
HYPOTHESIS AND THEORY
published: 07 August 2018

doi: 10.3389/fnins.2018.00521

Frontiers in Neuroscience | www.frontiersin.org 1 August 2018 | Volume 12 | Article 521

Edited by:

Satoshi Hirata,

Kyoto University, Japan

Reviewed by:

Yuji Ikegaya,

The University of Tokyo, Japan

Fuat Balcı,

Koç University, Turkey

*Correspondence:

Sorinel A. Oprisan

oprisans@cofc.edu

Specialty section:

This article was submitted to

Perception Science,

a section of the journal

Frontiers in Neuroscience

Received: 24 March 2018

Accepted: 11 July 2018

Published: 07 August 2018

Citation:

Oprisan SA, Buhusi M and Buhusi CV

(2018) A Population-Based Model of

the Temporal Memory in the

Hippocampus.

Front. Neurosci. 12:521.

doi: 10.3389/fnins.2018.00521

A Population-Based Model of the
Temporal Memory in the
Hippocampus
Sorinel A. Oprisan 1*, Mona Buhusi 2 and Catalin V. Buhusi 2

1Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States, 2 Interdisciplinary Program in

Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States

Spatial and temporal dimensions are fundamental for orientation, adaptation, and survival

of organisms. Hippocampus has been identified as the main neuroanatomical structure

involved both in space and time perception and their internal representation. Dorsal

hippocampus lesions showed a leftward shift (toward shorter durations) in peak-interval

procedures, whereas ventral lesions shifted the peak time toward longer durations.

We previously explained hippocampus lesion experimental findings by assuming a

topological map model of the hippocampus with shorter durations memorized ventrally

and longer durations more dorsal. Here we suggested a possible connection between

the abstract topological mapsmodel of the hippocampus that stored reinforcement times

in a spatially ordered memory register and the “time cells” of the hippocampus. In this

new model, the time cells provide a uniformly distributed time basis that covers the

entire to-be-learned temporal duration. We hypothesized that the topological map of

the hippocampus stores the weights that reflect the contribution of each time cell to the

average temporal field that determines the behavioral response. The temporal distance

between the to-be-learned criterion time and the time of the peak activity of each time cell

provides the error signal that determines the corresponding weight correction. Long-term

potentiation/depression could enhance/weaken the weights associated to the time cells

that peak closer/farther to the criterion time. A coincidence detector mechanism, possibly

under the control of the dopaminergic system, could be involved in our suggested error

minimization and learning algorithm.

Keywords: hippocampus, topological map, scale invariance, time cells, computer simulations, neural networks

1. INTRODUCTION

Spatial and temporal dimensions are fundamental for orientation, adaptation, and survival of
organisms. Hippocampus has been identified as the main neuroanatomical structure involved
both in space and time perception and their internal representation. It has been hypothesized
that hippocampus may be in fact involved in conceptual understanding of many other dimensions
(Schapiro et al., 2015; Schiller et al., 2015). While hippocampus encodes and processes information
regarding spatial location and temporal durations, the same or similar computational structures
could be used for encoding and processing the “state” of the brain associated to more abstract tasks
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than spatial location, such as extracting patterns from apparently
random events (Garvert et al., 2017). It has been suggested that
the same or a similar computational algorithm that establishes
a metric space for the abstract dimension of time could be
employed to create metric spaces and ordered categories for
cognitive maps that relate other abstract concepts (Howard et al.,
2014).

Temporal Dimension and Time Cells. One of the most used
experimental paradigms when investigating temporal perception
is the treadmill running, which allows precise correlation of
neural firing with the spatial location and temporal duration. In
vivo recordings from hippocampus and entorhinal cortex showed
that neurons ramp-up their firing only at specific temporal
locations during a behavioral tasks (Pastalkova et al., 2008;
MacDonald et al., 2011; Kraus et al., 2013; Wang et al., 2015).
This activity is similar to the hippocampus “place cells” that
ramp-up their firing only when the subject is in a specific
spatial location (O’Keefe, 1976; O’Keefe and Recce, 1993; Mathis
et al., 2012). This is the reason the hippocampus cells that
fire at a specific time during a behavioral test are called “time
cells.” Single-cell recordings from hippocampus suggested a
clear correlation of the firing rate of the time cells with the
to-be-timed duration (MacDonald et al., 2011). They found
that different time cells selectively and repeatably peak at
specific moments during the to-be-timed duration (MacDonald
et al., 2011). In similar experiments involving a reward after
a specific delay time, it has been found also that neurons in
the rodent hippocampus selectively fired at specific times after
the beginning of a delay period (Pastalkova et al., 2008). It
has been shown that some time cells are involved in timing
absolute durations whereas others fire relative to a specific
temporal marker (MacDonald et al., 2011). Neurons that fired
during the to-be-timed interval were typically striking in their
selectivity to specific moments in the time interval. These time
cells fire at successive moments within a temporally defined
period. A hallmark of the time cells experiments is that the
spread of the firing interval, i.e., the width of the Gaussian-
like activity, for each time cell is proportional to the time
of the peak activity. Additional experimental measurements
also confirmed the proportional spread in time fields of time
cells for longer durations (Kraus et al., 2013; Howard et al.,
2014). Such a response reflects a cellular-level accumulated
error in timing from the outset of the to-be-timed interval
similar to the scalar property in behavioral experiments of
interval timing (Gibbon and Church, 1984; Gibbon et al., 1984).
This paper suggests a possible bridge between the cellular-
level, experimentally measured, proportionality relationship
between the spread of the time field and the time of peak
activity of the time cell (Pastalkova et al., 2008; MacDonald
et al., 2011; Kraus et al., 2013; Howard et al., 2014) and
the scalar property of interval timing. The linear relationship
between the peak time and the spread of the Gauss-like, i.e.,
the error of time estimation increases linearly with the to-
be-timed interval, which has been measured in behavioral
experiments, such as the peak interval procedure (Buhusi and
Meck, 2005, 2006; Buhusi et al., 2006, 2009; Buhusi and Oprisan,
2013).

Similarities and Differences Between This Novel

Population-Based Topological Map of the Hippocampus

and Other Timing Models. This new model of temporal
memory storage in the hippocampus is based on two core
hypotheses: (1) the existence of a spatially ordered memory of
temporal durations (topological map) in the hippocampus, and
(2) the time cells form a temporal basis for time perception. This
model of the long-term memory block could also be included
in more comprehensive timing models, such as the Scalar
Expectancy Theory (SET) (Gibbon, 1977; Church, 1984; Church
and Broadbent, 1990, 1991; Church et al., 1994, 1998; Gibbon
et al., 1997), Striatal Beat Frequency (SBF) (Buhusi and Meck,
2005, 2009, 2010; Oprisan and Buhusi, 2011, 2013, 2014; Buhusi
and Oprisan, 2013; Buhusi et al., 2016; Oprisan et al., 2018), the
Behavioral theory of Timing (BeT) (Killeen and Fetterman, 1988,
1993; Bizo and White, 1994), or the Learning-to-Time (LeT)
model (Machado, 1997; Machado and Silva, 2007; Machado
et al., 2007). Without going into an extensive literature review
of the SET model (see Gallistel, 1990; Gibbon, 1991; Church,
2003 and references therein), we only briefly mention here the
key functional building blocks of the SET model that other
theoretical models of time perception preserved and expanded
upon. The SET model postulates the existence of an internal
clock composed of three blocks: a pacemaker-accumulator, a
memory, and a comparator. The role of the pacemaker is to
generate clock pulses that are added up by the accumulator
block. The accumulator is reset at the beginning of every trial,
presumably through a dopamine-mediated mechanism. The
long-term memory block stores the value of the accumulator
at the reinforcement time in each trial. After a large number of
trials, the long-term memory contains a Gaussian distribution
of reinforcement times approximating the criterion time.
According to the SET model, the decision whether or not to
respond in a test trial is determined by the ratio between a
randomly drawn value of the criterion time from its multiple,
Gauss distributed, copies stored in the long-term memory and
the current value of the accumulator. When the ratio computed
by the comparator block crosses a given threshold, the animal
changes its response from a low to a high rate. Our previous
topological map model of the hippocampus also stored a set
of reinforcement times in the long-term memory (Oprisan
et al., 2018). Compared to SET, the novelty of the topological
map was the hypothesis of a spatially ordered structure of the
hippocampus, which allowed us to explain the experimental
results on hippocampus lesions.

Both BeT and LeT models require three elements: a series of
states, a series of operant responses, and a set of associative links
connecting the states to the operant responses. It is convenient
to conceptualize the transitions between states as being driven
by a pacemaker block (“even though the mathematical models
do not strictly require a biological pacemaker that emits pulses”
Killeen and Fetterman, 1993). In the BeT and LeT models, a
certain number of states may be required to produce an operant
response. Although it is “unclear how states relate to measurable
behavior or what their neural basis is” (Machado et al., 2007), it
is assumed that they are related to behavioral responses through
associative weights that have a natural rate of decay and a
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reinforcement-dependent rate of increase. There is a similarity
between our proposed population-based topological map model
of the hippocampus and the LeT model: both use a distributed
set of weights. In the LeT model, the weights of the associative
links connect states to the operant response, whereas in our
computational model the weights represent contributions of time
cells to the average time field. In the model we present here,
we preserved the topological map from Oprisan et al. (2018)
and replaced the actual reinforcement times by the weights of
the corresponding time cells. This improvement allowed us to
define a learning rule for the weights in order to minimize
the error signal, which is proportional to the temporal distance
between the time of the peak activity for a given time cell and the
to-be-learned criterion time.

2. TEMPORAL MAPS IN THE
HIPPOCAMPUS GENERATED BY A
POPULATION OF “TIME CELLS”

2.1. A Population-Based Model for the
Topological Map of the Hippocampus
While we successfully modeled the hippocampus lesions with
the previously proposed topological maps (Oprisan et al., 2018),
the model was not well-connected with neurobiology. Like SET
model, it assumed that the hippocampus simply records the
reinforcement times with the added twist of a spatially ordered
temporal map with increasingly longer durations stored toward
the dorsal side of he hippocampus. Additionally, the topological
map model assumed that the distribution of memorized times
is Gaussian, with more memory cells holding reinforcement
times closer to the criterion time. This is a heuristic assumption
consistent with the SET model (see Church, 1984; Gibbon and
Church, 1984; Gibbon et al., 1984, 1988; Brunner et al., 1997)
hypothesis that at the reinforcement time each trials stores in the
hippocampus a slightly different value of the to-be-memorized
criterion time. In this study, we suggested a novel approach
to the existing topological map model. In order to preserve
the ability of the new model to match experimental data on
hippocampus lesions, we still assumed that a spatially ordered
(topological) map exists in the hippocampus. However, in this
new model a memory cells no longer stores a single value,
i.e., the reinforcement time tn, but rather stores a pointer to
an entire object, i.e., a time cell whose activity peaks at the
specific time tn. Therefore, here we suggest a new model of the
long-term memory based on a possible connection between the
hippocampus topological maps and a population of time cells.

Model Constraint: Scale Invariance of TimePerception.The
experiments on time perception seem to suggest that the time
perception error increases linearly with the to-be-timed duration,
which is referred as the scalar property (Buhusi et al., 2017;
Daniels and Sanabria, 2017). Scalar property has been found in
episodic memory (Glenberg et al., 1980; Howard et al., 2008),
peak interval timing (Lewis and Miall, 2009), and conditioning
(Balsam and Gallistel, 2009). At the same time, scalar property
is shared across different species from mice (Malapani and
Fairhurst, 2002; Buhusi et al., 2009) to humans (Rakitin et al.,

1998). As a result, every time perception model must include an
explanation for the origin of the scale invariance.

Model Constraint: Peak Time Shift After Hippocampus

Lesions. Hippocampus lesion experiments showed that dorsal
hippocampal (DH) lesions induced leftward shifts in peak times
(Tam et al., 2015), i.e., toward shorter durations, whereas ventral
hippocampal (VH) lesions produced opposed peak shift (Yin and
Meck, 2014). Based on the above-cited and similar experimental
results, we recently suggested a topological map model of the
hippocampus (Oprisan et al., 2018). Briefly, the reinforcement
times centered around the desired criterion time learned during
successive conditioning trials were modeled as Gaussian random
variables. The Gaussian distribution hypothesis was based on
existing experimental observations and the justification from
the influential SET model (see Church, 1984; Gibbon and
Church, 1984; Gibbon et al., 1984, 1988; Brunner et al., 1997).
SET assumes that the to-be-learned duration is the result of
many training trials that add up to a Gaussian-like response
(see Figure 1A). Since lesion experiments suggested a very
specific, ordered, arrangement of the memorized durations in the
hippocampus (see Tam and Bonardi, 2012a,b; Tam et al., 2013,
2015; Yin and Meck, 2014), we modeled the hippocampus as
a spatially ordered map that stores a Gaussian-like distribution
of reinforcement times. That topological map model of time
perception assumed that the hippocampus serves as a memory
storage for elapsed durations with the shorter durations orderly
stored toward the ventral side and progressively longer durations
stored toward the dorsal side (Oprisan et al., 2018). Such a
spatial localization (topological map) of reinforcement times
allowed us to both (1) explain experimentally observed effects
of hippocampus lesions on interval timing and (2) predict
mathematically the relationship between the width and the peak
location of the Gaussian-like output function. Without repeating
the derivations from Oprisan et al. (2018), we previously
showed that the relationship between the width and the peak
duration of the output function after the lesions matches the
pre-lesion relationship (Oprisan et al., 2018). In other words,
our topological map model of the hippocampus preserved the
properties of the distribution of memorized durations and only
shifted the peak responses proportional to the lesion size and its
location relative to the median line of the hippocampus (Oprisan
et al., 2018).

Hypothesis 1: Temporal Boundary. First, we need to explain
how the time cells of the hippocampus know to cover the
entire to-be-timed duration. For this purpose, we hypothesize
that the mechanism is similar to the one used by the “place
cells” of the hippocampus, i.e., place cell firing depends on the
position of environmental boundaries (O’Keefe and Burgess,
1996). Similarly, during peak-interval procedure, the mouse
learned the “boundaries” of the temporal duration through a
series of reinforcement trials. In our current implementation,
the temporal boundary of the time cells is three times the
criterion time with time cells uniformly distributed over the
entire duration.

Hypothesis 2: Coincidence Detection Dynamically Adjusts

Time Cell Firing Rates. The second assumption of our newly
proposed mechanism for generating a Gaussian-like and scale
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FIGURE 1 | Hippocampal topological map and basal ganglia–hippocampal loops. (A) Consistent with hippocampus lesions experiments, the sketch of the

hippocampus with color shading suggesting that shorter durations are stored in the ventral area and longer durations orderly stored in the dorsal area. (B) Simplified

basal ganglia–hippocampal loops with direct projection to the nucleus accumbens (NAc), which performs a decision task by comparing the predicted and the actual

outcomes of behavior. If the outcome is as expected, the result is an inhibition (“−”) of ventral tegmental area (VTA). Otherwise, an error correction loop that includes

the ventral pallidum (VP) and the pedunculopontine nucleus (PPTg) excites (“+”) VTA. (C) Symbolic representation of computations performed by the basal

ganglia-hippocampus loops in order to correct the activity of time cells such that the average time field peaks around the to-be-memorized criterion time T. An error

signal proportional to the distance between the expected peak time T and the actual peak times t1, t2, . . . , tn of individual time cells changes the weights of the

contribution of the individual time cells.

invariant average time field is that dopamine modulation could
enhance the activity of certain time cells during reinforcement
trials and depressed the activity of others. In order to know
which weights to strengthen/weaken, we rely on the existence
of a coincidence detector mechanism, such as the one attributed
to striatum (Houk, 1995; Houk et al., 1995; Parent and Hazrati,
1995a,b; Harrington et al., 1998; Atallah et al., 2004; Jin
et al., 2009; Buhusi et al., 2016), that selectively enhances the
activity of those time cells that fire close to the to-be-timed
duration. Additional evidence of a possible involvement of the
striatum as a coincidence detector is that the cortico-striatal
system is involved in “habit” or “procedural” learning. The
dopaminergic projections to striatum also support the hypothesis
of a modulatory feedback effect that enhances desirable behaviors
and suppresses others (Schultz, 2002). It has been suggested
that long-term potentiation/depression could reliably modulate
the synaptic weights in cortico-striatal loops (Teki et al., 2012).
Such dopamine-mediated reinforcement signals could fine-tune
the synaptic weights based on repeated trails until the correct
criterion time is learned (Gu et al., 2011; Jones and Jahanshahi,
2011). The hippocampus stores representations of individual
experiences and seems to carry out a completely different type
of memory function than the striatum (Packard et al., 1994;
Canal et al., 2005), although some view the two systems as
complementary (Atallah et al., 2004). Figure 1B shows a sketch
of a possible neurobiological network involving time cells in
the hippocampus, the striatum coincidence detector and the
dopaminergic reinforcement.

Possible Basal Ganglia-Hippocampus Loops. Our suggested
simplified network (Figure 1B) uses well-known direct (Voorn
et al., 2004) and indirect (Christakou et al., 2004) anatomical
connections between the hippocampus and the striatum (see
Thierry et al., 2000 for an extensive review of existing pathways).
For example, there are known GABAergic projections from
the basal ganglia nuclei, the substantia nigra pars reticulata,
and the internal part of the globus pallidus to pontine nucei
(Parent and Hazrati, 1995a,b). In turn, cholinergic projections
from the pedunculopontine nucleus directly (Datta et al.,
1998; Silkis, 2008) and indirectly (through thalamic nucleus

reuniens Vertes, 2001; McKenna and Vertes, 2004) control the
activity of the hippocampus. Among many other identified
neural loops, neurons of the CA1 hippocampus area project
mainly to the nucleus accumbens (NAc) of the striatum. This
nucleus projects into the thalamic nuclei of the middle line
through the ventral pallidum, and these thalamic nuclei project
back into the NAc and hippocampus (Groenewegen et al.,
1999).

A simplified loop (Penner and Mizumori, 2012) that involves
a direct projection from the hippocampus to the nucleus
accumbens (NAc) of the ventral striatum seems to perform a
coincidence detection task by comparing the predicted and the
actual outcomes of behavior and either (1) inhibits (marked by
“−” in Figure 1B) ventral tegmental area (VTA) if the action
matches the predicted behavior, or (2) excites (“+”) VTA in the
case of a mismatch. One possible realization of such an indirect
path is via ventral pallidum (VP) and the pedunculopontine
nucleus (PPTg) (Penner and Mizumori, 2012). One possible
effect of this excitatory input to VTA is to bias it more closely to
a bifurcation point where is more sensitive to subsequent reward
information (see Figure 1B).

We assume here that the neurobiologically realistic
structure sketched in Figure 1B could perform the following
computations. Initially, the hippocampus long-term memory
stores an arbitrary distribution of weights associated to time
cells that peak in the range of the to-be-memorized temporal
duration. At the reinforcement time, the striatum coincidence
detector updates the weights according to Equation (3), i.e., the
time cells that peak closer to the reinforcement time have larger
weights compared to those that peak farther. This modulation
of time cell activity produces a population response that peaks
around the reinforcement time. The weight computation is also
flexible enough to ensures the shift of the entire population
response to a new reinforcement time. For example, given that
the expected outcome should peak at the criterion time T = 10 s
whereas the actual response in a given trial was at t = 8 s, an
error signal is generated (see Figure 2). The heuristic mechanism
connecting the time of the peak activity of a time cell with the
desired behavioral response uses the error signal to modulate the
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FIGURE 2 | A population of time cells could learn the temporal map for the hippocampus. (A) Firing rate curves for five representative time cells that peak at 4 s (red

dashed line), 6 s (green dashed-dotted line), 8 s (blue dotted line), 12 s (orange dashed line), and 14 s (slate blue dashed-dotted line), respectively. Starting from an

initially uniform distribution of weights, the first learning trial adjusts the weights to 0.15, 0.22, 0.4, 0.4, and 0.22, respectively. (B) Based on Equation (3), the second

trial further adjusted the weights to 0.02, 0.05, 0.16, 0.16, and 0.05, respectively. The envelope of the population of time cells (black continuous line) shows that the

peak is around the to-be-learned criterion time T = 10 s and the envelope becomes narrower as the number of trials increases. (C) For the criterion time of T = 30 s,

only some representative firing rate curves are shown for 12 s (red dashed line),18 s (green dashed-dotted line), 24 s (blue dotted line), 36 s (orange dashed line), and

42 s (slate blue dashed-dotted line), respectively. The envelope of the population (black continuous line) peaks at T = 30 s. (D) The envelope for the second trial is

narrower and its width for a criterion time T = 30 s (C,D) is approximately three times larger compared to width for T = 10 s (A,B).

activity of the time cell proportional to its temporal distance to
the expected criterion time.

3. THE MODEL

Based on experimental evidences regarding the existence and the
properties of the time cells (Pastalkova et al., 2008; MacDonald
et al., 2011; Kraus et al., 2013; Howard et al., 2014), we modeled
the activity of each time cell with a Gaussian firing rate curve with
the width modulated by its peak time:

an(tn, σn) = Ane
− (t−tn)2

2σ2n , (1)

where we assumed for simplicity that the standard deviation
σn is proportional to the peak time tn (see MacDonald et al.,
2011 for experimental support of this assumption) and An is the
maximum firing rate of the time cell with the peak activity at tn.

In agreement with the experimental data (Pastalkova et al.,
2008; MacDonald et al., 2011; Kraus et al., 2013; Wang et al.,

2015), we assumed that there is a certain, finite, number N
of time cells that span the entire range of durations required
by the behavioral experiment. The error signal (see Figure 1B)
modulates the contribution of the individual time cells until the
average time field matches as closely as possible the expected
outcome. The average time field is determined by the weighted
average of the time fields of the N time cells:

a(Tavg , σavg) =
N∑

k = 1

Ake
− (t−tk)

2

2σ2
k , (2)

where N is the number of time cells allocated to the current
timing task and Ak is the amplitude (weight) associated to an
individual time cell. For example, if the expected outcome is
T = 10 s, then ideally all time cells would have zero weights
Ak = 0, except for the cells that peak at tk = T = 10 s. We
mathematically modeled the error signal needed in Figure 1C as
the difference between the expected outcome T and the peak time
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tk of each time cell:

errk = |T − tk| + ǫ, (3)

where ǫ is a very small positive number that helps us avoid a
mathematical singularity for the learning rule (Equation 4). At
the same time, a small positive ǫ mimics the ubiquitous biological
noise. The learning rule is:

Ak ← Ak/errk, (4)

where ← indicates that after each learning trial the current
weights Ak are replaced by Ak/errk. The effect of the above
learning rule is that time cells that peak at tk further from the
expected outcome T would be stronger depressed compared to
those closer to the expected outcome. The weights Ak are stored
in a spatially ordered (topological map) memory register that
mimics the hippocampal structure (see Figure 1).

4. RESULTS

4.1. Theoretical Predictions Regarding the
Scalar Property
There are two distinct contributions to the width of the average
time field: (1) the intrinsic properties of individual time field of
each time cell, and (2) the global weights learning algorithm.

Time Cell Effect on the Width of the Average Time Field.

The half-width of an individual time field of a single cell that
peaks at tk is determined by Equation (1), i.e.,

e
− (T−tk)

2

2σ2
k = 1/2,

which gives widthcell = |T − tk| = σk
√
2 ln 2 as shown in

Figure 3.
Weights Learning Effect on the Width of the Average Time

Field. Even if all time cells were to peak precisely at only one
moment in time with no time field width, the average time field
still would have a spread determined solely by the learning rule. A
time cell that peaks at tk which exactly overlaps with the criterion
timeT has themaximumpossible weight, i.e.,wmax = 1

|T−tk|+ǫ
=

1
ǫ
(see Figure 3). To find out the half-width of the average time

field due to the weights changing algorithm we need to find
the peak activity time tp 6= T when the weight wtp is half the

maximum weight. Since wtp = 1
|T−tp|+ǫ

, the width of the average

time field due to the learning rule imposed on the weights is:

widthlearn = |T − tp| = ǫ.

As we notice from Figure 3A, it is possible that the intrinsic
width of every time field (widthcell) is larger than the learning
spread widthlearn. In this case, the width of the average Gaussian
time field is determined by the time cell properties. Since the time
fields of individual time cells obey the scalar property, it results
that the average time field will also obey the same property with
exactly the same coefficient of variation as the time cell that is
closest to the criterion time. It is also possible to have very narrow

time cell fields such that widthcell < widthlearn (see Figure 3B). In
this case, the width of the average time field is entirely determined
by the constant ǫ of the learning rule and the scalar timing is
no longer observed. Therefore, depending on the ratio between
the intrinsic variance σk of time cell field and the learning
rule constant ǫ, it is possible to observe either scalar timing or
average time fields of constant width. In practice, we can always

select the learning rule constant ǫ such that σk
√
2 ln 2 > ǫ

for all criteria such that the average time field obeys scalar
property.

4.2. The Convergence of the Learning
Algorithm
To emphasize that the width of the individual fields is also
proportional to the peak time of the corresponding cells we
only showed symmetrically distributed time fields in Figure 2.
However, the learning algorithm from Equation (4) converges
to the desired criterion time T because the learning rule always
gives higher weights to cells firing closer (in time) to T.
Therefore, regardless the initial distribution of weights, they
will be repeatedly changed to minimize the error signal from
Equation (3), i.e., to reduce the temporal distance of the average
time field to the desired criterion time. The weight recalculation
only depends on the peak time of the individual time cell tk and
the criterion time T. As a result, regardless the distribution of
the peak times of time cells (symmetric or not with respect to
the criterion time), their weights will always be adjusted to favor
cells closer to the criterion time T. At the same time, a sparse and
asymmetric distributed of time cells could influence the accuracy
of timing. For example, for a criterion time of T = 10 s it could be
that only the following time cells are available: 6, 8, 12, 20, and 30
s, respectively. In this case, although the weights are still correctly
calculated to favor the closest time cell to the criterion time of
T = 10 s, the average time field will peak around 8 s, which leads
to a large error compared to the actual criterion time T = 10 s.
This example suggests that the accuracy of the learning algorithm
is determined by the temporal distance of the closest time cell to
the criterion time, i.e., errtiming = min{|T − tk|}.

4.3. Storing Multiple Criteria With the
Population-Based Topological Map Model
After a set of training trials, the weights stabilize such that the
model responds sharply to a criterion time of T1 = 10 s, i.e., the
weights of the time cells near T1 = 10 s are the largest and they
decay with the temporal distance from the desired criterion time.
In our implementation of the learning rule given by Equation
(4), the weight for a time cell with its peak activity at the desired
criterion time t1 = 10 s is wt1 = 1

|T1−t1|+ǫ
= 1
|T1−10s|+ǫ

= 1
ǫ
.

During the same training trial, a cell that peaks at t2 = 100 s has a
weight of wt2 = 1

|T1−t2|+ǫ
= 1
|T1−100s|+ǫ

= 1
90+ǫ

. In other words,

the weight of the time cell firing at 100 s is about 90 times weaker
(
wt2
wt1
= lim

ǫ→0

ǫ
90+ǫ
≈ 1

90 ) than the one firing at the correct criterion

time T1 = 10 s.
When a new set of training trials starts for a different criterion

time T2 = 100 s, it finds the highest weight wt1 = 1
ǫ
and changes

it to wt1 ←
wt1
errt1
= 1

ǫ
1

|T2−t1|+ǫ
= 1

ǫ(90+ǫ)
. Similarly, at the start of
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FIGURE 3 | Scalar property predictions. The half-width of the time field of a time cell that peaks at tk , which coincides with the criterion time T, is widthcell = σk
√
2 ln2

(A). The width of the average time field determined by the learning algorithm is given by the peak time tp for which wtp =
1
2wmax =

1
2ǫ

(regardless the criterion time).

As a result, widthlearn = ǫ. If all individual time cell fields are wide enough such that σk
√
2 ln2 > ǫ, then the average time field obeys the scalar property (A). Otherwise,

if the time fields of individual time cells are very narrow, then the width of the average time field is only determined by the parameter ǫ of the learning algorithm (B).

a trial for a new criterion time T2 the initial weight of wt2 = 1
90+ǫ

will be changed to wt2 ←
wt2
errt2
= 1

90+ǫ
1

|T2−t2|+ǫ
= 1

ǫ(90+ǫ)
.

As we notice, the two weights for the two memorized criteria
T1 = 10 s and T2 = 100 s remain the largest weights among
all memorized values in the hippocampus without requiring
any additional counter mechanism to distinguished between
T1 and T2.

4.4. Numerical Results
We numerically tested our population-based topological map
model and the above learning rule given by Equation (4). We
started all numerical simulations with a population of time cells
that uniformly covered a time interval that included the criterion
time. The range of the peak times covered by the time cells was
three times the criterion time. Initially, all time cells have the
same maximum firing rate (weight), although we tested that the
model works with an arbitrary initial distribution of weights. We
tested the model with a variable number of time cells (N = 10,
100, and 1,000) and found no difference among the respective
average time fields. The criteria tested were T = 10 s (see
Figures 2A,B) and T = 30 s (see Figures 2C,D). In the example
shown in Figures 2A,B, we only plotted the firing rate curves
of five representative time cells that peak at 4 s (red dashed
line), 6 s (green dashed-dotted line), 8 s (blue dotted line), 12 s
(orange dashed line), and 14 s (slate blue dashed-dotted line),
respectively. After the first learning trial, the weights associated
with the time cells were set inversely proportional to the their
distance from the to-be-learned criterion time, i.e., T = 10 s.
Based on our learning rule, for the cells shown in Figure 2,
the weights after the first trial became 0.15, 0.22, 0.4, 0.4, and
0.22, respectively (Figure 2A). This shows that the two closest
time cells to the to-be-learned criterion time at 8 s and 12 s have
the highest weights and all the other weights decrease as the
corresponding time cell is farther from the criterion time T =
10 s. The second trial further adjusted the weights to 0.02, 0.05,
0.16, 0.16, and 0.05, respectively (Figure 2B). The envelope of
the population of time cells (black continuous line in Figure 2)
shows that the peak is around the to-be-learned criterion time
T and the envelope becomes narrower as the number of trials

increases. For example, for T = 10 s (Figures 2A,B), the half-
width of the envelope is 10 s after the first trial and 8 s after
the second. Since the weights associated with the contribution
of different time cells to the average time field decrease after
each trail as a power law, we predict that the width of the
average time field will eventually equal the width of the closest
time cell to the actual criterion time. We also tested different
criteria, such as T = 30 s (Figures 2C,D), and found that the
half-width of the envelope is indeed approximately three times
its value for T = 10 s. Therefore, this topological map with
time cells and the learning rule given by Equation (4) generates
average time fields that follow the scalar property of interval
timing.

5. DISCUSSION

One of the first and most prominent timing paradigms is the
counter model in which a counter keeps track of how many
“clock ticks” accumulated since the presentation of a certain
salient stimulus that reset the counter (Gibbon, 1977). Later
on the counter model was implemented as a drift-diffusion
processes with the “clock” represented by some regularly firing
neurons (Simen et al., 2011b; Luzardo et al., 2013). A unified
model of conditioning and timing that is at its core a drift-
diffusion model has been recently developed (Luzardo et al.,
2017).

Difficulties of Counter-Based Models. One difficulty of the
counter models (Gibbon, 1977; Rakitin et al., 1998; Gallistel
and Gibbon, 2000) is that they cannot time multiple intervals.
For example, in conditioning experiments that rewards the
subject either for the first response after a short delay, say
10 s, or the first response after a long delay, say 100 s,
the responses were bimodal when the reward is omitted
(Catania and Reynolds, 1968; Leak and Gibbon, 1995). However,
based on the counter theory, unless the counter model uses
different counters for different durations, the output is unimodal
with a peak around the average of the two durations. On
the other hand, using different counter requires additional
information, which is not experimentally available, to identify
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which counter must be updated (Gallistel, 2007; Machado and
Silva, 2007).

Difficulties of Ramping Firing Models. Although we used
firing rate models to mimic the activity of time cells and
to match experimental observations, our population-based
time field model does not have the limitations of other
firing rate-based models. For example, ramping firing models
(Simen et al., 2011b), are limited by the time scale of the
leaky integrators. Recently, theoretical approaches suggested
that persistently firing neurons (Egorov et al., 2002) could
be used to construct time constants up to a few thousand
seconds (Tiganj et al., 2015). While a significant improvement,
the challenge for the ramping firing model still remains
when it comes to covering interval timing processes on a
much longer time scale (Howard et al., 2014). A recent
solution proposed in Simen et al. (2011a) suggested using
a chain of leaky integrators with a decreasing sequence
of intrinsic time constants to implement a feedback-based
integrator.

Similarities With SET and LeT Models. Similar to the
SET model, the long-term memory of our previous topological
model of the hippocampus (Oprisan et al., 2018) stored a
set of reinforcement times, which presumably represent a
Gaussian distribution with its peaks around the to-be-learned
criterion time. However, we departed from the SET model by
assuming in our topological model that the durations are stored
in a spatially ordered memory register with short durations
stored ventrally and longer durations more dorsal (Oprisan
et al., 2018). Such a topological organization was inspired
by experimental observations on peak interval shift due to
hippocampus lesions. While conceptually straightforward, one
drawback of the topological map model is the nature of what
is actually stored in the hippocampus. Computational models
can store anything, including a floating point number that
is the actual reinforcement time of an individual trial (like
in SET model). In this paper we suggested a more realistic
model of the topological map of the hippocampus by assuming
that the memory register actually stores weights associated to
individual time cells. This new population-based topological
map model of the hippocampus is an improvement over the
previous model (Oprisan et al., 2018) in many respects: (1)
the properties of the average time field, such as the peak time
and width, are directly related to the time field of the time
cells, (2) the learning mechanism of the weights ensures that
the average time field peaks around the to-be-learned criterion
time, and (3) long-term potentiation/depression mechanisms
could be invoked for adjusting the weights. The replacement
of the memory register content with the weights of the time
cells instead of actual reinforcement time is a departure from
the SET model and a similarity point with the LeT model.
However, in contrast to LeT, in our model the weights are
associated to physical time cells of the hippocampus and serve
for computing the average time field. At the same time, this
new model of a population-based topological map of the
hippocampus with time cells is different from LeT weight
adjustment model: (1) we did not consider any intrinsic decay
rates of the weights as in LeT, and (2) we did not directly relate

the weight strengthening to the reinforcement time of individual
trials.

Similarities With Microstimuli Model. Recently, the
microstimuli model (Ludvig et al., 2008) suggested that when a
stimulus is presented, it leaves a slowly decaying memory trace,
which is encoded by a series of temporal receptive fields. The
theory of microstimuli also postulates that the traces with long
latency peaks have greater dispersion. Experimental evidences
for microstimuli theory have been found in basal ganglia (Adler
et al., 2012). They found Gaussian-like post-stimulus time
courses (similar to those describing the temporal field of time
cells in our model given by Equation 1) in medium spiny neurons
recording from the putamen. Similar evidences of the existence
of Gauss-like responses were found in caudate nucleus (Jin
et al., 2009). While Gauss-like structures of temporal fields have
been used by many models from the early SET (Church, 1984;
Gibbon and Church, 1984; Gibbon et al., 1984, 1988; Brunner
et al., 1997) to the more recent microstimuli (Ludvig et al.,
2008), or the time cell temporal field (Pastalkova et al., 2008;
MacDonald et al., 2011; Kraus et al., 2013; Wang et al., 2015),
our topological map model only apply to the hippocampus.
Interval timing has always been thought to involve multiple,
complementary, mechanisms served by distributed neural
networks. One such distinct mechanism could be the basal
ganglia-based microstimuli model.

Here we suggested a novel, population-based, model that uses
experimentally verified results regarding the time cells of the
hippocampus. The activity of a time cell (1) peaks at a specific
time during a timing task, and (2) the firing field width increases
with the peak time (Pastalkova et al., 2008; MacDonald et al.,
2011; Kraus et al., 2013; Howard et al., 2014). We suggested a
possible time perception mechanism which assumes that (1) the
hippocampus stores a spatially organized (topological) map of
durations (Oprisan et al., 2018) with the added novelty that (2)
a memory location in the hippocampus actually stores a pointer
to a whole object, which is a time cell defined by the timing of
its peak activity and the width of its timing field. Previously, the
topological map model introduced in Oprisan et al. (2018) only
stored reinforcement time values in a spatially ordered register
with smaller durations mapped toward the ventral side and larger
durations stored toward the dorsal area of the hippocampus.
Such a topological organization accounts for the experimentally
observed effect of hippocampus lesions (Yin and Meck, 2014;
Tam et al., 2015). While the existence of such topological maps
has been supported by experiments, we suggested here a more
flexible model that instead of storing actual temporal durations it
stored a pointer to a whole object, i.e. a time cell. At the computer
implementation level, the topological map actually stores the
maximum amplitude (the weight) of the Gaussian firing rate
associated to a given time cell. The learning rule for the weights
given by Equation (4) accounts for the contribution of individual
time cells to the average time field and implements a distance-
dependent connectivity, which has experimental support (Perin
et al., 2011). Based on this newly proposed learning rule, we
found that the average time field based on the topological map
of a population of time cells preserves both the Gaussian-like
structure and the scalar property of the individual time cell fields.
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One obvious implication of this topological map mode with
time cells is that the properties of the average time field, i.e.,
the accuracy of timing and the scalar property, are directly
determined by the similar properties of the time cells. As the
experiments showed, the firing field of individual time cells is
Gaussian and its width scales with the peak time. This cellular-
level scalar property is inherited by the average time field, which
is a weighted average of individual time fields. Additionally, the
shape of the average temporal field is also influenced by the
learning rule. Here we adopted a weight adjustment rule based on
the temporal distance from the criterion time to the peak time of
each individual cell. While experimental support exists for such
a distance-based weight computation, other models are possible.
Therefore, new experimental data that manipulate the activity of
time cells are necessary in order to uniquely identify the learning
rule.

This model is only a small piece of a wider picture which
attempts to explain how time perception forms in the brain. As it
has been suggested, it is likely that there are multiple mechanisms
for time perception implemented by a set of distributed neural
networks working together toward this goal.
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