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Abstract

Background: White sweet potato (WSP) has many potential beneficial effects on metabolic control and on 
 diabetes-related insulin resistance. The antihyperglycemic effects of Tainung No. 10 (TNG10), a variety of 
WSP in Taiwan, warrant investigation.
Objective: To investigate the antidiabetic activity of WSP (Ipomoea batatas L. TNG10) and the mechanisms 
for interventions using whole leaves or tubers of WSP in diabetic mice.
Design: Mice were co-administered with streptozotocin and nicotinamide to induce diabetes and then treated 
with an experimental diet including either 10% WSP tuber (10%-T) and 30% WSP tuber (30%-T) or 0.5% WSP 
leaf (0.5%-L) and 5% WSP leaf (5%-L). After 8 weeks’ treatment, their plasma glycemic parameters, lipid 
profiles, and inflammatory marker were analyzed. Their pancreases were removed for histopathologic image 
analysis; proteins were also extracted from their muscles for phosphoinositide 3-kinase pathway analysis.
Results: The 30%-T or 5%-L mice had lower plasma glucose, insulin, glucose area under the curve (AUC), 
homeostatic model assessment of  insulin resistance (HOMA-IR), alanine transaminase, triglyceride, and 
tumor necrosis factor alpha levels. In all diabetic mice, their Langerhans’s area was reduced by 60%; however, 
after 30% WSP-T or 5% WSP-L diets, the mice demonstrated significant restoration of  the Langerhans’s 
areas (approximately 30%). Only in 5%-L mice, slightly increased expression of  insulin-signaling pathway-re-
lated proteins, phosphorylated insulin receptor and protein kinase B and membrane glucose transporter 4 
was noted.
Conclusions: WSP has antihyperglycemic effects by inducing pancreatic islet regeneration and insulin resis-
tance amelioration. Therefore, WSP has potential applications in dietary diabetes management.
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Diabetes is one of the most prominent public health 
concerns of the 21st century and is characterized 
by the effects of either increasing insulin resistance 

or impairing glucose tolerance (1). According to the latest 

global estimate from the International Diabetes  Federation, 
415 million people had diabetes in 2015, and this number is 
expected to reach 642 million by 2040 (2). Glucose homeo-
stasis is maintained by the fine orchestration of insulin 

Popular scientific summary
•  The 30%-T or 5%-L of WSP had lower plasma glucose, insulin, AUC, HOMA-IR, alanine transam-

inase, triglyceride, and tumor necrosis factor alpha in diabetic mice.
•  The DM+30%-T or DM+5%-L of WSP had significantly restored Langerhans’s area by approxi-

mately 30%.
•  The 5%-L of WSP increased insulin sensitivity possibly via the insulin-signaling pathway and reduce 

blood glucose levels in diabetic mice.
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secretion and activity both for promoting glucose trans-
port into muscle and adipocytes and for inhibiting liver 
glucose output. Defects in insulin signaling impair glucose 
utilization and are believed to be a critical factor in insu-
lin resistance pathogenesis (3). Resistance to these effects 
of insulin is a classic pathogenic feature of obesity and 
type 2 (non-insulin-dependent) diabetes mellitus (T2DM) 
(4, 5). In T2DM, insulin resistance is initially compensated 
by increased secretion of insulin; however, this prolonged 
hyperinsulinemia leads to progressive β-cell exhaustion and 
degradation (6). The co-administration of streptozotocin 
(STZ) and nicotinamide (NA) can be used to induce T2DM 
animal models; this is because STZ causes pancreatic β-cell 
damage, whereas NA partially protects insulin-secreting 
cells against STZ damage (7–9).

The phosphoinositide 3-kinase (PI3K) signaling path-
way, a signal transduction system downstream of  an 
insulin receptor (IR), is a key factor in the translocation 
of  the glucose transporter protein from intracellular 
compartments to plasma membrane (10). IRs are pres-
ent in most mammalian cells, and insulin-IR binding 
results in the activation of  several phosphorylation-de-
phosphorylation cascades (11). Autophosphorylation 
of  the intracellular β-subunit of  IRs activates tyrosine 
kinase, which catalyzes multiple IR substrate (IRS) pro-
tein phosphorylation (12). Disruption in IRS protein 
phosphorylation or impaired PI3K recruitment from the 
cytosol, which results in PI3K inactivation, causes insu-
lin resistance, followed by diabetes (13). Protein kinase B 
(Akt; also called alpha serine/threonine protein kinase) 
activation by growth factors occurs in a PI3K-dependent 
manner. Activated Akt has critical roles in cellular pro-
cesses, such as apoptosis, cell survival, and cell progres-
sion, as well as T2DM pathogenesis (10).

Activated Akt, which is primarily expressed in insu-
lin-responsive tissues, promotes glucose transporter 4 
(GLUT4) translation (14). Akt possibly influences insu-
lin signal transmission and glucose transport (15). Insulin 
increases glucose uptake in cells by stimulating GLUT4 
translocation from the intracellular sites to the cell sur-
face; moreover, up to 75% of insulin-dependent glucose 
disposal occurs in skeletal muscle (15). Reducing GLUT4 
expression and translocation in a cell may result reduced 
glucose uptake and thus cause insulin resistance (16). 
Mulberry leaf extract stimulates glucose uptake and 
GLUT4 translocation to the plasma membrane of adipo-
cytes through the PI3K-mediated signaling pathway (17). 
A flavonoid isolated from rutin enhances insulin-depen-
dent receptor kinase activity and GLUT4 translocation in 
differentiated muscle myotubes and thereby improves glu-
cose uptake (18). Mango leaf extract affects glucose and 
lipid homeostasis in vitro and in vivo through the PI3K/
Akt and Adenosine monophosphate-activated protein 
kinase (AMPK) signaling pathways (19). Bamboo leaf 

extract treatment could increase the phosphorylated Akt 
level in renal tissues of rats with diabetes (20). Therefore, 
insulin-like activity, such as the stimulation of glucose 
uptake by skeletal muscle through PI3K/Akt pathways, 
may be crucial in regulating blood glucose level.

White sweet potato (WSP; Ipomoea batatas L.) belongs 
to the Convolvulaceae family. WSP extracts have antidi-
abetic activity in both insulin-deficient and -resistant dia-
betic models (21–25). In patients with T2DM, WSP tuber 
extract effectively reduced insulin resistance as well as 
fibrinogen, fasting plasma glucose, and low-density lipo-
protein-cholesterol levels (26–28). In our previous clinical 
trial, meal replacement therapy using whole tuber of WSP 
Tainung No. 10 (TNG10) – a new WSP cultivar that can 
provide 15.5 g of fiber per 100 g and has an average glyce-
mic index of 36.2 – was found to reduce energy and glu-
cose absorption in the intestines (29). WSP incorporated 
into enteral formulas also can improve nutrition status 
and glycemic control in elderly diabetic patients (30).

Thus far, animal studies on the use of native WSP 
tubers (WSP-T) or leaves (WSP-L) as a functional ingre-
dient for the management of non-insulin-dependent dia-
betic mice have been scant. This study thus evaluated the 
effects of various WSP-T or WSP-L dosages on antidia-
betic activity involving PI3K/Akt pathway activation in 
mice with STZ–NA-induced diabetes. These results may 
provide insights into the use of WSP as a potential func-
tional food for treating T2DM. Moreover, the influence of 
WSP on islet function and morphology was investigated.

Materials and methods

Plant materials
Fresh mature I. batatas L. TNG10, a starch-rich WSP 
variety, were harvested from a farm in the Chiayi Agricul-
tural Experiment Station, Taiwan. The WSP TNG10 tuber 
were first washed and then sliced (thickness: 3–5 mm). The 
WSP leaves were washed and air-dried. Both sliced sweet 
potatoes and treated leaves were lyophilized and ground 
using 200 mesh (75 μm) for use in animal diet.

Experimental design and treatment schedule
Male Institute of Cancer Research (ICR) mice (n = 30, 
age: 4 weeks) were obtained from BioLASCO Taiwan 
(Taipei, Taiwan). Taipei Medical University approved 
the use of these laboratory animals (LAC-100-0202). The 
mice were housed throughout the feeding experiment in a 
room maintained on a 12-h light–dark cycle at a constant 
temperature of 24°C with relative humidity of 65 ± 15%. 
They were allowed free access to food and water and were 
fed the American Institute of Nutrition (AIN)-93G (31). 
After 2 weeks of adaptation, diabetes mellitus (DM) was 
induced in the mice by two intraperitoneal injections of 
NA (120 mg/kg body weight [b.w.]) plus STZ 50 mg/kg 
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b.w.; Sigma, Saint Louis, MO, USA). NA, dissolved in 
saline, was injected intraperitoneally 15 min before the 
administration of  STZ, which was freshly dissolved in 
citrate buffer (pH 4.5) to induce diabetes at 1-day inter-
val (9, 32). Normal saline (0.9% NaCl) was used as a 
vehicle injection for the normal control (NC) group. 
During the experimental period, the animals’ food intake 
and body weight were monitored once a week. A mouse 
was considered hyperglycemic when its fasting plasma 
glucose concentration was > 180 mg/dL at 2 weeks after 
the last induction date. The mice were divided into six 
experimental groups comprising five animals each: NC, 
DM, DM plus 10% tuber (DM+10%-T), DM plus 30% 
tuber (DM+30%-T), DM plus 0.5% leaf  (DM+0.5%-L), 
and DM plus 5% leaf  (DM+5%-L). The compositions of 
the experimental diets are detailed in Table 1. Both NC 
and DM groups received an AIN-93G diet. The 10%-T 
and 30%-T groups received an AIN-93G diet containing 
100 or 300 g/kg of  WSP-T. Moreover, the 0.5%-L and 
10%-L groups received an AIN-93G diet containing 5 or 
50 g/kg of  WSP-L, respectively. All experimental diets 
were equal in terms of  calories (4.16 calories per gram), 
equal nutrients composition (carbohydrate: protein: 
fat = 63.5%: 20.5%: 16%), and fibers to ensure that no 
blood marker changes due to energy or cellulose imbal-
ance occurred.

Blood markers
A glucose tolerance test was conducted before the com-
pletion of the experiment. The mice were starved over-
night, and the blood samples were taken from the tail vein 
(time  0). A glucose challenge was given (1 g glucose/kg 
b.w.), and other blood samples were obtained after 30, 

60,  90, and 120 min by tail vein sampling (33). Plasma 
glucose concentrations were determined; the area under 
the curve (AUC) for blood glucose was also calculated 
(34). After 8 weeks of these diets, the mice were starved 
overnight and then anesthetized in their sleep with isoflu-
rane. Blood was collected in non-anticoagulant tubes and 
tubes containing ethylenediaminetetraacetic acid. Serum 
and plasma were prepared and stored at −20°C for further 
insulin and lipid measurement. Blood was also collected 
in tubes containing heparin, and plasma was prepared and 
stored at −20°C for glucose measurement. The homeo-
static model assessment-insulin resistance (HOMA-IR) 
index was calculated as (fasting plasma glucose × plasma 
insulin/22.5) to assess insulin resistance (35). Plasma insu-
lin levels were measured using a mouse insulin enzyme-
linked immunosorbent assay kit (Mercodia, Uppsala, 
Sweden). Tumor necrosis factor alpha (TNF-α) levels 
were determined by using an enzyme-linked immunosor-
bent assay (BioLegend, San Diego, CA, USA) according 
to the manufacturer’s instructions. The levels of other 
blood biomarkers, namely, alanine transaminase (ALT), 
triglyceride (TG), and total cholesterol (TC), were ana-
lyzed from a 0.1 mL serum sample in the National Labo-
ratory Animal Center (Taipei, Taiwan).

Western blotting
The gastrocnemius muscles were homogenized in a modi-
fied Radioimmunoprecipitation assay buffer (RIPA) buffer 
(0.5 M Tris–HCl at pH 7.4, 1.5 M sodium chloride, 2.5% 
deoxycholic acid, 10% NP-40, and 10 mM ethylenedi-
aminetetraacetic acid) and 10% protease and  phospha-
tase inhibitor cocktail (Sigma, Saint Louis, MO, USA). 
The homogenates were centrifuged at 10,000 g at 4°C for 

Table 1. Percentage composition of the experimental diet

Content (g/kg) Diets

Normal control (NC)/
diabetes mellitus (DM)

DM + 10%-T (10% white 
sweet potato [WSP] tuber)

DM + 30%-T 
(30% WSP tuber)

DM + 0.5%-L 
(0.5% WSP leaf)

DM + 5%-L 
(5% WSP leaf)

Powdered tubers - 100 300 - -

Powdered leaves - - - 5 50

Corn starch 397.4 338.6 220.9 397.4 388.4

Casein 200 195.1 185.3 199 189.5

Dextrinized cornstarch 132 132 132 132 132

Sucrose 100 94.8 84.4 100 100

Soybean oil 70 70 70 70 70

Fiber 50 42.7 28.2 48 30

AIN-93 mineral mix 35 35 35 35 35

AIN-93-vitamin mix 10 10 10 10 10

L-Cysteine 3 3 3 3 3

Choline bitartrate 2.5 2.5 2.5 2.5 2.5

Tert-butylhydroquinone (mg/kg) 0.014 0.014 0.014 0.014 0.014

Each experimental chow diet has equal calories (4.16 calories per g) and equal nutrients composition (carbohydrate: protein: fat = 63.5%: 20.5%: 16%).
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15 min, and the supernatants were collected. For demon-
strating GLUT4 expression in the membrane, the muscle 
lysate was prepared using a Mem-PER kit (Thermo Fisher 
Scientific, Waltham, MA, USA) to enrich the membrane 
proteins. Protein concentrations in each sample were quan-
tified using a commercial assay kit (Bio-Rad DC Protein 
Assay kit, Bio-Rad Laboratories, Hercules, CA, USA) 
with bovine serum albumin as a standard. Equal amounts 
of proteins (40 μg) were denatured and separated through 
10% sodium dodecyl sulfate polyacrylamide gel electropho-
resis and then transferred onto a polyvinylidene difluoride 
transfer membrane (Amersham Biosciences, Little Chal-
font, Bucks, UK). These blots were then incubated with 
primary antibodies, namely anti-IR (ab69508, WB 1:250; 
Abcam, MA, USA), anti-phosphorylated IR Thr1146 
(p-IR-Thr1146, 3021, WB 1:1000; Cell signaling, MA, 
USA), anti-Akt (2938, WB 1:1000; Cell signaling, MA, 
USA), anti-phosphorylated Akt (p-Akt; 9018, WB 1:1000; 
Cell signaling, MA, USA), and anti-GLUT4 (ab654, WB 
1:2000; Abcam) antibodies, at 4°C overnight and then with 
secondary antibodies, namely goat anti-rabbit or goat anti-
mouse (Abcam) antibodies, at a 1:5000 ratio at room tem-
perature for 1 h. The binding of antibodies was determined 
using FAST 5-bromo-4-chloro-3-indolyl phosphate/nitro 
blue tetrazolium as the substrate of the secondary anti-
body-conjugated alkaline phosphatase. The band density 
was quantified using the analysis software Quantity One 
1-D (Bio-Rad, Hercules, CA, USA). All controls for West-
ern blotting were applied to ensure antibody specificity and 
protein consistency.

Pathological tissue preparation
The pancreas and liver tissues isolated from the sacrificed 
animals were fixed in 10% neutral buffered formalin solu-
tion, dehydrated by passing through a graded series of 
alcohol, and embedded in paraffin blocks; these blocks 
were then cut into 5-µm-thick sections by using a Leica 
RM 2245 rotary microtome (Leica Microsystems, Wetzlar, 
Germany). These sections were stained using hematoxylin 

and eosin (H&E). A pathologist blinded to the treatments 
performed the histological evaluation. The photomicro-
graphs of each tissue section were observed on the EVOS 
FL Imaging System (Thermo Fisher Scientific, Waltham, 
MA, USA) and then analyzed using Image J (http://rsb.
info.nih.gov/ij/) for area percentage.

Statistical analysis
Numerical data are presented as means ± standard devia-
tions. Statistical evaluation was performed using one-way 
analysis of variance (ANOVA), followed by Duncan’s 
multiple range test. All data analyses were performed 
using SPSS (version 19; SPSS Inc., Chicago, IL, USA). 
Differences were considered significant at P < 0.05.

Results

Body weight, food intake, and feed efficiency ratio
The body weight, weight gains, food intakes, and feed effi-
ciency ratios (FERs) of the mice are presented in Table 2. 
The weight gain was significantly lower in the DM group 
than in other control groups (P < 0.05). The consump-
tion of different dosage of tuber or leaf did not influence 
the final body weight and weight gain in diabetic mice fed 
the experimental diets. The FER was significantly higher 
in DM+10%-T, DM+30%-T, DM+0.5%-L mice and 
DM+5%-L than in the DM group (P < 0.05).

Biochemical findings
After the 8-week intervention with different experimen-
tal diets, the groups exhibited no significant differences in 
the average body weight, organ weight, or feed efficiency. 
The mean fasting blood glucose was 153.8 ± 11.5 and 287.4 ± 
14.4 mg/dL in the NC and DM mice, respectively. All mice 
with STZ–NA-induced diabetes exhibited mild hypergly-
cemia. The blood glucose level was 262.9 ± 7.9 and 270.1 ± 
11.6 mg/dL in DM+10%-T or DM+0.5%-L mice, respec-
tively, whereas it was 218.8 ± 11.5 and 211.6 ± 11.5 mg/dL 
in DM+30%-T or DM+5%-L mice, respectively. Thus, the 

Table 2.  Body weight, food intake, and feed efficiency ratio in the mice fed with experimental diets

Group Normal 
control (NC)

Diabetes 
mellitus (DM)

Diabetes mellitus 
plus 10% tuber  
(DM + 10%-T)

Diabetes mellitus 
plus 30% tuber  
(DM + 30%-T)

Diabetes mellitus 
plus 0.5% leaf  

(DM + 0.5%-L)

Diabetes mellitus 
plus 5% leaf  

(DM + 5%-L)

Initial body weight (g) 33.4 ± 1.0 34.9 ± 1.5 34.7 ± 2.5 32.0 ± 2.0 36.0 ± 2.5 34.4 ± 3.2

Final body weight (g) 40.9 ± 2.4 39.4 ± 1.5 43.0 ± 3.6 43.3 ± 5.3 47.1 ± 6.9 41.8 ± 6.2

Weight gain (g/day) 0.152 ± 0.04 0.080 ± 0.020 0.180 ± 0.044* 0.202 ± 0.065* 0.198 ± 0.059* 0.192 ± 0.038*

Food intake (g/day) 4.50 ± 0.54 5.50 ± 0.95 5.11 ± 0.52 4.80 ± 0.86 4.70 ± 0.76 4.78 ± 0.85

Feed efficiency ratio (%) 3.22 ± 0.23 1.45 ± 0.16 3.52 ± 0.27* 4.21 ± 0.25*a 4.21 ± 0.22* 4.02 ± 0.28*

Asterisks indicate significance level compared to DM group. Letter ‘a’ indicates significance level to DM + 10%-T group. All values are presented as 
means ± standard deviation (n = 5). Statistical evaluation was performed using one-way ANOVA, followed by Duncan’s multiple range test, P < 0.05. Feed 
efficiency ratio (FER, %) = (Body weight gain (g/day)/food intake (g/day)) × 100.

http://dx.doi.org/10.29219/fnr.v64.3609
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/


Citation: Food & Nutrition Research 2020, 64: 3609 - http://dx.doi.org/10.29219/fnr.v64.3609 5
(page number not for citation purpose)

White sweet potato ameliorates hyperglycemia

higher the tuber (30%-T) or leaf (5%-L) dosage, the more 
was the pronounced reduction effect on fasting blood glu-
cose levels, AUC and glucose tolerance test, compared with 
AIN-93G diet alone (Figs. 1a, b and 2). The AUC derived 
from the glucose tolerance test was next used to diagnose 
impaired glucose tolerance. Compared with that of DM 
mice (100%), the AUC of DM+5%-L, DM+0.5%-L, 
DM+30%-T, and DM+10%-T mice decreased to 24%, 
53%, 38%, and 79%, respectively. Thus, both DM+5%-L 
and DM+30%-T mice demonstrated significant reduc-
tion in the AUC (Fig. 1b). After intervention, the plasma 
insulin levels slightly increased, by a factor of 0.71, in 
DM+5%-L and DM+30%-T mice (Fig.  1c). Moreover, 
HOMA-IR indicated significantly higher insulin resistance 
in DM mice than in the other groups. Similarly, compared 
with DM  mice, HOMA-IR considerably improved in 
DM+10%-T (0.83-fold improvement), DM+30%-T (0.54-
fold improvement), DM+0.5%-L (0.83-fold improvement), 
and DM+5%-L (0.53-fold improvement) mice (Fig.  1d). 

Taken together, these results indicate that our experimen-
tal diets with higher percentages of tuber or leaf from 
WSP improved the glycemic markers in the diabetic mice.

In mice, DM induction increased plasma ALT levels 
by up to 120.53 ± 45.96 U/L (Table 3). However, ALT 
decreased by a factor of 0.54 and 0.31 in DM+30%-T and 
DM+10%-T mice, respectively. Similarly, in DM+0.5%-L 
and DM+5%-L mice these decreases were by a factor of 
0.37–0.43. DM caused TG levels to increase to 151.13 ± 
47.57 mg/dL in DM mice; nevertheless, in WSP-T or 
WSP-L–treated mice, the TG levels reduced by a factor 
of 0.3–0.63. However, no significant intergroup differ-
ences were observed in the ALT or TG levels between the 
WSP-T- or WSP-L-administered mice. The TC also did 
not differ significantly among groups. DM mice exhib-
ited increased levels of the inflammatory marker TNF-α 
(45.18 ± 5.72 pg/mL), which significantly decreased after 
intervention with higher dosage of WSP-T or WSP-L; 
this decrease was significant, by a factor of approximately 

Fig. 1. Blood glucose and insulin index analysis in various groups. (a) Fasting blood glucose concentration. (b) Glucose area 
under the curve (AUC 0–120 min). (c) Blood insulin level. (d) The homeostatic model assessment-insulin resistance (HOMA-IR) 
in various groups after 8 weeks of the white sweet potato intervention. Asterisks indicate significance level compared to DM 
group. Letter ‘a’ indicates significance level to DM + 10%-T group. Letter ‘b’ indicates significance level to DM + 0.5%-L group. 
All values are presented as means ± standard deviation (n = 5). Statistical evaluation was performed using one-way ANOVA, 
followed by Duncan’s multiple range test, P < 0.05. 
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Table 3. Mouse blood biochemistry test after 8 weeks of experimental diet intervention

Group Normal 
control (NC)

Diabetes 
mellitus (DM)

Diabetes mellitus 
plus 10% tuber 
(DM + 10%-T)

Diabetes mellitus 
plus 30% tuber 
(DM + 30%-T)

Diabetes mellitus 
plus 0.5% leaf 

(DM + 0.5%-L)

Diabetes mellitus 
plus 5% leaf 

(DM + 5%-L)

Alanine transaminase (ALT) (U/L) 50.34 ± 15.85 120.53 ± 45.96 65.03 ± 22.74* 37.76 ± 7.41* 44.01 ± 12.76* 51.48 ± 11.68*

Triglyceride (TG) (mg/dL) 86.34 ± 23.46 151.13 ± 47.57 95.42 ± 30.85 72.44 ± 27.05* 45.13 ± 16.18* 53.50 ± 18.55*

Total cholesterol (TC) (mg/dL) 160.72 ± 44.62 158.98 ± 23.36 210.02 ± 44.08 146.76 ± 23.15 175.30 ± 41.86 148.62 ± 41.98

Tumor necrosis factor alpha (TNF-α) (pg/mL) 29.37 ± 8.64 45.18 ± 5.72 42.22 ± 8.12 39.48 ± 8.23* 43.11 ± 8.91 29.86 ± 5.24*a

Asterisks indicate significant difference compared to DM group. Letter ‘a’ indicates significance level to DM + 0.5%-L group. All values are presented as 
means ± standard deviations (n = 5). Statistical evaluation was performed using one-way ANOVA, followed by Duncan’s multiple range test, P < 0.05.

Fig. 2. Glucose tolerance test in various experimental diet. All values are presented as means ± standard deviations (n = 5). Plasma 
blood glucose levels were determined in different time (0–120 min). NC, normal control; DM, diabetes mellitus; DM+10%-T, 
diabetes mellitus plus 10% tuber; DM+30%-T, diabetes mellitus plus 30% tuber; DM+0.5%-L, diabetes mellitus plus 0.5% leaf; 
DM+5%-L, diabetes mellitus plus 5% leaf.

0.66, after intervention with 5%-L (29.86 ± 5.24 pg/mL) 
compared with the DM group.

Histological findings
H&E staining of liver tissue section, observed at a 100× 
magnification, revealed that DM mice demonstrated 
greater liver cytoplasmic vacuoles and inflammatory cell 
infiltration compared with mice in the other groups. The 
different dosage of WSP-T or WSP-L used in DM mice 
has slight morphological or structural changes in the liver 
tissue (Fig. 3); however, the photomicrographs in differ-
ent concentrations of WSP-T or WSP-L were difficult to 
quantify by pathology software analysis.

The histology of pancreatic islets was normal in the NC 
group. The H&E-stained histological sections of pancreas 
tissues of DM mice consistently revealed degenerative 
and necrotic changes and shrunken sections in the islets 

of Langerhans (Fig. 4). The nuclei of necrotic cells indi-
cated pyknosis or marginal hyperchromasie. The results 
of semi-quantitative analysis from H&E staining are pre-
sented in Fig. 4b. The proportion of Langerhans’s area 
in the photomicrographs was calculated using ImageJ. 
Langerhans’s area was reduced by 60% in DM mice, but 
DM+30%-T or DM+5%-L mice demonstrated signifi-
cantly restored Langerhans’s area by approximately 30%.

Western blotting findings
We then explored whether the antidiabetic activity of the 
WSP-T or WSP-L was involved in the PI3K/Akt pathway. 
Thus, we evaluated the expression of candidate proteins, 
such as phosphorylated and unphosphorylated IR and 
Akt, in the aforementioned pathway as well as translo-
cation of GLUT4 vesicles from cytosol to the cell mem-
brane in muscles (Fig. 5). No significant differences were 
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observed in the expression of the three candidate proteins 
in NC and DM mice. No significant differences were 
noted even in DM+10%-T or DM+30%WSP-T mice. By 
contrast, compared with other groups, after 8 weeks of 
treatment, DM+5%-L mice demonstrated slight increases 
in the relative intensity of p-IR (by 24%), p-Akt (by 18%), 
and membrane GLUT4 (M-GLUT4; by 17%). Thus, 
higher WSP-L dosage partially increased insulin sensitiv-
ity possibly via the insulin-signaling pathway and reduce 
blood glucose levels in diabetic mice.

Discussion
I. batatas L., also known as sweet potato with different 
varieties, is a valuable medicinal plant for the antican-
cer, antidiabetic, and anti-inflammatory activities in its 
extract (36, 37). In this study, mouse blood biochemistry 

indicated increased ALT, TG, and TNF-α levels resulting 
from increased free radical production caused by STZ 
in diabetic mice; however, these levels were significantly 
lower in mice who received the WSP-T or WSP-L inter-
vention for 8 weeks. WSP leaves are rich in potent phy-
tochemicals that can fight free radicals, and their roots 
are rich in dietary fiber; antioxidants and vitamins in 
them can also capture free radicals (36). Nevertheless, 
WSP-bioactive ingredients reduce not only blood glucose 
and insulin levels but also insulin resistance by improving 
the HOMA-IR index. In the preclinical phase of  T2DM, 
insulin resistance is initially compensated for by increased 
insulin secretion; however, this prolonged overstimu-
lation of  insulin secretion causes the gradual failure of 
β-cells over time (38, 39). Therefore, in this study, Lang-
erhans’s area was significantly reduced in the diabetic 

Fig. 3.  Histochemical characterizations in liver tissues stained using hematoxylin and eosin after various experimental diet inter-
ventions. Scale bar length represents 100 μm at 100× magnification. NC, normal control; DM, diabetes mellitus; DM+10%-T, 
diabetes mellitus plus 10% tuber; DM+30%-T, diabetes mellitus plus 30% tuber; DM+0.5%-L, diabetes mellitus plus 0.5% leaf; 
DM+5%-L, diabetes mellitus plus 5% leaf.
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Fig. 4. Histochemical characterizations in pancreatic tissues stained using hematoxylin and eosin (H&E) after various experi-
mental diet interventions. Scale bar length represents 100 μm at 100× magnification. (a) Morphological changes in pancreatic 
islets were observed through H&E staining after the white sweet potato intervention. (b) The size of the Langerhans area in 
the photomicrographs was determined using ImageJ. Asterisks indicate significant difference compared to DM group. Letter 
‘a’ indicates significance level to DM + 10%-T group. Letter ‘b’ indicates significance level to DM + 0.5%-L group. All values 
are presented as means ± standard deviations (n = 5). Statistical evaluation was performed using one-way ANOVA, followed by 
Duncan’s multiple range test, P < 0.05. 

(a)

(b)
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Fig. 5. Expression of insulin-signaling-related proteins in the muscle. Protein expression of p-IR & IR (panel a), p-Akt & Akt 
(panel b), and M-GLUT4 & T-GLU4 (panel c) were analyzed with Western blotting of the homogenates in the gastrocnemius 
muscle. Data are expressed as means ± standard deviations (n = 5). p-IR, phospho-insulin receptor; IR, insulin receptor; p-Akt, 
phospho-protein kinase B; Akt, protein kinase B; M-GLU4, membrane glucose transporter 4; T-GLU4, total glucose transporter 
4; Asterisks indicate significant difference compared to DM group. Statistical evaluation was performed using one-way ANOVA, 
followed by Duncan’s multiple range test, P < 0.05.

group, but was significantly recovered by the 30% WSP-T 
or 5% WSP-L intervention. The antidiabetic activity of 
WSP is partly due to the regeneration of  pancreatic islets, 
which lowers the blood glucose level and its AUC. Our 
results are consistent with those of  Sunarti et  al. (40): 
pancreatic β-cell regeneration by white-skinned sweet 
potato (WSSP) in rats with STZ-induced diabetes might 
increase the number and size of  islets and thus result in 
the formation of  small new islets adjacent to the duct in 
pancreatic tissue.

In WSP roots or leaves, the major phytochemicals 
are flavonoids, terpenoids, tannins, saponins, glycosides, 
alkaloids, steroids, and phenolic acids (37, 41). Some 
medical plants are associated with regeneration of the 
Langerhans’s area, and phytochemicals are thus used for 
the treatment of diabetes. The epigallocatechin gallate 
intervention can moderate the decrease in the islet mass 
induced by multiple low doses of STZ in mice (42). The 
flavonoid-rich fraction of Pilea microphylla can preserve 
the islet architecture and prevent hepatocyte hypertrophy 
based on the histopathology of the pancreas and liver in 
high-fat mice with STZ-induced diabetes (43). However, 
all WSP phenolic compounds responsible for the differ-
ences in the results warrant biological metabolite analysis 
to clarify blood sugar-lowering mechanisms.

The insulin-stimulated glucose uptake in skeletal mus-
cle plays a major role in regulating glucose metabolism 
and energy homeostasis. Therefore, the targets of the 
PI3K/Akt pathway are critical because treatments of 
T2DM function involve the impairment of this signaling 
pathway in muscles, all of which causes hyperglycemia 
and insulin resistance (10, 15). Bae et  al. reported that 

mulberry leaf extract reduced fasting blood glucose and 
insulin levels, enhanced insulin sensitivity, and increased 
p-Akt and p-AMPK expression in db/db mice (44). The 
hypoglycemic effect of Myrcia bella leaf extract in mice 
with STZ-induced diabetes can increase the expression of 
the insulin-signaling pathway involving PI3K/Akt pro-
teins (45). In the current study, Western blotting indicated 
that 5% WSP-L slightly increased the p-IR, p-Akt, and 
M-GLUT4 expression, we speculate that the direct use of 
lyophilized and ground WSP-L may not effectively release 
biologically active substances, resulting in an insignificant 
PI3K/AKT signal expression in mice muscle tissue. In 
addition, AMPK-mediated hyperglycemia to insulin sig-
nal transduction was not present in our data, which needs 
more evidence to complete the antidiabetic mechanism by 
WSP-L.

According to Oki et al. (24), arabinogalactan isolated 
from the tuberous cortex of WSSP is an antidiabetic com-
pound that can decrease the elevation in plasma glucose 
levels by reducing insulin resistance. The active compo-
nent isolated from WSSP has a high molecular weight 
(24). In addition, resistant starch may be a promising 
dietary fiber for the preventing or managing diabetes and 
the related diseases. In humans, RS improves insulin resis-
tance after chronic feeding through a mechanism involv-
ing changes to both adipose tissue and muscle metabolism 
(46). Additionally, we employed in vitro enzyme-digested 
WSP-T, which contained 0.36 ± 0.05 resistant starch and 
48.0 ± 1.8 mg/100 mg slowly digestible starch (29). There-
fore, the tuber active substances with antidiabetic effects, 
in relation to in vivo digestibility and glucose release rate, 
warrant an additional study.
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Conclusions
Insulin resistance and pancreatic islet dysfunction are 
the two features of T2DM. In this study, high dosage of 
WSP-T or WSP-L could significantly reduce fasting blood 
glucose levels, improving fasting glucose tolerance, lower-
ing HOMA-IR, and regenerating pancreatic islets. Nota-
bly, among all concentrations of WSP-T or WSP-L used, 
the antidiabetic effects of a 5% WSP-L may be slightly 
better in terms of insulin-signaling pathway activation. 
Finally, this study confirmed that whole WSP can be 
used to treat T2DM, by using experiments on mice with 
diabetes, biochemical analysis, histomorphometry, and 
insulin-signaling pathway analysis. Our results indicate 
that the hypoglycemic effect in different concentrations of 
WSP-T or WSP-L can be used as raw materials or mate-
rials for health food manufacturing in the food industry.
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