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Many inborn errors of metabolism require life-long treatments and, in severe conditions
involving the liver, organ transplantation remains the only curative treatment. Non-
integrative AAV-mediated gene therapy has shown efficacy in adult patients. However,
treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte
proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy.
Re-administration of the therapeutic vector later in time may not be possible due to the
presence of anti-AAV neutralizing antibodies. We have previously shown the permanent
rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative
gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX)
cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless
vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/
SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in
supraphysiological levels of hFIX being stable 10months after dosing. A single injection
of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of
above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to
tail clip analysis showed a clotting capacity comparable to wild-type animals, thus
demonstrating the rescue of the disease phenotype. Immunohistological analysis
revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult
FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot.
However, the hFIX levels were not sufficient to significantly ameliorate the bleeding
phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors
containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2
mice compared to adult animals. With this study, we demonstrate an alternative gene
targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be
potentially applied in the treatment of pediatric patients suffering from hemophilia, also
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supporting its application to other liver monogenic diseases. For the treatment of adult
patients, further studies for the improvement of targeting efficiency are still required.

Keywords: GeneRide, albumin gene targeting, mouse model, coagulation factor IX, tail clip test, CRISPR/SaCas9

INTRODUCTION

Hemophilia B is a serious X-linked recessive bleeding disorder
caused by mutations in the coagulation factor IX (FIX) gene
(Mannucci and Tuddenham, 2001). The current therapy is based
on the regular infusion of recombinant FIX. However, this
treatment still suffers from several limitations, such as the
need for life-long repeated intravenous infusions of the
recombinant factor, reducing the life quality of the patients.
Moreover, a significant proportion of patients develop anti-
drug antibodies induced by the recombinant FIX protein,
which considerably reduce therapeutic efficacy (DiMichele,
2007; Weyand and Pipe, 2019).

Gene therapy approaches represent a promising strategy for
hemophilia B since relatively low levels of factor IX are required
to increase the coagulation efficiency, reducing bleeding episodes.
Indeed, recurrent spontaneous hemarthrosis episodes frequently
observed in severe and moderate forms of the diseases (<1%, and
1% to <5% of residual factor IX activity, respectively), are rare
when coagulation factor IX activity is higher than 5%, as observed
in mild cases (5 to <30% of the normal FIX value) (Mannucci and
Tuddenham, 2001).

Adeno-associated viral (AAV) vectors have shown high
potentiality for in vivo liver gene transfer proving long-term
efficacy in pre-clinical studies with animal models and adult
patients (Wang et al., 1997; Wang et al., 2000; Mount et al., 2002;
Nathwani et al., 2011; Nathwani et al., 2014; George et al., 2017;
Rangarajan et al., 2017; Pasi et al., 2020). This strategy is based on the
delivery of an expression cassette that remains in an episomal form,
in which the therapeutic cDNA is under the transcriptional control of
a liver-specific promoter. However, this approach has important
limitations for the treatment of neonate and pediatric patients, and
certain disease states, characterized by a high rate of hepatocyte
duplication (Colella et al., 2018) leading to the loss of vector DNA
and reduction of the therapeutic efficacy (Cunningham et al., 2008;
Wang et al., 2012; Bortolussi et al., 2014). On the other hand, vector
re-administration may be limited by the long-term presence of high
titers of neutralizing antibodies against the AAV capsid, which are
generated during the first administration (Nathwani et al., 2014;
George et al., 2020). Thus, new therapeutic approaches are needed for
the treatment of newborn and pediatric patients.

During the last years, the use of genome-editing approaches
has exponentially increased (Carroll, 2014; Cox et al., 2015; Tong
et al., 2019; Trevisan et al., 2020). The main advantage is the
permanent modification of the target-cell genome assuring long-
term correction. This approach is efficient also in tissues with
active proliferation such as the neonatal/pediatric liver, since the
targeted allele is stably transmitted to daughter cells. Thus, as an
alternative approach to gene replacement, we performed a
genome targeting strategy also called “GeneRide”, based on the
insertion of a promoterless therapeutic cDNA into the 3′ coding

region of the Albumin (Alb) gene, without the use of engineered
nucleases (Barzel et al., 2015). The targeted transgene remains
under the transcriptional control of the strong albumin promoter.
Transcription of the targeted allele results in a single chimeric
mRNA containing the complete albumin ORF, a self-cleaving
peptide (P2A), which is translated into two separate proteins
(Barzel et al., 2015).

We have demonstrated that AAV-mediated gene targeting of a
promoterless UGT1A1 cDNA into the albumin locus without the
use of nucleases was able to rescue neonatal lethality in a mouse
model of the Crigler-Najjar syndrome lowering bilirubin to life-
compatible levels (Porro et al., 2017). To increase the
recombination rate and therapeutic efficacy in neonates, we
combined GeneRide with the site-specific engineered
endonuclease CRISPR/SaCas9. This resulted in the complete
rescue of neonatal mortality and long-term complete
correction of the disease phenotype by decreasing plasma
bilirubin to wild-type levels (De Caneva et al., 2019).

In the present work, we demonstrate that the combination of
GeneRide with SaCas9 in neonatal WT and hemophilia B mice
resulted in the long-term production of supraphysiological levels
of human FIX, leading to a normal coagulation process. Despite
the potential of the treatment in neonates, it was apparently less
effective when applied to adult hemophilic mice.

MATERIALS AND METHODS

Animals
Mice were housed and handled according to institutional guidelines.
FVB neonate mice were used for eGFP experiments and were held at
ICGEB Bioexperimental facility in Trieste, Italy. Experimental
procedures were approved by the International Centre for
Genetic Engineering and Biotechnology (ICGEB) board and by
the Italian Ministry of Health (authorization N. 996/2017-PR
from the Italian Ministry of Health). All experiments involving
animals were conducted in full respect of the ARRIVE principles.
FIX KO mouse model (strain B6.129P2-F9<tm1Dws>/J) was used
for Hemophilia B treatments. Mice were held and treated at the
SorbonneUniversity—UMS028, (105, boulevard de l’Hôpital, Paris).
Animals were maintained following the French and European
guidelines for the use of animal models (2010/63/EU). The
experimental protocol was approved by the Charles Darwin
N.005 Ethical Committee on Animal Experiments (number
22204). Mice were kept in a temperature-controlled environment
with a 12–12 h light-dark cycle. They received a standard chow diet
and water ad libitum.

rAAV Vectors Production
The recombinant AAV vectors used in this study are based on
AAV type 2 backbone and were prepared by AAV Vector Unit at
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ICGEB Trieste (https://www.icgeb.org/avu-core-facility.html) in
HEK293 cells by a cross-packing approach whereby the vector
was packaged into AAV capsid 8, as described (Bortolussi et al.,
2014).

rAAV Treatment of Wild-Type, Neonatal and
Adult FIX−/− Mice
For AAV-eGFP-donor vector treatment, P60 wild-type mice were
injected intravenously with rAAV-donor-EGFP (5.0E11 vg/
mouse, n = 3) with or without the rAAV-SaCa9-sgRNA8
(1.0E11 vg/mouse, n = 3). Mice were sacrificed after 2 weeks
(+SaCas9) or 1 month (−SaCas9).

FIX−/− mice were treated with a donor vector encoding for
hFIX protein and the SaCRISPR/Cas9 system. A neonatal mouse
group was injected at post-natal day two and the adult group at
2 months of age. Neonatal mice were injected intravenously at P2
with rAAV8-SaCas9 (0.6E11 vg/mouse) and rAAV8-donor-hFIX
(5.0E11 vg/mouse), 1:8 ratio (n = 12). Mice were sacrificed at
4 months of age. Mice injected at post-natal day 60 (2 months
old) in a 1:5 ratio of rAAV8-SaCas9 (1.0E11 vg/mouse) and
rAAV8-donor-hFIX (5.0E11 vg/mouse) and sacrificed
2 months after the treatment at 4 months of age (n = 8).

Tail Clip Test
The tail clip test on FIX−/−mice was slightly modified from Liu et al.
(Liu, 2012). Briefly, animals were anesthetized with a mix of
ketamine (Imalgene) 100mg/kg and xylazine (Rompun)
20mg/kg. During anesthesia, a 3 mm piece of the tail tip was cut
with a scalpel and 2 cm of the tail extremity was placed in a 50ml
Falcon tube containing 50ml of PBS, pre-warmed at 37°C. Bleeding
was monitored for 20 min (min). After 20min, the Falcon tubes
were centrifuged for 5min at 4.000 rpm, and the PBS was carefully
removed. Cell pellet was then hemolyzed with 1 ml of Red Blood
Cells lysis buffer (Qiagen). Lysates were then transferred in 2ml
Eppendorf tubes and centrifugated for 10 min at 10.000 rpm. The
optical density of supernatants was then measured using a plate
reader (Spark, Tecan Life Science) at 550 nm. The final blood loss per
mouse was compared to a standard curve, obtained from wild-type
mice subjected to the same procedure.

Plasma hFIX and Anti-hFIX Antibody
Determination
hFIX levels were analyzed by enzyme-linked immunosorbent
assay (ELISA), using an antibody set FIX-EIA provided by
Enzyme Research Laboratories (United States) following the
manufacturer’s protocol. Briefly, a 96-well plate was coated
with a capture antibody (anti-hFIX) for 2 h. After washing,
samples were diluted 1/1,000 or 1/25 in sample diluent while
reference plasma was serially diluted starting from 1/100 (100%)
to 1/3,200 (3,13%) and left incubated for 90 min. After another
washing step, a polyclonal goat anti-human
F9 peroxidase-conjugated IgG secondary antibody (Enzyme
Research GAFIX-APHRP). After the washing step, to develop
the color, OPD substrate was used and the reaction was stopped
by adding 2.5 M H2SO4. The plate was read at a wavelength of

490 nm on a multi-plate reader (Perkin Elmer Envision Plate
Reader, Walthman, MA). The hFIX levels were calculated
considering reference values of 5,000 ng/ml.

To evaluate the presence of anti-hFIX antibodies, we followed
a previously described protocol (Meliani et al., 2017). We coated
the plate with 1 µg of native hFIX protein (Invitrogen), mouse
IgG (Millipore) to generate a standard curve (starting from
100 ng/μl) left incubating overnight. After the blocking step
with (2% bovine serum albumin in PBS-0.05% Tween-20), we
diluted the plasma sample in 1:10 dilution and detected it with an
anti-mouse IgG-HRP antibody. The detection was performed as
described above. For the positive control, we incubated the hFIX
protein with an anti-hFIX antibody (Sigma Aldrich).

Genomic DNA Extraction From Liver Tissue
and Viral Genome Copies Quantification
The extraction kit used for this procedure is Wizard® SV Genomic
DNA Purification System by Promega following the manufacturer’s
instructions. The viral genome copies were analyzed as described
previously (De Caneva et al., 2019). Primer set for rAAV8 pAB
vector: forward (5′- ACTTCTTGTCTCTGTGCTGC-3′) and
reverse (5′-TGATTAACCCGCCATGCTAC-3′). For rAAV8
Cas9 vector: forward (5′-AAGGATCACCCAGCCTCTGC-3′)
and reverse (5′- CCTGCTGAAGACACTCTTGCCA-3′).

ddPCR
The on-target recombination rate was measured using ddPCR of
liver genomic DNA as described previously (Tsuji et al., 2022).
Briefly, 100 ng or 200 ng of gDNAwere digested with SpeI for 1 h.
25 ng of digested gDNA was added to a 25 μl PCR reaction
containing ddPCR Supermix for Probes (No dUTP) (Bio-Rad),
900 nM target-specific primers, and 250 nM amplicon-specific
probes. Droplets were generated using 22 μl of PCR reactions and
70 μl of oil according to manufactures instructions. Reactions
were cycled as follows: 95°C for 10 min, 50 cycles of 95°C for 30 s,
60°C for 30 s, and 72°C for 6 min, and one cycle of 95°C for 10 min
and held at 4°C until droplet reading. Primers to amplify a 1.6 kb
non-targeted region of endogenous mouse Albumin were (5′-
CTGCTGTGCACCAGTTGATGTT-3′) and (5′- TGCTTTCTG
GGTGTAGCGAACT-3′), combined with a HEX-labeled probe
(5′- TCTGGTGCTGAGGACACGTAGCCCAGT -3′). Primers
to amplify on-target HR with a 1.4 kb amplicon were (5′-GGG
CAAGGCAACGTCATGG-3′) and (5′- CCAGGGTTCTCTTCC
ACGTC-3′), combined with a FAM-labeled probe (5′-
GCCCAAGGCTAC AGCGGAGC-3′).

Total RNA Extraction andmRNAExpression
Analysis
RNA was extracted by homogenizing liver powder in NucleoZOL
solution (Takarabio) following the supplier’s instructions. The
cDNA was retro-transcribed using M-MLV reverse transcriptase
(Invitrogen, Carlsbad, CA, United States). mRNA expression was
evaluated as previously described (De Caneva et al., 2019) using a
primer set specific for mAlb-hFIX fusion mRNA (forward 5′-
AAGGCACCAGCTTTCTGACC-3′ and reverse 5′- TGAGTC
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CTGAGTCTTCATGTCTT-3′). For endogenous mFIX, the
primers were specific for mouse FIX (forward 5′- TTCCTA
TGAATGCTGGTGCCAAG-3′ and reverse 5′-CTGTTGGTT
CACAGGACTTCTGG-3′).

RT-qPCR Primer Efficiency
Primer efficiency was compared by amplifying by PCR the chimeric
hFIX-Alb in treated mice and endogenous mFIX in wild-type mice.
The amplicons were quantified with nanodrop and a qPCR was
performed using serial dilutions (1:10) of the amplicon starting from
0.2 ng of template. The Cqmean values and the template quantity of
the chimeric mRNA in treated mice and the endogenous mRNA
levels of wild-type mice were plotted in a graph.

Total Protein Liver Extraction and Western
Blot Analysis
Total protein extracts were obtained by homogenizing 10 mg of
liver in 200 µl of lysis buffer (50 mM Hepes pH = 7.4, 150 mM
NaCl, 1 mM EDTA, 0.5% NP40). Total protein was quantified
using Bradford (Biorad). 40 µg of protein was used for analyzing
eGFP and 5 µg or 50 µg for hFIX in neonatal or adult studies.
Plasma was diluted at 1:50 for western blot analysis in plasma.
Primary and secondary antibodies were used as described in
Supplementary Table S1.

Immunostaining of hFIX in Liver Tissue
Liver lobes from FIX KO were dissected and frozen in liquid
nitrogen. Later they were cut at 8 µm slices in a cryostat. Sections
were thawed at room temperature and rinsed in PBS ×1. Fixation
and permeabilization step was performed in acetone for 10 min at
−20°C. Slices were washed three times with PBS ×1 for 5 min.
Slices were blocked for 90 min in a blocking solution containing
10% normal goat serum (NGS) Triton 0.1%, PBS ×1. The primary
antibody (GAFIX-AP, Affinity Biologicals) was diluted 1/50 in
blocking solution and left incubating overnight at 4°C. The next
day samples were washed 3 times in PBS ×1 for 5 min. Slides were
incubated with the secondary antibody AlexaFluor 647 IgG at 1/
500 in Triton 0.1%, PBS ×1 for 1 h. After washing the slices
3 times with PBS ×1, slices were incubated with Hoechst 1:5000 in
PBS ×1 for 10 min and washed 3 times in PBS ×1 for 5 min. After
a rinse in water, slices were covered with a coverslip in mowiol.

For eGFP detection, liver lobes were fixed in 4%PFA in PBS ×1
for 24 h at 4°C and the PFA was then changed with 20% sucrose
0.02% sodium azide in PBS ×1 and kept at 4°C. Liver lobes were
cut in a cryostat in 4 μm slices and washed three times with PBS
×1 and stained with Hoechst solution for 10 min.

Fluorescent images were taken with a Nikon fluorescence
microscope. Images were modified using ImageJ software
version 2.0.0-rc-69/1.52p.

Statistics
Statistical analyses were performed using GraphPad Prism 8.2.1.
Data in the graphs are expressed as means ± standard error of the
mean (SEM) or standard deviation (SD), as indicated. The
student’s t-test was used for analyzing two groups. For
comparing more than two groups, one-way or two-way

ANOVA was used followed by indicated post-hoc test. A p
value < 0.05 was considered statistically significant.

RESULTS

Aiming at developing a highly efficient gene therapy for
hemophilia B, we constructed a promoterless donor vector

FIGURE 1 | In vivo gene targeting of hFIX into the albumin locus in
neonatal wild-type mice. (A) Targeting strategy for integration of donor hFIX
cDNA vector, proceeded by the 2A-peptide and flanked with arms of
homology for the albumin locus. Albumin and hFIX are transcribed into a
single hybrid mRNA molecule and translated into two separate proteins. The
CRISPR/SaCas9 performs a double-strand break in the intron located
downstream of the albumin stop codon, enhancing the homologous directed
repair rate; (B) Experimental scheme. Wild-type mice were i.v. injected at
post-natal day 2 with only rAAV8-donor-hFIX (2.0E11 vg/mouse, HR, n = 5) or
with rAAV8-donor-hFIX combined to different rAAV8-SaCas9-sgRNA8 doses
(6.0E10 vg/mouse, HDR L, n = 5; or 2.0E11 vg/mouse, HDR H, n = 5). Blood
was collected at different time points andmice were sacrificed at 10 months of
age; (C) Plasma hFIX levels were evaluated at 1, 2, 3, 4, 6, and 10 months of
age. The dotted lines at 5,000 ng/ml and 10,000 ng/ml represent 100 and
200%, respectively, of the hFIX levels present in the healthy human population.
Values are represented with mean ± SD. Two-way ANOVA (Bonferroni test)
Interaction ns (p = 0.1356), Treatment *** (p < 0.0001), Time ** (p = 0.0074).
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containing the human coagulation factor IX cDNA, carrying the
V86A, E277A, and R338L-Padua hyperactive mutations (Simioni
et al., 2009; Lin et al., 2010; Kao et al., 2013). This resulted in the
integration of the hFIX cDNA after the albumin ORF, upstream
to the stop codon. A chimeric mRNA is transcribed and, due to
the presence of the teschovirus 2A peptide (P2A) between both
ORFs (Barzel et al., 2015), two separate proteins, albumin and a
hyperactive FIX, can be translated (Figure 1A). The donor
construct was mutated at the sgRNA PAM site to avoid Cas9
cleavage of the donor DNA or the targeted allele.

To determine the efficacy of the strategy, we first treated WT
FVB neonate male mice (at post-natal day 2, P2) with an
intravenous injection of the promoterless hFIX-donor DNA
(rAAV8-donor-hFIX, 2.0E11 vg/mouse, n = 5) alone, or in
combination with the SaCas9-sgRNA8 encoding vector using
two different donor/Cas9 vector ratios [rAAV8-SaCas9-sgRNA8,
6.0E10 or 2.0E11 vg/mouse, for the low (HDR L, n = 5) and high
(HDR H, n = 5) SaCas9 dose, respectively]. Blood from rAAV8-
treated and untreated mice was collected by retro-orbital bleeding
at 1, 2, 3, 6, and 10 months, which was the last analyzed time-
point (Figure 1B). One month after the treatment, the levels of
hFIX in the animals dosed with donor vector and SaCas9 were
already in the range of those present in the human population,
while those of the group treated only with the donor vector (no
SaCas9) were about 50-fold lower (Figure 1C). We observed no
direct correlation between the hFIX plasma levels and the dose of
the rAAV8-SaCas9-sgRNA8 vector. In fact, the levels of plasmatic

hFIX in the HDR-L group of animals reached ~10,000 ng/ml at
10 months of age, while they were ~6,000 ng/ml in the HDR-H
group, although these differences did not reach statistical
significance.

Next, to evaluate the therapeutic efficacy of the approach, we
treated FIX KO male neonate mice (n = 12), a model of
hemophilia B, and control littermates at P2 with rAAV8-
donor-hFIX (2.0E11 vg/mouse) in combination with the
SaCas9-sgRNA8 encoding vector [rAAV8-SaCas9-sgRNA8,
6.0E10 vg/mouse] (Figure 2A). This donor/SaCas9 vector ratio
in wild-type mice resulted in the highest hFIX levels (HDR-L,
Figure 1C). We first measured hFIX in plasma by ELISA and
Western blot analysis. All treated mice showed hFIX plasma
values that were about 100–150% of the human population values
(Figure 2B). These results were similar to those obtained in the
HDR-H group in WT mice (Figure 1C), which showed a
reduction compared to the expected values present in the
HDR-L-treated animals. Similar results were obtained by
Western blot analysis, with FIX levels comparable to those
present in the same volume of human plasma (Figure 2C). To
assess the coagulation activity and, thus, the therapeutic efficacy
of the treatment, we challenged treated FIX-KO mice by
performing the tail clip test, which involves amputation of the
tail tip and determination of the clotting activity by measuring the
amount of blood loss over 20 min. We observed that the clotting
capacity of FIX KO mice, when treated with rAAV8-donor-hFIX
and AAV-SaCas9 vectors, was indistinguishable from that of WT

FIGURE 2 | Targeting the hFIX cDNA into the albumin locus of neonatal FIX KOmice. (A) Experimental design. FIX KO neonatal mice were injected at postnatal day
(P) 2 with 0.6E11 vg/mouse of AAV8-SaCas9 and 5.0E11 vg/mouse of AAV8-donor-hFIX. Bleeding was performed at 1, 2 months (M) and mice were sacrificed at
4 months. The liver was collected for molecular analysis; (B) hFIX plasma levels (ng/ml) at 1, 2, and 4 months of age in WT (n = 11), Het (n = 6) and FIX KO (n = 15) mice
transduced with SaCas9 and donor-hFIX treated at post-natal (P) day 2. 5,000 ng/ml corresponds to the normal FIX plasma levels in healthy individuals in the
human population; (C)Western blot analysis of plasma hFIX in treated FIX KOmouse plasma. Untreated WT and KOmice were used as negative controls, while human
plasma was used as a positive control; (D) Tail-bleeding assay. The coagulation time was evaluated in neonatally-treated FIX KO mice (n = 5) and their wild-type
littermates (n = 8). Data are shown as mean ± SEM and analyzed by one-way ANOVA with Tukey’s multiple comparison test.
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animals (Figure 2D). Histological analysis of liver sections
showed the presence of hFIX-positive cells in the treated
mutant animals, while no signal was observed in the untreated
control group (Figure 3A). Quantification of hFIX-positive cells
showed a recombination rate of about 10% (Figure 3B).
Interestingly, many positive cells were present in clusters
suggesting that the recombination event occurred soon after
viral transduction and the genetic modifications were inherited
by the daughter cells, forming groups of hFIX-positive
hepatocytes.

We then tested the approach in adult animals.We first injected
a GFP-reporter AAV (5.0E11 vg/mouse of AAV-eGFP-donor
and 1.0E11 vg/mouse of AAV-SaCas9) in WT P60 mice and
sacrificed them after 2 weeks (Figure 4A). Western blot analysis
showed the presence of eGFP in the liver of treated animals,
although at much lower levels than in animals injected at P2

(Figure 4B), while no signal was observed in untreated animals.
Quantification of the viral genomes resulted in the expected
levels, with higher VGC of the donor AAV-eGFP vector
(Figures 4C,D). The percentage of eGFP-positive hepatocytes
was about 0.33% (Figures 4E,F).

To determine the efficacy of the approach in the adult diseased
model, we injected FIX KO male animals of 2 months of age with
5.0E11 vg/mouse ofAAV-FIX-donor and 1.0E11 vg/mouse of AAV-
SaCas9 (Figure 5A). Mice were sacrificed 2months after AAV
dosing. Determination of hFIX in plasma by ELISA indicated
that the treatment resulted in very low plasma FIX levels, in the
range of 50 ng/ml (about 1% of normal values, Figure 5B), which
were about 150-fold lower than those detected in animals injected at
P2. The tail-clip test showed a non-statistically significant reduction
in blood loss, compared to untreated FIX KO mice (Figure 5C),
while blood loss in control WT mice was minimal.

FIGURE 3 | Immunohistochemical analysis of liver section. (A) hFIX protein was detected in liver sections of FIX KO mice treated at P2 with rAAV8-SaCas9 and
rAAV8-donor-hFIX. Sections were stained with anti-hFIX antibody (red) and nuclei were counterstained with Hoechst (blue). Scale bar, 200 μm; (B)Quantification of hFIX
positive cells normalized by total cell nuclei.
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To understand the reasons for the lower efficiency of the
approach in adult FIX animals, we first evaluated the rate of
targeting by ddPCR in both P2- and P60-treated groups. The
gene-targeting rate for neonatal and adult injected groups was
4.02 and 0.35%, respectively, (Figure 6A). Next, we assessed
transduction efficiency by determining the VGC per cell in
treated livers and compared these results with those obtained
for P2 injected animals. We observed that both AAV vectors were
present in the hepatocytes, at levels in line with the applied dose
(Figures 6B,C). In spite that the AAV dose used at P2 was higher
than that one used at P60, the VGC values present in the animals
injected at P2 were lower than those of the P60 group, probably
due to vector DNA loss, not occurring in the adult-injected group.
We observed that the loss of AAV-FIX-donor DNA in P2 treated
animals was more pronounced compared to the relative loss of
the AAV-SaCas9 vector in the same animals.

Next, we performed a Western blot analysis of liver protein
extract (Figure 6D). We observed a clear signal corresponding to

hFIX protein in adult treated animals, which was of lower
intensity than the one present in P2-injected mice. However,
quantification of the blots indicated that the difference in hFIX
levels between mice injected at P2 and P60 was about 364-fold
(Figure 6E), suggesting lower hFIX levels in the P60 group than
those observed in plasma by ELISA (Figure 5B, about 150-fold).

We also compared the levels of the chimeric mAlb-hFIX
mRNA to those of the endogenous mFIX mRNA (Figure 7A).
We calculated the efficiency of the different sets of primers used
for the comparison by serial dilution of the template DNA. We
observed that their efficiency was similar, in the range of 100%
(Supplementary Figure S1). The comparison of the chimeric
mRNA in P2-injected mice vs the P60 group confirmed the
results observed in the ELISA and WB experiments (Figures
5B, 6D,E), with a difference of about 65-fold (Figure 7A).
Importantly, we observed that the levels of the chimeric
mRNA, both in mice injected at P2 and P60, were much
higher than the levels of mFIX present in a WT adult animal

FIGURE 4 | Gene targeting in adult wild-type mice liver with a reporter donor-eGFP. (A) Experimental scheme. WT mice were transduced with AAV8-SaCas9
(1.0E11 vg/mouse) and AAV8-donor-EGFP (5.0E11 vg/mouse) at postnatal day (P) 60 and their livers were collected 2 weeks post-injection (n = 3); (B) Western blot
analysis of eGFP protein from liver extracts. In the analysis are included two samples from animals treated at P60 with donor-eGFP+Cas9, donor-eGFP (no Cas9),
untreatedwild-typemouse (−) and mouse treated with donor-eGFP+Cas9 at P2 (+); (C,D) rAAV8-SaCas9 and rAAV8-donor-eGFP viral genome copy analysis; (E)
Immunohistochemical analysis of eGFP protein in mice treated with SaCas9 and donor-eGFP at P60 and P2. Nuclei were stained with Hoechst (blue). Scale bar, 200 μm;
(F) Quantification of eGFP-positive cells normalized by the total number of cell nuclei.
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~148- and ~2.3-fold, respectively). This result may indicate that
only a fraction of the chimeric mAlb-hFIX mRNA was indeed
efficiently translated into hFIX protein. In order to assess whether
the low values of hFIX were related to the presence of anti-hFIX
IgG antibodies, we performed an ELISA assay. We did not detect
anti-hFIX IgG antibodies (Figure 7B).

DISCUSSION

Gene therapy by gene replacement approaches for hemophilia
B showed promising results in clinical trials (Nathwani et al.,
2011; George et al., 2017; George et al., 2020). However, its
application in neonatal or pediatric settings, characterized by
a growing liver, is limited by vector DNA loss associated with
hepatocyte duplication (Bortolussi et al., 2014; Cunningham
et al., 2008; Wang et al., 2012). Hemophilia represents an ideal
target for genome-editing approaches, as minor increases in
the levels of circulating factor IX can have an important
impact in correcting the symptoms (White et al., 2001). In
our previous work, we showed that the GeneRide strategy
(Barzel et al., 2015) coupled to the CRISPR/Cas9 platform
efficiently targets the therapeutic transgene to the albumin
locus in a Crigler-Najjar mouse model, leading to the
complete rescue from neonatal lethality and phenotype
abnormalities (De Caneva et al., 2019). Importantly, this
strategy is efficiently applicable to neonatal mice where
hepatocytes are actively proliferating and the homologous
directed repair (HDR) mechanism is active (Xue and
Greene, 2021).

Different genome editing/targeting strategies have been
applied to hemophilia mouse models, ranging from the
insertion of an hFIX cDNA into the murine FIX locus (Wang
et al., 2019) to the correction of mutations previously generated in
the endogenous FIX locus (Guan et al., 2016; Huai et al., 2017;
Ohmori et al., 2017). Here, aiming at developing an efficient
strategy for hemophilia B, we first treated neonate P2 wild-type
and FIX KO mice with a dual rAAV vector strategy: one
expressing the SaCa9/sgRNA, and one containing the donor-
hFIX cDNA flanked by arms of homology for the albumin locus.
This strategy has a series of advantages, such as the permanent
insertion of the therapeutic cDNA downstream of the albumin
ORF, without affecting albumin gene expression (De Caneva
et al., 2019). Moreover it is potentially applicable to the entire
mutational spectrum of the hFIX gene, not possible with
mutation-specific approaches (Guan et al., 2016; Huai et al.,
2017; Ohmori et al., 2017). Previously reported gene targeting
strategies for hemophilia B inactivate the albumin allele (Sharma
et al., 2015; Wang et al., 2020), raising concerns related to the
potential impact on albumin production. We have seen that the
insertion of the hFIX cDNA is stably transmitted to daughter cells
upon duplication, as supported by the presence of hFIX-positive
hepatocyte clusters in liver sections (Figure 3), and by the
transgene constant levels even after partial hepatectomy
(Barzel et al., 2015). The dual AAV proposed approach
appears to be safe, as no signs of tumorigenesis induction,
liver inflammation, or changes in plasma albumin levels were
observed (De Caneva et al., 2019). The specificity and the absence
of off-target activity of the approach used here and in previous
studies were analyzed by amplifying and sequencing on- and off-

FIGURE 5 | Gene targeting of adult FIX KO mice with gene-targeting strategy coupled to SaCas9. (A) Experimental plan. FIX KO adult mice were injected at
2 months of age (P60) with 1.0E11 vg/mouse of AAV8-SaCas9 and 5.0E11 vg/mouse of AAV8-donor-hFIX. Blood was collected 1 and 2 months after treatment. (B)
Plasma hFIX levels in mouse transduced with SaCas9 and donor-hFIX at post-natal (P) day 2 (n = 15) and 60 (n = 8). hFIX concentration obtained from blood samples at
months 1, 2, and 4 (P2 treatment) and 2, 3 and 4 months (P60 treatment). 5,000 ng/ml corresponds to the normal FIX plasma levels in healthy individuals in the
human population. (C) Tail-bleeding assay. Bleeding time was evaluated in treated adult FIX KO mice (n = 8) and compared to untreated WT (n = 10) and FIX KO (n = 8)
mice. Data are shown as mean ± SEM and statistically analyzed by one-way ANOVA with Tukey’s multiple comparison test.
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target predicted amplicons (De Caneva et al., 2019). Importantly,
in the case that the DSB is repaired by the error-prone NHEJ
DNA repair mechanism instead of the desired and precise HDR
mechanism, potential risks of damaging the 5′ splice site and,
consequently, affecting albumin gene expression are limited since
the sgRNA target site is located in the downstream intron (De
Caneva et al., 2019). Complete inactivation of the hypomorphic
targeted allele was observed when a gene editing strategy for
ornithine transcarbamylase deficiency was tested in adult Spf-Ash
mice, as the DSB was corrected mainly by NHEJ, worsening the
phenotype of treated mice (Yang et al., 2016). We expect that

most of the vectors expressing the SaCas9 nuclease will get lost
during hepatocyte proliferation (Cunningham et al., 2008; Wang
et al., 2012; Bortolussi et al., 2014) limiting safety concerns
associated with long-term expression of the nuclease. Other
strategies to obtain transient expression of the SaCas9 vector,
such as mRNA or protein delivery, or self-limiting circuits
(Ramakrishna et al., 2014; Yin et al., 2016; Petris et al., 2017;
Finn et al., 2018), could further increase the overall safety of the
procedure.

In neonate-dosed animals, we have shown both efficacy and
long-term stability of the treatment. ELISA quantification showed

FIGURE 6 | Evaluating the genome targeting rate, the presence of viral genome copies and hFIX protein in hepatocytes. (A)Genome targeting rate was evaluated in
neonatal and adult-treatedmice by ddPCR of liver genomic DNA (from Figures 2, 5); (B,C) rAAV8-SaCas9 and rAAV8-donor-hFIX viral genome copies analysis from FIX
KOmice treated at P2 and P60 (from Figures 2, 5); (D)Western blot analysis of hFIX protein in liver extracts. Mice treated at P2 and P60, together with untreatedWT and
KO were analyzed. Human plasma was used as a positive control; (E) Western blot was quantified and normalized with housekeeping GAPDH protein.
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supraphysiological levels of circulating hFIX, and, in some
animals, more than 200% of normal human values were
observed. Notwithstanding the high levels of hFIX carrying the
V86A, E277A, and R338L-Padua hyperactive mutations (Simioni
et al., 2009; Lin et al., 2010; Kao et al., 2013), we observed no
evident adverse effects or mortality in the treated animals. It was
reported that this triple-mutant hFIX version presents a 15-fold
increase in activity compared to the wild-type form (Kao et al.,
2013). In line with the expected enhancement of gene targeting in
the presence of a double-strand DNA break (Rouet et al., 1994),
hFIX levels in the presence of nuclease in the neonatal-treated
animals were increased up to 100-fold, compared to the group
without nuclease. To test the functional rescue of the phenotype
we performed the tail-clip test. Neonatal-treated mutant mice
showed similar coagulation capacity compared to WT animals.

Our previous work, using a reporter eGFP cDNA in neonatal
mice, shows that using a SaCas9/sgRNA that targets the intron
downstream to the exon containing the stop codon of the
albumin gene, we can achieve up to 15% of recombinant
hepatocytes, with animals reaching up to 24% of eGFP-
positive cells (De Caneva et al., 2019). Here, neonatal
treatment of hemophilia B mice with a donor construct
containing the hFIX cDNA resulted in 4–10% of recombinant
hepatocytes, as determined by ddPCR and quantification of liver
sections. However, after treating adult mice, both the eGFP and
hFIX levels observed were considerably lower than those of the
neonate treatment. In fact, we detected ~0.3% of eGFP-positive
hepatocytes in adult-treated mice. A similar value was observed in
adult FIX KO mice treated with the AAV-FIX-donor DNA
(0.35%, determined by ddPCR). The treatment of adult FIX
KO was not efficient in increasing hFIX to therapeutic levels.
In fact, treated mice had an increase of about 1% of plasma hFIX
while coagulation activity after the tail clip test was not
statistically different from the one observed in untreated FIX
KO mice. The lower efficacy observed in adult animals in the
presence of nucleases could be related to the post-mitotic

condition of the adult liver, in which DNA damage is mainly
corrected by NHEJ and not by HDR (Xue and Greene, 2021),
limiting the overall gene targeting efficiency, as already observed
in other models (Yang et al., 2016). On the contrary, in the
absence of nucleases we observed similar gene targeting rates in
neonate and adult treatments (Barzel et al., 2015). While HDR
occurs in proliferating cells in the S/G2 phase of the cell cycle, the
majority of AAV-HR events occurred in non-proliferating
hepatocytes in juvenile mice (Tsuji et al., 2022). Thus, it is
very probable that important differences in the mechanisms
exist when comparing genome targeting in the presence or in
the absence of nucleases. A direct comparison between P2 and
P60 treatments, using the same AAV doses, both in the presence
and absence of nucleases, should shed light to this issue. Another
concurrent reason could be related to the lower AAV dose used in
the adult treatment. While the AAV doses successfully used in
neonatal mice were similar to those used by Wang et al. (Wang
et al., 2020), in the case of adult animals we have used 5.0E11 vg of
AAV-FIX-donor and 1.0E11 vg of AAV-SaCas9 (2.5E13 vg/kg
and 5.0E12 vg/kg, respectively), similar to the one used by Yang
et al. in SpfAsh mice (Yang et al., 2016), a dose that was double of
the one we used for the neonate treatment (2.5E14 vg/kg and
3.0E13 vg/kg, for donor and SaCas9 vectors, respectively), but it
was about 50-fold lower than that successfully used in adult FIX
animals by Wang et al. (Wang et al., 2020). This comparison
suggests that further optimization of the vector dose may result in
a successful rescue also in adult-treated mice. However,
differences in recombination rate may be also affected by the
targeting position in the albumin gene (1st intron in Wang et al.,
vs. exon 14 in our approach). Others have also used a similar
approach in adult animals targeting the ApoA1 gene with AAV
doses that were approximately 50× higher than the one in our
study (De Giorgi et al., 2021).

We evaluated the mRNA expression levels of the hFIX-Alb
chimeric mRNA both in the neonate and adult-treated animals
and compared them to the endogenous FIX expression levels

FIGURE 7 | Chimeric Alb-hFIX mRNA expression levels in mice treated at P2 and P60 and evaluation of anti-hFIX neutralizing antibodies. (A) Analysis of hybrid
Alb-hFIX mRNA expression levels. Alb-hFIX mRNA expression was evaluated in both treated groups (P2, n = 10, and P60, n = 8) and endogenous mFIX mRNA was
analyzed in wild-type mice. The fold-increase between hFIX in treated mice and endogenous mFIX in WT mice is indicated; (B) Anti-hFIX neutralizing antibodies were
measured using an ELISA assay. Mice plasma was analyzed at different time-points by incubation with hFIX recombinant protein. An anti-hFIX antibody was used
as a positive control.
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present in wild-type animals. Unexpectedly, the hFIX mRNA
levels in both groups of treated animals were much higher than
the protein levels detected by ELISA (Figures 5B, 7A). To shed
light on the reasons for this difference, we analyzed the hFIX
levels in liver protein extracts, which did not present an abnormal
accumulation of hFIX in hepatocytes. Further, we failed to detect
anti-hFIX antibodies in the plasma of treated animals at any of
the analyzed time points (Figure 7B). Thus, we hypothesize that
one of the possible reasons for the differences between observed
mRNA and protein levels could be a less efficient protein
translation of the hFIX ORF in the chimeric albumin-hFIX
mRNA. The presence of 2A peptides between two ORFs
results in non-stoichiometric levels of the second ORF,
although the teschovirus-1 2A peptide presents the highest
efficiency among the different 2A peptide variants, reaching
up to 85% in the liver using a construct coding for EGFP-
P2A-mCherry (Kim et al., 2011). However, the skipping
efficiency may be different with other ORFs (Chng et al., 2015;
Liu et al., 2017). Another possibility could be the read-through
without ribosomal skipping. We believe that this possibility
should be ruled out since in the P60-treated animals we were
not able to detect a higher molecular weight band corresponding
to the fused albumin-hFIX protein in the Western blot analysis of
liver extracts. A band of 130 kDa detected in the P2-treated
animals was too faint to account for an inefficient ribosomal
skipping (Supplementary Figure S2). We have also previously
shown the absence of inflammation in the liver in a Crigler-Najjar
mouse model that was treated with the dual AAV strategy (De
Caneva et al., 2019). Further experiments will be required to fully
understand the nature of these unexpected results.

To summarize, here we presented results supporting a gene
targeting approach targeting the albumin gene exploiting the use
of the CRISPR/SaCas9 platform. This strategy can potentially be
applied for the treatment of pediatric patients suffering from
hemophilia and other liver monogenic diseases of the liver, by
simply replacing the therapeutic gene. For the treatment of adult
patients, further studies for the improvement of targeting
efficiency are still required.
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