Disease *
[5–12]

Papillomaviridae HPV
Cervical cancer, oropharyngeal cancers, anal cancer,
penile cancer, vaginal cancer, vulvar cancer, larynx

cancer *
[5,6,8–13,16,17]

2. RNA viruses

Flaviviridae HCV
Hepatocellular carcinoma,
non-Hodgkin’s lymphoma,

cholangiocarcinoma *,
[5–12]

Retroviridae HTLV-1 Adult T-cell leukemia/lymphoma (ALT) [5–12]

HBV: Hepatitis B virus; EBV/HHV-4: Epstein–Barr virus/Human herpesvirus 4; KSHV/HHV-8: Kaposi’s
sarcoma-associated herpesvirus/Human herpesvirus 8; HPV: Human Papillomavirus; HCV: Hepatitis C virus;
HTLV-1: Human T-lymphotropic virus-1. * Cancer sites with limited evidence.

2. Oncogenic Viruses

Several viruses are known to have a confirmed oncogenic role in different types of malignancies
(Table 1). Nevertheless, there are also viruses, with only a potential oncogenic role, where studies are
limited or ambiguous (Table 2).

Table 2. Potentially oncogenic human viruses.

Family Virus Cancer Type References

1. DNA viruses

Adenoviridae HAdV-A 12, 18, 31
HAdV-D 9 Various solid tumors in rodents [5,9]

Papovaviridae MCV/MCPyV Merkel cell carcinoma [5–7,11,16]

JCV, BKV Solid tumors in rodents and primates [5,9,11]

2. RNA viruses

Retroviridae

HIV-1

Kaposi’s sarcoma, non-Hodgkin lymphoma,
Hodgkin’s lymphoma, cervical cancer, anal cancer,
conjunctival cancer, vulvar cancer *, vaginal cancer

*, penile cancer *, non melanoma skin cancer *,
hepatocellular carcinoma

[5,11]

HIV-2 Kaposi’s sarcoma *, non-Hodgkin’s lymphoma * [11]

HERV-K Breast cancer [11]

XMRV Prostate cancer [11]

HAdV-A: Human Adenovirus A; HAdV-D: Human Adenovirus D; MCV/MCPyV: Merkel cell polyomavirus; JCV: JC
polyomavirus; BKV: BK polyomavirus; HIV-1: Human immunodeficiency virus 1; HIV-2: Human immunodeficiency
virus 2; HERV-K: Human endogenous retrovirus K; XMRV: Xenotropic murine leukemia virus-related virus. * Cancer
sites with limited evidence.
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Oncogenic Viruses and the Immune System

The invasion of virus into the host caused a cascade of immune system actions [18]. It is worth
remembering, that oncogenic viruses generally maintain chronic infections, not acute states, while the
first resembling the state of carcinogenesis [19]. There are two ways of targeting the host cell ensuring
cellular replication—virus may be either maintained as genetic element and viral genomes form
episomes or it can integrate into the host genomic DNA [19]. In both mechanisms, a specific interaction
is seen between the virus and the host cell, while oncogenic virus nurture infection of a controlled
number of cells [19]. If the cancer cell dies, it will be also the end of the virus, so in a way the
replication of the virus keeps both sides of the contract running. Over all, carcinogenesis is increasing,
when antiviral immune responses are impaired [20]. Oncogenic viruses are also manipulating several
signaling pathways, what severely interferes the actions. Main pathways are Pi-3K-AKT-mTor, MAPK,
Notch, WNT-β-catenin and NK-κB [21].

Direct tumorigenesis is mediated by carcinogenic agents helping to keep the tumor phenotype
and help the virus maintain as a genetic element (commonly retroviruses), while indirect
transformation is conditions by two mechanisms—one is triggering chronic infection, and the second is
immunosuppression (mostly presented by HBV, HVC and HIV). It is worth mentioning, that EBV, but
under the same conditions also HBV and HCV, are viruses using both direct and indirect mechanism
of carcinogenesis [19].

Summing up, several mechanisms are enumerated as viral oncogenic mechanisms (Figure 1), and
all those mechanisms are directly or indirectly connected to different stages of the viral life cycle [19], like
genomic instability, the cell proliferation, resistance to apoptosis, alterations in DNA repair mechanisms
and cell polarity changes [10,19]. Viral agents also indirectly contribute to the development of cancer
mainly through immunosuppression or chronic inflammation, but also through chronic antigenic
stimulation. There is also evidence that viruses can modulate the malignant properties of an established
tumor [19]. Moreover, one of the strategies to avoid antiviral immunity by oncogenic viruses (DNA
and RNA) is the ability to regulate host DNA methylation [20]. Inducing hypermethylation of
immune genes is leading to viral replication and persistence and is a common mechanism to potentiate
virus-induced cancer progression [20]. An important factor impacting oncogenesis may also by miRNA,
participating in cell transformation, by inhibiting mRNA translation [19,22].
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3. Oncogenic Viruses in Gastric Cancer

3.1. Epstein–Barr Virus

The Epstein–Barr virus is one of the human herpesviruses with a proved oncogenic potential [1].
It belongs to the Herpesviridae family in the Herpesvirales order [23]. It has linear double-stranded
DNA 168–184 kbp long, which consists of 85 genes [24]. Due to the difference in the EBNA gene,
2 subtypes of EBV 1 and 2 were distinguished [1,24,25].

EBV, like all herpesviruses, has a latent and lytic phase [26]. The infection of B lymphocytes with
EBV in cell culture results in the establishment of an immortalized B cell line [27]. There are several
proteins encoded in the EBV genome that have transformational potential. One of them is LMP1 (latent
membrane protein), which has the ability to transform equal types of cells, including fibroblasts in
rodents [28]. In addition, the LMP1 gene is necessary for the virus to kill B lymphocytes, since its
removal causes a lack of transformation [28].

LMP1 has many transmembrane spanning domains and its carboxyl terminus may interact with
several tumor necrosis factor receptor associated factors (TRAF) [26,29]. The interaction between LMP1
and TRAF results in high expression of the nuclear factor kB (NF-kB) in LMP1-expressing epithelial
and B cells [26]. LMP1 also upregulates the expression of some genes responsible for apoptosis and
adhesion, including A20, bcl2 and ICAM-1 [26]. In addition, it activates the expression of interferon
regulatory factor 7 (IRF-7) [30], matrix metalloproteinase 9 (MMP-9) and fibroblast growth factor-2
(FGF-2) [31].

Another viral gene, LMP2, has been shown to inhibit B-cell receptor (BCR) signaling [32]. It works
by sequestering the Src family members Fyn and Lyn, preventing their translocation into lipid rafts
with BCR, thereby inhibiting BCR activity [33].

Other viral genes that encode transforming potential include EBV nuclear antigen 2 and 3 (EBNA2
and EBNA3). EBNA2, like LMP1, is necessary for the transformation of B cells, because the removal
of this gene from the wild type EBV makes the virus unable to kill B cells [26,34]. Among the genes
encoding EBNA3, EBNA3A and EBNA3C, they are necessary for the transformation of B cells, while
EBNA3B is unnecessary [35]. All three EBNA3 proteins can interfere with EBNA2 activation, interfering
with its intercalation with RBP-Jk DNA-binding protein, thereby suppressing its EBNA2-mediated
transactivation [26]. EBNA3C may therefore promote cell proliferation and cross the G1-S phase
checkpoint and may also work with EBNA2 and EBNA3A to modulate cell gene expression in EBV
infected lymphocytes.

In general, the oncogenic mechanism of EBV relies on coding LMP1 and LMP2, EBNA1-3, leader
protein (LP), BamHI A reading frame 1 (BARF1) and BamHI A rightward transcript miRNAs, which
their role is to promote transformation of B cells and epithelial cells and block pro-apoptotic proteins
in host cells [20]. Lately it was also confirmed [20] that stimulation of DNA hypermethylation of host
genes might contribute to carcinogenesis.

It is widely believed that EBV contributes to the development of many diseases, including Burkitt’s
lymphoma, Hodgkin’s lymphoma, diffuse large B-cell lymphoma, lymphoproliferative disorder in
people with immunodeficiency [24,36,37], post-transplant lymphoproliferative disease, central nervous
system lymphoma, non-Hodgkin lymphoma, oral hairy leukoplakia [38] and gastric cancer [24,38–44].

Many different independent studies confirm the presence of EBV virus in cancer cells, among
others, in lymphoepigastric adenocarcinomas [40], lymphoepithelioma-like gastric carcinoma with
marked lymphocytic stroma [41]. In general, EBV is detected in approximately 10% of gastric cancer
cases [42,45]. Its existence in gastric cancer was first discovered in 1990, by the means of a polymerase
chain reaction (PCR) [46]. The EBV-encoded small RNA 1 (EBER1) gene is used to confirm the presence
of the virus in cancer cells. It is a viral protein attributed to the function of combining viral DNA
with host chromosomes, which enables its replication by host DNA polymerase [24]. The presence of
this gene can be confirmed by carrying out both the polymerase reaction and in situ hybridization
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(ISH) [44]. When the ISH method is used, EBER1 signals are detected in the nuclei of gastric cancer
cells [41,42,47]. In EBV positive stomach cancer (EBVaGC), all cancer cells carry the EBER1 gene [43].

Published in 2014, the Cancer Genome Atlas (TCAG) study, presented the gastric adenocarcinomas
division into four groups: 1. EBVaGC; 2. microsatellite instability (MSI); 3. chromosomal instability
(CIN) and 4. genomically stable (GS) tumors [48]. It has been reported that EBV 16 positive tumors are
characterized by the transmission of recurrent mutations in the PIK3CA gene, DNA hypermethylation
and overexpression of the JAK2, PD-L1 and PD-L2 genes [38,43,48,49].

In 2015, Chen et al. [44] published a systematic review in which they focused not only on studies
showing the presence of the EBER1 gene in cancer cells and also in non-tumor tissues adjacent to
the stomach in cancer patients, in the non-tumor mucosa of healthy patients, patients with mild
stomach diseases and in the deceased individuals and studies comparing anti-EBV antibodies in the
serum of healthy and sick patients. They analyzed 47 studies; in total 9909 patients were examined,
including 8069 patients and 1840 healthy people. The EBER1 positivity tested by the ISH method was
significantly higher and ranged from 5% to 17.9% in the tumor tissue than in the adjacent mucosa in
the same patients or biopsies from all control groups—almost 0%. They also noted that some cases of
confirmation of the presence of EBER1 by PCR were not confirmed by ISH. They concluded that the
ISH method makes it possible to effectively determine the relationship between gastric cancer and EBV
infection, and the PCR method is not efficient enough.

3.2. HHV-8

Human herpesvirus 8, like EBV, belongs to the Herpesvirales family, to the subfamily
Gammaherpesvirinae [23]. It was first discovered in AIDS-related Kaposi’s sarcoma in 1994,
which owes its second name: Kaposi sarcoma herpes virus (KSHV) [50]. KSHV is also involved in
the development of primary effusion lymphoma, multicentric Castleman’s disease (MCD) [24,51,52]
and B-cell lymphoproliferative disorders that can be converted to KSHV-associated non-Hodgkin’s
lymphoma and also primary effusion lymphoma (PEL) [39,53].

The KSHV genome contains a variety of genes responsible for transformation, signaling, prevention
of apoptosis and avoidance of immunity. Researchers believe that HHV-8 transforms cells through a
paracrine mechanism because several studies have shown high levels of cytokines and growth factors
in KS and MCD changes [26].

KSHV can immortalize primary bone marrow endothelial cells and induce cell proliferation,
anchoring independence and survival of these cells. Researchers also found that only a subset of
transformed endothelial cells contained viral DNA, which firmly said that adjacent uninfected cells
survived due to a mechanism involving cytokines secreted by infected cells [54]. On this basis, it has
been suggested that transformation of KSHV is dependent on paracrine factors [26].

The KSHV K1 genes and viral G-protein-coupled receptors (vGPCR) have oncogenic potential.
The K1 protein is able to transform rodent fibroblasts in vitro, and when injected into nude mice,
these cells induce numerous and widespread tumors. In addition, K1 has the ability to functionally
replace the saimiri transforming protein (STP) of herpesvirus saimiri (HVS) in vitro and in vivo to
induce lymphoma in marmoset monkeys [26]. Transgenic animals expressing K1 develop sarcomas
and lymphomas [55]. In addition, K1 can induce B cell signaling and proliferation through an
immunoreceptor tyrosine-based activation motif (ITAM) and blocking Fas-induced apoptosis of these
cells [56,57]. In addition, Wang et al. found that K1 can activate the NF-kB and PI3K paths. In the
endothelial cells, researchers showed that K1 upregulates the expression and secretion of vascular
endothelial growth factor (VEGF) and MMP-9 [58,59].

Similarly to the K1 protein, the KSHV vGPCR protein works, which has the ability to transform
NIH 3T3 cells in vitro. vGPCR can also activate phospholipase C (PLC) and PI3K pathways [60]. This
protein also immortalizes primary endothelial cells and transgenic mice expressing vGPCR develop
angioproliferative changes similar to Kapossi sarcoma-like lesions [61]. In addition, expression of
vGPCR in various cell types leads to upregulation of many cytokines and paracrine factors. Thus, this
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specific viral protein may be involved in the development of KSHV-related cancer by inducing and
supporting cell proliferation.

In addition to the two proteins mentioned above, the KSHV genome also encodes: interferon
1 regulatory factor (vIRF-1) and the Kaposin/K12 gene. Both of these proteins have in vitro
transformation potential [26]. In addition, researchers have shown that LANA (latency-associated
nuclear antigen) immortalizes endothelial cells and induces B cell and lymphoma hyperplasia in
mice [62,63].

Despite learning about many models of KSHV transformation and oncogenesis, the origin of
KS-related tumor cells remains controversial [64]. In order to understand the exact mechanism of
KSHV oncogenesis, further research is needed, both in human and animal models, because more
transformation pathways than presented may exist.

KSHV cannot transform any cells in culture and does not sustain its own persistence without EBV
co-infection [39,65]. In the case of the PEL, the researchers found that KSHV/EBV co-infection occurred
in most of the cases [66]. The role of EBV in this disease is not fully understood. It is believed that
in this very case EBNA1 gene expression increases KSHV virus load and an increase in the extent of
LANA [66]. It is possible that the function of the EBV in KSHV/EBV co-infection in other cases is also
to enhance the virulence and the KSHV genome expression in the host cells.

This virus has a long dsDNA chain (over 140 kbp) [24]. Unlike EBV, KSHV does not connect to
chromosomes, but connects to genomic DNA indirectly, due to the LANA1 protein with histones H2A
and H2B [67].

3.3. Human Papillomavirus

Human papillomavirus (HPV) belongs to the Papillomaviridae family [23]. Among the many
distinguished types of HPV, type 16, 18, 33, 45, 52 and 58 are associated with various types of
cancer, including cervical, anogenital, penile and nasopharyngeal cancers [24,68–70]. Research on
the potential role and development of HPV-16 and HPV-18 viruses in cervical cancer was initiated
by zur Hausen et al. in the 1970s [71–73], for which he was awarded the Nobel Prize in Medicine and
Physiology in 2008 [74]. This shows how important it is to study the role of oncoviruses, not only
HPV, in order to fully understand their mechanisms of action, develop methods for their detection and
discover effective treatment methods.

The HPV genome is built of 7–8 kbp circular double-stranded DNA [75]. After many studies, it
has finally been determined that the most common route of transmission of this virus is the sexual
route [76]. However, HPV is a very stable virus and can survive on surfaces for up to several days.
The virus is also resistant to some disinfectants [76–78]. For this reason, the virus can also be transmitted
through by non-sexual means: either by way of mother to child, fomites, self-inoculation or nosocomial
infection [76]. It is very possible that all the HPV transmission routes have not yet been discovered.
For this purpose, long-term prospective studies should be undertaken. Although the sexual route
is the most common way it is very necessary to spread among the public about alternate modes of
transmission [79].

Primary HPV infection occurs in basal epithelial stem cells [26]. Then the virus traverses upwards
and replicates in finally differentiated keratinocytes, and is shed from the stratum corneum [26,80].
The HPV genome lacks an enzyme necessary for replication—DNA polymerase—and therefore the
replication of the viral genome depends on the stimulation of cellular DNA synthesis in infected
cells [26].

In the vast majority of cervical cancers, HPV integrates with the host genome, resulting in loss of
expression of the E2 viral gene, which is the transcriptional repressor of the E6 and E7 genes. As a result,
there is an increased expression of oncoproteins encoded by these two genes [80]. E6 and E7 proteins
from high-risk virus strains have strong transformational abilities. It has been shown [26,81,82] that
these proteins immortalize cells in vitro and induce skin tumors in transgenic animals.
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HPV viral oncoproteins attack tumor suppressors. The overall result is cell cycle and cell growth
dysregulation and the inhibition of the apoptosis. E6 binds the p53 transcription factor and induces its
degradation [83]. E6 binds to ubiquitin ligase forming the E6-AP complex, binding p53 and causing
ubiquitination and proteosomal destruction of proteins [84]. In addition, E6 may induce telomerase
activity and lead to cell immortalization [85].

E7 binds members of the retinoblastoma (Rb) family [86]. This protein hinders Rb function and
allows cells to enter the S phase of the cell cycle. E7 binds to the hypophosphorylated form of Rb and
prevents its binding to E2F transcription factor. Free E2F transcription factors promote the expression
of genes required for cell DNA synthesis, thereby pushing the cell into the cell cycle [26,87]. In addition,
E7 stimulates cyclin-A and cyclin-E dependent kinase activity and deactivates p21/WAF1 and p27/KIP1
kinase inhibitors. E7 may also be the cause of the synthesis of abnormal centrioles and aneuploidy at
an early stage of the oncogenic process [26].

Treatment of the effects of his infection is possible due to the discovery of HPV vaccines. Available
vaccines protect against two, four or nine types of HPV, but each of them is directed at least to
HPV-16 and HPV-18—the types of virus whose infection causes the greatest risk of developing cervical
cancer [88].

In 2018, de Souza et al. conducted studies aimed at demonstrating correlations in co-infection
with HPV, EBV and Helicobacter (H.) pylori in gastric cancer [13]. Three hundred and two samples were
tested, most of which (55%) were classified as an enteric subtype. All three pathogens were found
in the samples tested, including H. pylori in 87%, EBV in 20% and HPV in 3%. Interestingly, among
HPV-positive samples, researchers found only viruses of Types 16 and 18. Based on the research, they
concluded that human papillomavirus is not involved in the development of gastric cancer [13].

No other studies were found that clearly and undeniable confirm the correlation between HPV
infection and gastric cancer.

3.4. Hepatitis B Virus

The hepatitis B virus (HBV) is a human, partially double-stranded DNA virus with a diameter
of 42–47 nm and a genome of about 3.2 kbp [19,89]. It belongs to the family of Hepadnaviridae of
the genus Orthohepadnavirus [23]. It is replicated in hepatocytes via indirect RNA using viral reverse
transcriptase [90]. The virus has a natural tropism to the liver and in most cases, the infection leads to
liver damage, with the consequence that hepatocellular carcinoma develops [91,92].

The HBV genome has a small HBx region that plays an important role in oncogenesis [93]. The HBx
is a relatively small 17kDa polypeptide [94,95]. The HBx activates many different promoter elements.
It is responsible for activating transcription of viral and cellular genes. It changes signal transduction,
disrupting the signaling cascade above the transcription complex. These signaling cascades trigger
the activation of many factors such as AP-1, NF-kB, SP1 and Oct-1 [96]. The HBx protein stimulates
entry into the cell cycle by activating selected cyclins and cyclin-dependent kinase pathways, as well
as pathways such as Wnt, ras, PI3K, JAK/STAT, NF-kB and Hedgehog, which promote survival and
growth [97,98]. Nuclear HBx affects transcription regulation by activating CREB, ATF-2, ATF-3, NFAT,
C/EBPβ and SMAD4 complexes and facilitates the introduction of epigenetic changes that affect the
expression of the host cell gene [99,100]. Changes in HBx-mediated miRNA levels both modulate
the expression of oncogene and the suppressor gene [101]. Hepatitis B virus avoids both growth
suppression and immune destruction by blocking the process of apoptosis. Internal apoptosis is caused
by the occurrence of oxidative stress caused by the virus itself, while external apoptosis is activated
through the immune system [98]. The HBx blocks the activation of the key mediator of congenital
antiviral signaling, which is the MAVS (mitochondrial antiviral signaling protein), while the prevention
of external apoptosis is caused by TNFα, TGFβ and Fas by blocking caspases 8 and 3 and activating
NF-kB, the latter being responsible for liver protection [98]. The HBx protein replaces the negative
regulation of TGFβ growth and converts it into a tumor promoter [100]. Mitochondrial-associated
HBx causes an increase in reactive oxygen species (ROS). High levels of ROS, combined with the
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progression of the cell cycle, increase the risk of occurrence and spread of mutations many times
over [100]. The HBx promotes cell division by directly interacting with the p53 protein by suppressing
binding and transcriptional down regulation, in addition it promotes Rb inactivation and down
regulates some cdk inhibitors [96,98]. HBx also inhibits DNA 1 binding protein (DDB1) damage during
repair of nucleotide excision, and also promotes the appearance of multinucleated cells, chromosome
rearrangement and micronucleus formation [100]. In cell culture experiments, indeed, HBx expression
significantly inhibited the ability of cells to repair damaged DNA [102]. The HBx can also cause
increased angiogenesis and metastasis, through the transcription factor HIF1α, which activates Ang-2
(angiopoietin-2) and VEGF (vascular endothelial growth factor) [100]. The HBx protein influences the
development of all key features of cancer and does not have to interact with other viral oncogenes [96].

Chronic HBV infection is associated with EHC (extra-hepatic cancers) such as pancreatic cancer,
non-Hodgkin’s lymphoma and gastric cancer. Hepatitis B virus, through the bloodstream, can lead to
infection of tissues of organs other than the liver. HBV antigens outside the liver are also often detected
in the stomach, gastrointestinal tract, pancreas and kidney [92,103,104]. It is possible that HBV can
replicate in extra-hepatic tissues and plays an oncogenic role [92]. Over the past several years, there
have been many independent studies showing the relationship between HBV surface antigen (HBsAg)
and gastric cancer [91,92,103–107].

Chen et al. [106] in 2004 noticed that very often a co-infection of the hepatitis B virus and
Helicobacter (H.) pylori was observed in patients. The study involved 72 patients of Jiangsu Province
in China, including 28 patients with diagnosed chronic hepatitis B and 44 patients with advanced
hepatic cirrhosis caused by hepatitis B who were the study group. Thirty patients with gastritis but no
liver disease was included in the control group [106]. There was no significant difference between the
cirrhosis group and the group with chronic hepatitis. It was observed that HBV antigen expression in
the gastric mucosa with positive H. pylori infection was 69.8% and with negative 73.7% (p > 0.005) [106].
It has been concluded that HBsAg and HBcAg overexpression coexist with H. pylori antigen expression
in the gastric mucosa of persons with H. pylori infection, thus early treatment of H. pylori infection may
be beneficial for the prognosis of patients with chronic liver disease [106]. In 2011, research was carried
out in China in which ten commonly occurring extrahepatic tumors were assessed. The tests evaluated
the presence of HBsAg in cancerous tissues. Approximately 14% of patients with confirmed gastric
cancer received a positive result for the presence of the hepatitis B surface antigen (HBsAg) [92,107].
In contrast, in the Republic of Korea, the presence of HBsAg was confirmed in 3.4% of women and
4.7% of men with stomach cancer [92,103].

Ghasemi et al. [104] in 2012 presented their research, in which they examined the effect of HBV
on gastric cancer in the population of Northern Iran. Researchers collected 100 biopsy blocks with
paraffin fixed in formalin and gastric cancer was confirmed in all trials [104]. In the study group, 69%
of patients with gastric cancer were middle-aged men and 31% were women. The authors did not
show the presence of the HBV genome in gastric cancer in their studies, which indicates that HBV is
not correlated with the development of gastric cancer in the inhabitants of Northern Iran [104].

The first studies that showed the actual relationship between hepatitis B virus infection and gastric
cancer appeared in 2015. Wei et al. [105] conducted a retrospective follow-up study with 580 cases and
580 controls that matched each other by age, gender and year of diagnosis. The relationship between
gastric cancer and HBV infection was investigated using one- and multi-dimensional unconditional
logistic regression analysis. The results obtained show that the HBsAg antigen is positively associated
with gastric cancer (AOR (95% CI): 1.49 (1.06–2.10)) [105]. However, the relationship remained
significant in patients with no family history of cancer (AOR (95% CI): (1.06–2.11)). In the group with
negative HBsAg, which are anti-HBc positive/anti-HBs negative, which probably suggested latent
HBV infection, also shows some association with gastric cancer. Besides, some synergistic effects have
been demonstrated between HBV infection and blood group A in gastric cancer. Studies directly show
that HBV infection is positively associated with the development of gastric cancer, especially in a
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group of patients who have no confirmed family history of gastric cancer. Wei et al. stated that further
prospective studies are needed to finally confirm the association of HBV with gastric cancer [105].

In 2019, the latest research appeared that aimed to confirm the relationship between HBV infection
and gastric cancer [92]. The correlation between gastric pathology and hepatitis B virus infection in
patients with positive or negative H. pylori infection was evaluated. The study involved 728 patients
who underwent endoscopy in 2017–2018. Histopathological analysis of tissues was performed on
samples taken from the stomach [92]. The presence of HBsAg in the serum of the examined patients
was confirmed by the immunoenzymatic method (ELISA). The relationship between gastric cancer and
HBV infection was examined using logistic regression analysis. From the results obtained, it appears
that among 728 patients, HBsAg infection was detected in 83 (11.4%), while H. pylori infection was
confirmed in 408 (56%) patients. Co-infection with H. pylori/HBV was confirmed in 69 (9.5%) patients [92].
Helicobacter pylori infection was significantly more frequently detected in patients with positive HBsAg
than negative (p = 0.029) [92]. Not a single patient co-infected with H. pylori/HBV had normal stomach
tissue. There was a significant histopathological difference in gastric tissue between patients with HBsAg
positive and no H. pylori infection (p < 0.0001). The hepatitis B surface antigen (HBsAg) was associated
with histopathological changes in stomach tissue (OR = 21.56, 95%CI = 7.070 − 65.741, p < 0.001)
and may be a potential risk factor for gastritis (OR = 12.457, 95% CI = 3.007-51.614, p = 0.001) [92].
The effect of HBsAg infection on the development of stomach cancer was not confirmed (OR = 2.127,
95%CI = 0.242–18.704, p = 0.496). Baghbanian et al. [92] concluded that HBV infection alone may be
associated with some precancerous lesions, but is not correlated with gastric cancer. In contrast, the
hepatitis B virus, in the case of people with Helicobacter pylori infection, can significantly affect the
severity of precancerous conditions or the development of gastric cancer [92].

3.5. Hepatitis C Virus

Hepatitis C virus (HCV) is a human, single-stranded, linear RNA virus with positive (+) ssRNA
polarity and a length of about 9.6 kbp [108–110]. The virus belongs to the family Flaviviridae of the
genus Hepacivirus [23]. It is estimated that around 171 million people worldwide are constantly infected
with HCV, which causes a number of chronic liver diseases [110,111]. Hepatitis C virus, like hepatitis
B virus, has a natural tropism to the liver and contributes to hepatocellular carcinoma (HCC) and
gallbladder cancer [8,110].

In the case of HCV, both the core and the unstructured protein 5A (NS5A) and NS3 directly
promote the development of hepatocellular carcinoma, by altering the expression of the host gene,
and inflammation caused by the immune system indirectly affects the formation of tumors [112,113].
The HCV core and the NS3 and NS5A proteins promote the proliferation of liver cells through the
β-catenin pathway. The core protein affects the expression of cyclin-dependent kinase 2 (cdk2) and
cyclin E [100,114].

The HCV, as with the HBV, avoids growth suppression and immune destruction by inhibiting the
apoptosis process [114]. HCV infection induces innate immunity, but viral proteins effectively block
signaling that triggers IFNβ (interferon beta) as well as IFNα (interferon alpha) signaling by targeting
JAK/STAT [100]. The HCV core and NS3 protein inactivate many suppressor genes [100]. The core
blocks the process of apoptosis by inhibiting caspase 8 using the host’s immune system [100,112,114].
Binding of NS5A to signaling cellular molecules inhibits the immune response, suppressor genes and
apoptosis [98,115]. The HCV virus up-regulates miR-181, which causes the appearance of “stemness”
markers in hepatocellular carcinoma [100]. One of the features of HCV-associated cancers is replication
immortality. In the case of hepatitis C virus, stable transfection of human hepatocytes with the HCV
core promotes differentiation, continuous growth and increased expression of telomerase, which can
largely promote immortality [100].

The HCV has the ability to trigger an angiogenesis process. This process is caused by the
production of a large amount of ROS, which affect the activation of a number of HIF1α stabilizing
signaling pathways [115].
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Malignant strains of HCC have a predisposition to invade and metastasize. This is caused
by elevated levels of the HGF receptor (hepatocyte growth factor) and c-met. These factors can
lead to diffusion, angiogenesis, proliferation and increased cellular motility, eventually to invasion
and metastasis [100]. The HCV core causes EMT (epithelial–mesenchymal transition) and tumor
invasion. By activating JNK/pSmad3L signaling, the core protein abolishes TGFβ-dependent tumor
suppression [115].

DNA repair and apoptosis are also regulated by poly (ADP-ribose) polymerase 1 (PARP-1).
The NS5A protein stabilizes PARP-1 levels by blocking caspase 3-mediated cleavage. These processes
may allow mutation reproduction and genetic instability in cells infected with HCV [100,115].

Patients infected with HCV have a higher risk of developing hepatocellular carcinoma compared to
those who are not infected. Unlike HBV, which has the ability to integrate into the host genome, thereby
causing direct carcinogenic activation, it is known that HCV is an RNA virus that has limited ability to
integrate its genetic information into the host genome. Therefore, hepatitis c virus carcinogenicity is
associated with indirect mechanisms [116]. In total, HCV and HBV caused 433,186 new liver cancer
cases and 406,779 deaths in 2012, which is 77.61% of liver cancer cases and 76.6% of deaths [8]. There
are no data to date regarding the impact of HCV on the development of gastric cancer.

3.6. HTLV-1

Human T-lymphocytes lymphoma virus-1 is a member of Retroviridae [23]. The association
of human T-cell lymphotroptic virus 1 with cancer is controversial, and positive correlation was
confirmed in case of human leukemia [117,118]. Transmission of the virus is possible through sexual
intercourse, breastfeeding and contaminated blood [119]. First line of infection with the virus are
DCs (dendritic cells), afterwards HTLV-1 may be transmitted to CD4+ T cells and, to a lesser extent,
CD8+ lymphocytes, B cells and monocytes [119]. It is worth mentioning that viral spread of HTLV-1
is dependent on cell-to-cell contact, but also forming a viral biofilm or virological synapse [120,121].
Other possible spreading mechanisms may include nanotubes [122]. The latest data show that the
promotion of cell-to-cell contact may be influenced by the formation of extracellular vesicles, to elicit
adverse effects on recipient uninfected cells [123].

Oncogenic mechanisms are not evident for HTLV-1, nevertheless, a crucial role may be performed
by the regulatory proteins Tax and HBZ with oncogenic properties [119,124]. Tax is a trans-acing viral
protein being a major target of CTLs (cytotoxic lymphocytes), and its mechanism of transformation
is related to reprogramming cell cycle and the inhibition of DNA repair [19], while HBZ is a leucine
zipper factor with low immunogenicity, suppressing major HTLV-1 genes, possessing a role in cell
proliferation, apoptosis, T-cell differentiation and immune escape [125]. Moreover, the differences in
oncogenic mechanism may also result from the alterations of the infected cell microenvironment [123].
Additionally, similarly to other oncogenic viruses, the infection favors chronic infection, leading to
immunosuppression and cancer development [124]. In blood malignancies it was confirmed, that one of
the oncogenic mechanisms involving HTLV-1 infection is the dysregulation of gene expression, leading
to abnormal chromatin looping, changing the position of HTLV-1 promoter-enhancer position [126].

Studies have been performed in the association of HTLV-1 with gastric cancer, leading to the
conclusion, that the prevalence of HTLV-1 infection in patients with gastric cancer appears to be
significantly lower than that in control patients [127–129]. Additionally, HTLV-1 reduces the risk of
Helicobacter pylori infection, thus indirectly, influences the lower rate of gastric cancer, as H. pylori
infection is known to be a frequent risk factor of this type of cancer [128].

3.7. Human Immunodeficiency Virus

Human immunodeficiency virus (HIV) is single-stranded RNA virus with positive (+) ssRNA
polarity [130], belonging to the family Retroviridae of the genus Lentivirus [23]. So far, two types of
HIV have been distinguished—HIV-1 and HIV-2 [130]. Both types of virus evolved from two different
viruses attacking monkeys—SIV (Simian immunodeficiency virus) [130].
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HIV infection leads to serious changes that disrupt the immune system of the host, making it
extremely susceptible to other viral, bacterial and fungal infections. This condition was called acquired
immune deficiency syndrome—AIDS [131]. Most often, HIV infection occurs through sexual contact,
but also this virus can get into the bloodstream through contaminated needles or perinatally from an
infected mother [131]. In most cases, untreated HIV infections lead to death [130,131]. The HIV virus,
by weakening the host’s immune system, reduces the body’s ability to defend itself effectively and
combat viral infections leading to the development of cancer [132]. An organism without defense
becomes an excellent environment that allows the free development of other oncogenic viruses such as
KSHV, EBV, HPV, HBV, HCV and HTLV-1 [133].

The HIV virus may have oncogenic potential through direct cellular mechanisms mediated
primarily by the HIV Tat protein [134]. The Tat protein is an early unstructured protein, essential for
viral replication [135]. Tat HIV is released from HIV-1 infected cells. The protein can bind to uninfected
cells, including endothelial cells, and infiltrate through the domain of protein transduction [136].
The Tat HIV protein can affect the blocking of the tumor suppressor gene function as well as activate
proto-oncogenes, inhibit apoptosis and affect cell cycle progression [134].

People infected with HIV have a higher risk of certain types of cancer than people of the same
age who have not been found to be infected with HIV [137]. The HIV virus mainly contributes
to the development of Kaposi’s sarcoma, aggressive B-cell non-Hodgkin’s lymphoma and cervical
cancer [132]. These cancers are referred to as “acquired immunodeficiency syndrome (AIDs)-defining
cancers” or “AIDS-defining malignancies”. Diagnosing each of these three cancers in people who are
positive for HIV confirms the diagnosis of AIDS [132].

In addition, it has been observed that HIV infection can lead to the development of other cancers
known as non-AIDS-defining cancers, such as cancers of the anus, penis, liver, oral cavity/pharynx and
lung, and Hodgkin lymphoma [137–140].

To date, no confirmed involvement of HIV-1 in gastric cancer has been reported. In 2012, Perrson
et al. presented the study, which showed that the risk of gastric cancer was significantly increased
among patients with confirmed AIDS (SIR = 1.44; 95% CI, 1.17–1.76) [141]. For the general population,
the incidence rate for stomach cancer was 5.00 per 100,000 person-years [141]. Unfortunately, in 2016,
this article was withdrawn due to irregularities in statistical surveys. As a result of errors, standardized
incidence ratios (SIRs) were too high. SIR corrected results are lower than the authors reported, and
corrected SIR for gastric cancer is no longer significantly increased [142].

4. Adenovirus—Oncogenic or Oncolytic?

The role of adenoviruses in gastric cancer is mysterious. On one hand, adenoviruses
(Adenoviridae) [23] are known to be oncogenic in many malignances [143,144], but the oncolytic
properties of the virus also exist. In the case of gastric cancer, only oncolytic properties have been
used in several studies in order to improve the possibilities of therapies. For effective oncolytic
activity, adenoviruses must specifically infect and replicate within cancer cells, but unfortunately, many
malignant cells do not express the CAR receptor (coxsackie and adenovirus receptor), resulting in
decreased transduction of serotype 5 Ad (Ad5), which is commonly used for Ad-based vectors [145].
Therefore, efforts are made, to modify Ad5 fibers, the capsid moiety responsible for virus–cell surface
receptor interaction, in order to increase their transduction to cancer cells [145]. It is also known, that
adenovirus vector has a capacity to produce high titers and is genomically stable, with a low rate of
DNA integration into the host’s genome [146]. On the other hand, adenovirus vectors may induce
potent immunogenic toxicities, followed by the inhibition of the expression of transgene mediated by
the vector itself, leading to several limitations of this kind on cancer therapy, so the good and the bad
face of the virus treatment is here also as an issue [147]. In gastric cancer, adenovirus vectors have also
been used [148]. There are reports about oncolytic adenoviral vectors, in which modification has been
made, by replacing E1a and E1b promoters of adenovirus with human telomerase reverse transcriptase
(hTERT) and hypoxia response element (HRE) promoters, leading to creation of recombinant oncolytic
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adenovirus KGHV [148]. The study by Wang et al. [148] shows that the infection of normal cells may be
decreased by the combination of KGHV500 adenovirus, targeted at CIK (cytokine-induced killer cells),
with a known anticancer potential [148]. This leads to the conclusion, that such way of delivering
oncolytic viruses to tumor targets are a promising method.

Additionally, tumor-specific midkine and cyclooxygenases (Cox2M and Cox2L) promoters were
tested in gastric cancer, and high activity was noted with oncolytic effect was confirmed for Cox2CR-Ad
complex and fiber-modified vector Ad5/3 [149].

There is also a study showing, that adenovirus bound as a vector with Arg-Gly-Asp peptides in
the fiber knob, allowed the virus to utilize integrins, which is a very promising target, while integrins
are highly expressed in gastric cancer [143].

In another study, a CEA promoter was introduced into an adenovirus vector, and this method
was also a successful attempt at decreasing the number of gastric carcinoma cells [150].

A broad study was also conducted on the role of adenovirus and the correlation of it with TIPE2
expression. TIPE2 is tumor necrosis factor-alpha induced protein 8-like 2 downregulating innate
immunity via impacting on TLR signaling, macrophages and dendritic cells [151]. It was shown that
TIPE2 is reduced or absent in several tumors, including gastric cancer [144,152]. TIPE2 is an inhibitor of
gastric cancer cell growth, and might promote a p27-associated signaling cascade that leads to control
the cell cycle and cell division, leading to the conclusion, that TIPE2 may regulate proliferation of
gastric cells [152]. Moreover, according to Zhu et al. [146], TIPE2 may be a novel potential therapeutic
target for human gastric cancer, on the basis of the results achieved in a panel of human gastric
cells (AGS, HGC-27 and SGC-7901), where expression of TIPE2 was lost. Adenovirus-mediated
human TIPE2 overexpression significantly inhibited AGS and HGC-27 gastric cancer cell growth and
induced AGS and HGC-27 tumor cell apoptosis in vitro [146]. Further investigations showed [151],
that adenovirus-mediated TIPE2 upregulate E-cadherin epithelial marker in AGS and HGC-27 in
in vitro and in vivo model, leading to the conclusion, that TIPE2 not only inhibits gastric cancer cell
migration, but also stating that invasion and metastasis in gastric cancer in probably via reversal of
epithelial–mesenchymal transition, which may be crucial in further therapeutic approaches [151].

Adenovirus vector was also targeted at cancer associated fibroblasts (CAF), being the crucial
microenvironment of tumor growth, invasion and metastasis [147]. CAFs contribute to cancer growth
and metastasis by secreting cytokines, growth factors and adhesion molecules, leading to enhancement
of radio and chemotherapy resistance, that is why CAFs seem to be a potentially successful target
for cancer therapy via adenovirus vectors [147]. Such studies have been also performed in relation
to gastric cancer, and it was concluded, that fiber-modified hexon-chimeric recombinant oncolytic
adenovirus targeting CAFs can kill gastric CAFs and inhibit gastric cancer growth in vivo [147].

On the basis of the fact, that most cancer cells are characterized with an increased telomerase activity,
studied have been performed with telomerase-specific oncolytic adenovirus, which can suppress tumor
cells, not influencing the healthy ones [153]. This was also confirmed in studies on gastric cancer cells
in vitro, by combining tumor-specific TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)
with adenovirus vector [146]. Moreover, this type of novel therapeutic approach was noted to be
successful even in advance stage of gastric cancer with peritoneal dissemination [146].

5. Oncolytic Viruses

Oncolytic viruses are promising cancer gene therapy agents, as they have the ability to selectively
replicate in cancer cells, causing cancer cell lysis and inflammation, leading to the stimulation of host
immune responses to cancer cells [4].

Oncolytic viruses are successfully used in cancer immunotherapy, as they target multiple steps
within the cancer-immunity cycle [154,155]. The ability of viruses to attack cancer cells was discovered
in the mid-20th century [156,157], but the first clinical trials documenting the actual clinical benefits of
using oncolytic viruses have been carried out over the last 15 years [154]. Currently, with increasing
knowledge about viruses in general and the constant development of research and therapeutic
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techniques, the interest in viruses as factors used in cancer immunotherapy is constantly growing.
Many research teams are working on the development of optimized therapy with viruses. At this point
in time, the only oncolytic viruses approved for cancer therapy are: Talimogene laherparepvec (T-VEC)
approved by the FDA in 2017 [158] and genetically modified adenovirus H101 approved in 2006 in
China [159]. The former was approved as immunotherapy for patients with advanced melanoma, the
latter for treating head and neck cancer. These are huge successes in cancer therapy and are likely to
significantly contribute to the development of this field of immunotherapy. Some other trials are still
ongoing, like the one using the measles virus TMV-018 (ClinicalTrials.gov.NCT04195373), or vaccinia
viral oncolytic vector (GL-ONC1; ClinicalTrials.gov.NCT01443260).

The mechanism of action of oncolytic viruses may be different. They may lead to direct lysis of
cancer cells, leading to the release of soluble antigens, danger signals and type I interferons, which
drive antitumour immunity. Furthermore, some oncolytic viruses may be created artificially to express
therapeutic genes. They can also alter tumor-related endothelial cells, which increases the recruitment
of T lymphocytes into excluded or immunocompromised tumor microenvironments. Ultimately,
oncolytic viruses can also be used as a source of in situ neoantigenic vaccinations through their
cross-presentation, which leads to distant uninfected tumors [155].

These features make scientists willing to study the efficacy of oncolytic viruses. However, further
studies are necessary to develop better therapies using them.

There are several oncolytic viruses (Table 3), and they are divided into two classes—firstly
viruses that naturally replicate in cancer cells and are usually mild in human infection, such as
parvoviruses, myxoma virus (MYXV), Newcastle disease virus (NDV), reovirus and Seneca valley
virus (SVV) [160]. Second class contains viruses that are genetically changed and used as vectors,
including measles virus (MV), poliovirus (PV) and vaccinia virus (VV) [160]. In this group, also
genetically-engineered viruses are included, characterized by mutations in genes required for replication
in normal conditions, and among such viruses, adenovirus, herpes simplex virus (HSV) and vesicular
stomatitis virus (VSV) are enumerated [160]. The last group seems to be of special interest, not only
due to the potential in cancer therapies, but also because of being a double-edged sword in this matter,
and those viruses will be discussed, excluding adenovirus, placed as a puzzle between oncogenic and
oncolytic viruses in gastric cancer.

Table 3. Oncolytic viruses.

Family Virus References

1. DNA viruses

Adenoviridae Adenovirus 1 [161–168]

Herpesviridae Herpes simplex virus 2 [161–164,167,168]

Parvoviridae Parvovirus [163,168–170]

Poxviridae
Myxoma virus [168,171]

Vaccinia virus [161–164,167,168,171]

2. RNA viruses

Orthomyxoviridae Influenza virus [168,172]

Paramyxoviridae

Measles virus [161–164,167,168,171,172]

Mumps virus [161,167,172,173]

Newcastle disease virus [161–164,166,168,170,172]
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Table 3. Cont.

Family Virus References

Picornaviridae

Coxsackievirus [161,163,166–168,171]

Echovirus [161,166,167]

Encephalomyocarditis virus and Mengovirus [167]

Enterovirus [166,167]

Seneca valley virus [163,165–167]

Theiler’s Murine Encephalomyelitis Virus [167]

Reoviridae Reovirus [161–164,166–168,170–172]

Retroviridae Retrovirus [161,162,172]

Rhabdoviridae
Maraba virus [161,163,169]

Vesicular stomatitis virus [161–164,167,168,172]

1—approved in China; 2—approved in USA.

Oncolytic Viruses and the Immune System

During the infection with an oncolytic virus, a panel of immune cells is recruited, from
both innate and adaptive immune signaling (Figure 2). After recognition by anti-viral PRRs
(mainly TLRs and RIG-1), the production of pro-inflammatory cytokines and interferons takes
place. Neutrophils and macrophages release several inflammatory mediators, cationic proteins, lipid
mediators, metalloproteinases and components of oxygen burst [18]. Additionally, DC and NK (natural
killer) are triggered and the virus is presented to the panel of T cells—T helper cells responses are
induced, followed by CTL killing of the virally infected cells and causing tissue damage. Additionally,
TH17 contribute to an inflammatory response. The process is impaired by Treg. Finally, B cells are
activated to antibodies production [18].
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6. Oncolytic Viruses in Gastric Cancer

6.1. Herpes Simplex Virus

HSV, a member of Herpesviridae [23], is an enveloped ds linear DNA virus, with genes classified
into three groups by the regulation of their expression—immediate early (IE), early (E) and late (L) [174].
The IE gene products regulate gene transcription and include the US12 gene product, which is
ICP47—responsible for silencing MHC I expression in infected cells via inhibition of TAP (transporter
associated with antigen presentation) [174]. The E genes promote viral DNA synthesis and the L genes
are coding capsid proteins, tegument proteins and envelope glycoproteins [174].

One of the advantages of using HSV in oncolytic virotherapy is the fact, that this virus can bind
only to a single receptor, which gives the opportunity to use it in treatments of many malignancies,
due to the existence of four cellular receptors on HSV [174]. Moreover, HSV, due to its large genome, is
able to incorporate a large size of a foreign DNA, the infection may be quite easily controlled with
anti-herpetic drugs and can kill target cell faster and more effectively comparing to adenovirus [174,175].
Among genes important for effective oncolysis, ICP0, ICP4 and ICP47 are enumerated, but it is worth
adding, that some of this data is more than ten years old now [174].

There are several HSV strategies to avoid the host’s immune response, including complementing
immunoglobulins via viral glycoproteins, inhibition of cytokine production, blocking the maturation
of APC (antigen presenting cells), expression of MHC II, inhibiting apoptosis and cell death induced
by CTL (cytotoxic lymphocytes) [175].

Several oncolytic mutants of HSV are in different stages of clinical trials on solid tumors with a
high level of success [176]. However, their efficacy depends on the extent of both intratumoral viral
replication and induction of a host antitumor immune response [175]. Such an immune response may
induce the upregulation of angiogenic factors and downregulation of antiangiogenic factors, such as
thrombospondin-1 (TSP-1), but some moderations are made to increase the oncolytic action of the
virus [176]. In studies of Tsuji et al. [176], replication-competent oncolytic HSV was constructed as a
vector to deliver TSP-1 to a gastric cancer microenvironment, and this enhanced antitumor efficacy
in vitro and in vivo via direct antitumor and antiangiogenic mechanisms. Moreover, in gastric tumor
cell line SGC7901, the synergistic antitumor effect of herpes virus thymidine kinase (HSV-TK) with
TNF-α and IL-2 gene expression was evaluated, but with no significant effect [177]. On the other hand,
other studies on mice model showed a therapeutic effect of HSV-TK expression [178], so further studies
are needed in this matter.

Additionally, in gastric cancer, two multimutant oncolytic herpes simplex viruses of the second
generation—G207 and NV1020—have been shown to kill in vitro human gastric cancer cells [179]. With
the use of a murine xenograft model of peritoneally disseminated gastric cancer, it was registered, that
with lower viral dose NV1020 was more effective comparing to G207, but intraperitoneal administration
was crucial for the positive effect [179]. Those safe for animal pre-clinical trials are a promising pathway
for successful treatment of gastric cancer. Additionally, studies were conducted in which G207 was
combined with mitomycin C (MMC) and significant synergism was observed [180]. This combination
upregulated GADD34 in tumor and thus may complement the gamma134.5 gene deletion in gastric
human cells in vitro [180].

Moreover, preclinical trials have been conducted with the use of third generation oncolytic
HSV-1–G47∆, which is a triple mutated virus developed by adding another deletion mutation to
the genome of a second-generation HSV-1—G207 [181]. The use of this virus in GC (gastric cancer)
decreased the level of M2 macrophages and increased the level of M1 macrophages and NK cells [181].
Interestingly, a strong antiviral response was reported leading to a controversial conclusion that
innate immunity stimulated by oncolytic virus treatment may facilitate the priming of antitumor
immunity [181].



Cancers 2020, 12, 1680 16 of 24

6.2. Vesicular Stomatitis Virus (VSV)

Vesicular stomatitis virus, a member of the Rhabdoviridae family [23], is known to be replicating
to induce apoptosis of many types of cells, including cancer cells, but only one report exists on the
role of VSV in gastric cancer [182]. In gastric carcinoma cell line MKN28, the expression of vesicular
stomatitis virus matrix protein (MP) was confirmed to inhibit proliferation and induce apoptosis on
this type of cancer cell [182].

6.3. Vaccinia Virus

Vaccinia virus, a member of the Poxviridae family [23], may also be an attractive potential oncolytic
virus for GC treatment, as stated above, even a clinical trial is ongoing—phase I and II completed, with
the use of this virus (NCT01443260). Among the advantages of this virus, as far as genetic engineering
is concerned, one can enumerate the ability to incorporate large amounts of foreign DNA without
losing the replication efficiency and high safety in humans [183]. GLV-1 h153, which is a genetically
engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, was tested as
a potential and novel therapy against GC [183]. It was shown [183] that GLV-1 j153 is an effective
oncolytic virus giving successful results in five human gastric cancer lines, giving over 90% cytotoxicity.
This promising result may also be enhanced by the combination of treatment with GLV-1 h153 and
radioiodine, which needs to be further studied [183].

7. Conclusions

Searching for an efficient and effective cancer treatment is one of the key interests in today’s
world. Gastric cancer, no matter the downward trend, is still a major concern, and expanding treatment
possibilities is a pivotal issue. Oncolytic virotherapy is surely one of the options. On the other
hand, oncogenic role of viruses has been also known and is proven in gastric cancer. Showing a
double-edge sword face of viruses in gastric cancer aimed at drawing the attention to a cautious choice
of cancer treatment.
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