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1  |  INTRODUC TION

The coronavirus disease 2019 (COVID-19) pandemic has caused an 
unprecedented global health crisis,1 strongly affecting health care 
systems in most countries worldwide. The number of deaths due to 
COVID-19 skyrocketed throughout 2020, as did the number of death 
due to other etiologies, owing to the collapse of several health care 
systems as the pandemic unfolded,2 and confirmed by the high excess 
mortality observed in several countries.3 Many hospitals and health 
care services have become overloaded and the number of medical 
procedures unrelated to the management of COVID-19 has fallen 
dramatically.4 One medical area that has been most affected is organ 
transplantation, especially kidney transplantation, which has experi-
enced a significant reduction in the number of transplants performed 
worldwide.5

In addition to the observed decrease in transplant activity, 
solid organ transplant recipients have been considered a high-risk 
group.6 As the full spectrum of COVID-19, from asymptomatic to 
severe acute respiratory syndrome,7 has already been reported, 
the major challenge is to identify, as early as possible, the most 

accurate prognostic factors that can predict the need for hospi-
talization, intensive care unit, and, ultimately, death. In the general 
population, advanced age and the presence of comorbidities, such 
as hypertension, diabetes, chronic cardiovascular or pulmonary 
diseases, and chronic kidney disease has been associated with 
worse outcomes.8 Consequently, by accumulating comorbidities, 
the recipients of solid organs would be susceptible to worse out-
comes. The effect of chronic use of immunosuppressive drugs, 
however, is uncertain, as some evidence suggests that COVID-19 
in kidney transplant (KT) recipients have similar outcomes to the 
general population when the comorbidities are closely matched.9,10

In this scenario, predictive models using readily available data 
could be particularly useful to support decision-making clini-
cal management, including remote assessment performed by 
primary health care professionals using telehealth medicine.11 
Hypothetically, the health care services could benefit from this 
burden-reduction strategy. Actually, predictive scores have been 
developed to assist risk stratification in the general population, 
although such score to assess the risk for KT recipients is not yet 
available.12–14
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Brazil has the largest public transplant program and is one of the 
countries most affected by the pandemic. Therefore, the present study 
aimed to develop a prognostic model for KT recipients that could assist 
in risk stratification on an outpatient basis, using data extracted from 
the COVID-19-KT Brazil study group carried out throughout 2020.

2  |  MATERIAL S AND METHODS

2.1  |  Population and setting

A multicenter retrospective cohort study has been carried out in 
transplant centers in Brazil, the COVID-19-KT Brazil. All 81 active KT 
centers in Brazil were invited, 78 have agreed to participate, 37 have 
effectively completed the regulatory process, and 35 have included 
patients. These centers represent 57% of the national transplanta-
tion activity. The study was approved by the National Ethics Research 
Committee (identification number CAEE 30631820.0.1001.8098 
and approval number 4.033.525) and by the local ethics commit-
tee of all participating centers, and it was registered in the Clinical.
Trails.gov (NCT04494776). Informed consent or its exemption fol-
lowed specific national legislation, local Institutional Review Board 
recommendations, and the guidelines of the Declaration of Helsinki. 
We followed the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) statement.15 
Data were anonymized, de-identified, and stored in the REDCap 
platform.16

2.2  |  Inclusion criteria and definitions

The eligible participants for this analysis were KT recipients who un-
derwent transplantation performed at any time, of any age, diagnosed 
with COVID-19 through reverse-transcription polymerase chain reac-
tion (RT-PCR) assay between March 3 and October 31, 2020. The final 
follow-up date was November 30, 2020. Aimed to have an extra vali-
dation, a second cohort composed of patients diagnosed in 2021 was 
fitted. Thus, those diagnosed between January 1 and April 30, 2021, 
were enrolled in the second validation cohort. For this second group 
of patients, the final follow-up date was May 30, 2021. For all patients, 
the diagnosis was considered only in patients who presented at least 
one COVID-19-attributable symptom associated with a positive RT-
PCR of sample collected from the nasopharyngeal or oropharyngeal 
swab. The attributable symptoms were defined by the local investiga-
tor. According to their practices, the local investigators defined the 
allocation to home care or hospital for clinical management.

2.3  |  Variables of interest: predictor variables

The variables of interest were grouped into four categories: 
demographic data, comorbidities, immunosuppression, and 

symptoms of COVID-19. Demographic data included age, sex, 
ethnicity, etiology of chronic kidney disease, type of donor (de-
ceased or living donor), body mass index (BMI), and the baseline 
glomerular filtration rate (eGFR), estimated by the Chronic Kidney 
Disease Epidemiology Collaboration Equation (CKD-EPI),17 and 
the interval between transplantation and the infection diagnosis 
(in years). For the graft function estimative, the baseline creati-
nine value was assessed from the mean value of the three last 
available serum creatinine measurements before the COVID-19 
diagnosis. The comorbidities evaluated were diabetes, hyperten-
sion, neoplasia, smoking, and cardiovascular, lung, liver, autoim-
mune or neurological diseases. The use of angiotensin-converting 
enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARB) 
was included in the comorbidities group.18 The immunosuppres-
sion included the drugs of maintenance regime at the COVID-19 
diagnosis. Last, the time from symptoms onset (in days) and the 
most frequently reported symptoms or signs of COVID-19 were 
included in the analysis. Dyspnea was defined as any degree of 
shortness of breath or difficulty in breathing subjectively re-
ported by the patient.

2.4  |  Outcome

The main outcome was death by any cause within 28 days from the 
COVID-19 diagnosis.

2.5  |  Statistics

2.5.1  |  Exploratory data analysis

All variables were compared between patients who survived with 
those who died up to 28 days after the diagnosis. This comparison 
was performed by the X2 test for categorical variables and by the 
Mann-Whitney test for continuous variables.

2.5.2  |  Predictive model

For the predictive model, the categorical variables were transformed 
into dummy variables, and the missing values were imputed by the 
most frequency class as there was an exceptionally low rate of miss-
ing values. The continuous variables were normalized by dividing their 
values by means (center) and standard deviation (scale), and the median 
value was imputed for missing data. Variables with zero or near-zero 
variance were removed from the model. Natural splines were used in 
the variables age and eGFR with four degrees of freedom owing to a 
linear relationship with outcome was not found to be a good approxi-
mation. For missing we imputed the median value. The total missing 
value was below 1%, and most of the variables had a missing value 
below 5%, except eGFR with 10.9%.
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2.5.3  |  Model training

A derivation (training) and a validation (test) data set were created 
using a random split stratified by the target into training (75%, 
n = 1035) and test (25%, n = 344). An algorithm created a single bi-
nary split of the data into training and testing sets at random, and a 
seed approach was used to ensure the productiveness of the analysis. 
Details about derivation and validation are shown in Table S1. In the 
training data, 10-fold-cross validation was used to select the hyper-
parameters of the models and to reduce the bias and variability of the 
performance estimates. To adjust to the class imbalance, the synthetic 
minority over-sampling (smote) method was used to create synthetic 
classes in the training set (Balancing).19 A full model was fitted in the 
derivation cohort using all candidate predictors. Additionally, a fea-
ture selection by a least absolute shrinkage and selection operator 
(LASSO) model was performed, and the predictors with non-zero 
coefficients were selected to fit a reduced model. Gradient boosting 
decision trees (XGBoost) and an Elastic Net were fitted to develop 
the candidate equations. The hyperparameters tuned in XGBoost and 
Elastic Net are described in the supplementary material (Tables S2 and 
S3). Finally, the best hyperparameters were selected using machine 
learning approaches by 10-fold-cross validation in a train set aiming to 
maximize the area under the receiver operating characteristic (AUC-
ROC) curve, detailed in the supplementary material (Table S4).

2.5.4  |  Assessment of accuracy and calibration

The accuracy of the derivation cohort models was tested on the vali-
dation cohort using the AUC-ROC curve by 28-day fatality. The 95% 
confidence interval of AUC-ROC curves were estimated by bootstrap 
resampling (2000 samples) to reduce overfit bias. To evaluate the 
goodness of fit of models, the predicted versus observed target val-
ues were plotted in a confusion matrix of the first validation cohort. 
The best model was selected to minimize the number of false nega-
tives. The calibration of models was evaluated throughout the Brier 
Score20 and Slope values in the test set using the RMS R package.

2.5.5  |  Score fit and model visualization

The model with a higher AUC-ROC curve in the validation cohort 
and better calibration values was used to build the ImAgeS score. 
Shapley Additive Explanations (SHAP) were chosen to visualize and 
explain the importance of the predictors. SHAP plots are used to 
reduce the difficulties in interpreting machine learning models.21

2.5.6  |  Accuracy metrics for previous published 
COVID-19 models

The final model was compared with three available models that 
have been externally validated in the general population: the 

CHA2DS2-VASc, the clinical predictive model proposed by Wang 
et al. and the COVID SEIMC score.22–24 Details about these scores 
are described in the supplementary material. The comparisons were 
performed throughout the assessment of sensitivity, specificity, 
and AUC-ROC.

2.5.7  |  Sensitivity analysis

For sensitivity analysis, the first validation cohort was split into four 
factors: allocation for treatment (in-hospital or domiciliary), center ac-
cording to the volume of enrolled patients (high or low volume), the 
time between transplantation and COVID-19 diagnose (more than 
1 year or less) and type of donor (living and deceases). Center was 
considered as high enrollment volume if the number of patients was 
higher than 100, and low if the number was lower than 50. The analy-
sis was performed by the AUC-ROC.

The software R version 4.0.2 and the packages tidymodels and 
DALEx were used to create and visualize the models. The R packages 
“glmnet” and “xgboot” statistical software (R Foundation) were used 
to perform the Elastic Net regression and XGBoost models.

3  |  RESULTS

3.1  |  Demographic data, the COVID-19 
presentation, and comparison between survivors and 
non-survivors

Between March and October 2020, data from 1635 KT recipients with 
COVID-19 were reported by 35 centers. We excluded 256 because the 
diagnosis was performed by serology, and therefore data from 1379 
patients were included in the present analysis (Figure 1). The baseline 
characteristics and immunosuppressive drug regimens are detailed in 
Table 1. The median age was 52 (42, 60) years and most were male 
(61%). The main etiology of chronic kidney disease was unknown (28%), 
and 16% had diabetes. The kidney transplant was performed with a 
deceased donor in 68%, and the time interval between the transplanta-
tion and the COVID-19 diagnosis was 6.0 (2.1, 10.7) years. Baseline 
eGFR was 47 (31, 64) ml/min/1.73 m2. The median time between the 
symptoms or signs onset and the diagnosis of COVID-19 was 5.0 (3.0, 
9.0) days. The clinical presentation is detailed in Table 2. The most fre-
quent respiratory symptoms/signs were fever or chills (62%), cough 
(54%), dyspnea (40%), and myalgia (40%). Diarrhea was reported in 
32%, anosmia in 23%, and hypoxemia in 14% of the patients.

Hospitalization for clinical management was required for 73% 
of patients, 40% of them in an ICU. The rates of invasive mechani-
cal ventilation and KRT were 29% and 27%, respectively. Two hun-
dred and thirty-five (17%) patients died up to 28 after the diagnosis. 
Several demographic differences were observed when patients who 
died were compared with survivors (Table  1). Non-survivors were 
older (p <  .001), most frequently had chronic kidney disease due to 
diabetes (p < .001), and had received a graft from a deceased donor 
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(p = .003). Among them, the frequency of hypertension (p = .001), di-
abetes (p < .001), and previous cardiovascular events (p < .001) were 
more frequent, and smoking (p = .02). The use of mTOR inhibitor was 
more frequent in patients who survived (p = .004), whereas the base-
line graft function was higher (p < .001).

Similarly, some differences were observed in the clinical presen-
tation of COVID-19 (Table 2). The following symptoms or signs were 
most frequent among the survivors: fever and/or chills (p  =  .017), 
myalgia (p  <  .001), coryza (p  =  .001), sore throat (p  <  .001), anos-
mia (p < .001), and headache (p < .001). On the other hand, dyspnea 
(p < .001) and hypoxemia (p < .001) were significantly most frequent 
among patients who died.

3.2  |  Development of model prediction risk for 
COVID-19 associated mortality

The patients were grouped randomly in two cohorts: the derivation 
cohort or train set (n = 1035, 75%) and the internal validation cohort 
or test set (n = 344, 25%). A more detailed diagram flow depicting the 
cohort split is presented in Figure S1. Among all variables of interest, 
the number of recipients with chronic kidney disease due to diabetes 
(p = .026) and the presence of diabetes as comorbidity (p = .005) were 
higher in the internal validation cohort (Table S1).

All candidate predictors were fitted in a predictive model named 
here as the full model (n = 36 predictors, Table S2). A reduced model 
using feature selection aimed to retain only the most important pre-
dictors was analyzed, named here as the reduced model (n = 15 pre-
dictors, Table S3).

In a first step, several candidate models were fitted with 10-fold 
cross-validation and the performance of these full and reduced mod-
els were analyzed throughout the AUC-ROC curves in the derivation 
cohort. In the full model, the AUC were 0.753 and 0.783 for XGBoost 
and Elastic Net, respectively, whereas, in the reduced model, the AUC 
were 0.788 and 0.776, respectively. In a second step, the performance 
of these models was tested in the internal validation cohort. In the full 
models, the AUC were 0.766 and 0.750 for XGBoost and Elastic Net, 
respectively, whereas for reduced models they were 0.764 and 0.767, 
respectively (Table  3). In the calibration, full and reduced XGBoost 
models achieved a Brier score of 0.358 and 0.319, respectively, 
whereas, for full and reduced Elastic Net, it was 0.128 and 0.119, re-
spectively (Table 3). The calibrated model, optimism corrected model 
using logistic calibration, and nonparametric calibration are depicted in 
Figure 2, and detailed calibration information is presented in Table S5.

To choose the most useful model, AUC-ROC values of XGBoost 
and Elastic Net were additionally plot, as shown in Figure  3, and a 
confusion matrix of 28-day fatality in the derivation cohort, shown 
in Figure 4. As it is depicted in the red line of Figure 3, the reduced 

F I G U R E  1  Participant flow diagram 
and proportion of patients enrolled in 
the derivation and validation cohorts. 
Using a random split, 1,035 patients were 
grouped in the training cohort (training 
data set), which represents 75% of the 
entire cohort, whereas 344 patients were 
grouped in the validation cohort (test 
data set). A more detailed flow diagram 
of the population can be consulted in the 
supplementary material (Figure S1)
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Elastic Net showed a good discrimination ability for COVID-19 mor-
tality with an AUC of 0.767 (95% CI 0.698–0.834).

For sensitivity analysis, the first validation cohort was split consid-
ering four scenarios: type of donor, the time between transplantation 
and COVID-19 diagnosis, patients' allocation for treatment, and type 
of center, according to the volume of enrolled patients. As shown in 
Table 4, the accuracy of the model assessed by AUC-ROC ranged from 
0.706 to 0.788 for different scenarios.

3.3  |  Making a score-based prediction

The results of reduced Elastic Net showed that age, hypertension, previ-
ous cardiovascular disease, higher BMI, use of mycophenolate acid ana-
logs or azathioprine, and presence of dyspnea were related to a worse 
outcome. The higher baseline eGFR, use of mTOR inhibitor, longer time 
of COVID-19 symptoms onset, presence of anosmia, and coryza were 
related to a better outcome. These results are depicted in Figure 5 and 

TA B L E  1  Baseline characteristics: demographic, comorbidities, and immunosuppression

Variables Non-missing values
Overall
N = 1379

Survivors
N = 1144

Non-survivors
N = 235 p-value

Age (years) 1379 52 (42, 60) 51 (41, 58) 59 (51, 67) <.001

Male sex – n (%) 1379 839 (61%) 701 (61%) 138 (59%) .5

African-Brazilian ethnicity – n (%) 1379 166 (12%) 139 (12%) 27 (11%) .9

Etiology of CKD – n (%)

Hypertension 1379 194 (14%) 163 (14%) 31 (13%) <.001

Diabetes 1379 222 (16%) 166 (15%) 56 (24%)

Glomerulonephritis 1379 254 (18%) 221 (19%) 33 (14%)

ADPKD 1379 106 (7.7%) 80 (7.0%) 26 (11%)

Urologic 1379 24 (1.7%) 20 (1.7%) 4 (1.7%)

Others 1379 187 (14%) 164 (14%) 23 (9.8%)

Unknown 1379 392 (28%) 330 (29%) 62 (26%)

BMI (kg/m2) 1307 26.4 (23.5, 29.8) 26.4 (23.5, 29.7) 26.9 (23.7, 30.5) .3

Deceased donor – n (%) 1379 942 (68%) 762 (67%) 180 (77%) .003

Comorbidities – n (%)

Hypertension 1379 1057 (77%) 857 (75%) 200 (85%) .001

Diabetes 477 (35%) 367 (32%) 110 (47%) <.001

Cardiovascular disease 178 (13%) 118 (10%) 60 (26%) <.001

Cancer 71 (5.1%) 54 (4.7%) 17 (7.2%) .2

Liver disease 53 (3.8%) 45 (3.9%) 8 (3.4%) .8

Pulmonary disease 46 (3.3%) 38 (3.3%) 8 (3.4%) >.9

Autoimmune disease 39 (2.8%) 34 (3.0%) 5 (2.1%) .6

Neurology disease 16 (1.2%) 13 (1.1%) 3 (1.3%) .7

Without comorbidities 147 (11%) 137 (12%) 10 (4.3%) <.001

Smoking – n (%)

Never 1379 900 (65%) 765 (67%) 135 (57%) .021

Previous 243 (18%) 191 (17%) 52 (22%)

Currently 236 (17%) 188 (16%) 48 (20%)

ACE or ARB use – n (%) 1359 928 (67%) 779 (68%) 149 (63%) .3

Immunosuppression – n (%)

CNI 1370 1096 (80%) 910 (80%) 186 (80%) >.9

MPAA or AZA 1370 1043 (76%) 862 (76%) 181 (78%) .5

mTORi 1350 204 (15%) 184 (16%) 20 (8.7%) .004

Steroids 1379 1292 (94%) 1072 (94%) 220 (94%) >.9

eGFR baseline (mL/min/1.73 m2) 1229 47 (31, 64) 50 (33, 66) 39 (24, 53) <.001

Abbreviations: ACE, angiotensin-converting enzyme inhibitors; ADPKD: autosomal dominant polycystic kidney disease; ARB, angiotensin II receptor 
blockers; AZA, azathioprine; BMI, body mass index; CKD, chronic kidney disease; CNI, calcineurin inhibitors; eGFR, glomerular filtration rate 
estimated by CKD-EPI; MPAA, mycophenolate acid analogs; mTORi, mammalian target of rapamycin inhibitors.
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detailed in Table S6. The coefficients of the Elastic Net model were used 
to build the ImAgeS score.

3.4  |  Results from the second validation cohort

A second validation cohort was composed of 374 patients who had 
the COVID-19 diagnosed in 2021 (from January to April). The baseline 
data and symptoms/signal of COVID-19 are shown in Table S7. For 
these patients, the hospitalization rate, ICU, and mechanical ventila-
tion requirement were 65%, 34%, and 30%, respectively. The 30-day 

fatality rate was 22%. The reduced Elastic Net achieved an AUC-ROC 
of 0.787 (0.731–0.843), which was not different from the derivation 
and the first internal validation cohorts (Table S8).

3.5  |  Performances of models derived from the 
general population in transplanted patients

The performances of three derived from the general population 
models were evaluated in our population. The results are shown in 
Table 5. The sensitivity, specificity and AUC-ROC were, respectively: 

Symptoms or signs – n (%)
Overall
N = 1379

Survivors
N = 1144

Non-survivors
N = 235 p-value

Fever and/or chills 848 (62%) 720 (63%) 128 (54%) .017

Fever 830 (60%) 704 (62%) 126 (54%) .027

Chills 424 (31%) 358 (31%) 66 (28%) .4

Cough 741 (54%) 614 (54%) 127 (54%) >.9

Dyspnea 546 (40%) 393 (34%) 153 (65%) <.001

Myalgia 556 (40%) 490 (43%) 66 (28%) <.001

Headache 320 (23%) 292 (26%) 28 (12%) <.001

Hypoxemia 195 (14%) 126 (11%) 69 (29%) <.001

Nasal congestion 154 (11%) 139 (12%) 15 (6.4%) .014

Sore throat 114 (8.3%) 108 (9.5%) 6 (2.6%) <.001

Expectoration 47 (3.4%) 37 (3.2%) 10 (4.3%) .6

Coryza 232 (17%) 210 (18%) 22 (9.4%) .001

Chest pain 62 (4.5%) 52 (4.6%) 10 (4.3%) >.9

Anosmia 323 (23%) 295 (26%) 28 (12%) <.001

Ageusia 110 (8.0%) 98 (8.6%) 12 (5.1%) .10

Fatigue, and/or adynamia, 
and/or asthenia

256 (19%) 225 (20%) 31 (13%) .025

Diarrhea 441 (32%) 370 (32%) 71 (30%) .6

Nausea and/or vomiting 120 (8.7%) 105 (9.2%) 15 (6.4%) .2

Arthralgia 25 (1.8%) 24 (2.1%) 1 (0.4%) .10

Conjunctivitis 3 (0.2%) 3 (0.3%) 0 (0%) >.9

Rash 3 (0.2%) 3 (0.3%) 0 (0%) >.9

Note: Missing values for the whole population and each symptom or sign: 2.

TA B L E  2  Clinical presentation of 
COVID-19: symptoms and signs

Model

AUC-ROC Calibration
Brier score
Internal validation cohort
(n = 344)

Derivation cohort
(n = 1035)

Internal validation 
cohort (n = 344)

XGBoost full 0.753 (0.724–0.798) 0.766 (0.704–0.835) 0.358

XGBoost reduced 0.788 (0.745–0.801) 0.764 (0.706–0.823) 0.319

Elastic net full 0.783 (0.751–0.827) 0.750 (0.672–0.827) 0.128

Elastic net 
reduced

0.776 (0.745–0.804) 0.767 (0.698–0.834) 0.119

Note: 95% Confidence intervals (in parentheses) are based on 2000 bootstrap resamples.

TA B L E  3  Performance metrics and 
calibration of COVID-19 mortality models 
in derivation and in the first validation 
cohorts
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0.84, 0.25, and 0.62 for CHA2DS2-VASc score; 0.93, 0.21, and 0.68 
for model derived from Wuhan's cohort; and 0.86, 0.37, and 0.69 for 
COVID SEIMC score. Therefore, all of them resulted in low specific-
ity and lower AUC values for KT recipients, underperforming the 
ImAgeS score. Details are summarized in Table S9.

3.6  |  Practical application

The ImAgeS score could be used to predict the probability of 
death for each KT recipient using predictors easily available at the 
time of COVID-19 diagnosis. Examples of predictions for four dif-
ferent hypothetical patients are showing in Table 6. Patients 1 and 
2 are the same age (40 years old), however, patient 2 has a higher 
BMI and lower baseline eGFR. The immunosuppressive regimen is 
different, as well as the first COVID-19 symptoms and the onset 
time. In these scenarios, the first patient has a low probability of 
death, 3.5% (RR = 0.04), and must be followed at home by remote 

call appointments. On the other hand, the second one has a 67.8% 
probability of death (RR = 2.11) and must have an in-person clini-
cal evaluation and should be considered for hospitalization. For 
patients 20 years older (patients 3 and 4), the probability of death 
increased to more than 70%, and the relative risk of death was 
higher than 3 and 4, respectively. They must have a presential 
clinical evaluation. For better demonstration, the contribution and 
importance of each predictor are visualized in a SHAP plot, shown 
in Figure 6. Finally, a web app to estimate the individual probabil-
ity for a point of care decision was developed, and it is available 
at: https://covid​models.shiny​apps.io/COVID_score_app/

4  |  DISCUSSION

In this study, we presented a model to predict 28-day COVID-19-
associated fatality among KT recipients based on easily available 
information. Considering the current burden of health care services, 

F I G U R E  2  Calibration plot of COVID-19 mortality models in the validation cohort: (A) XGBoost full model, (B) XGBoost reduced model, 
(C) Elastic Net full model, (D) Elastic Net reduced model. Gray line represents perfectly calibrated model, solid black line represents optimism 
corrected model using logistic calibration, and doted black line represents optimism corrected model using nonparametric calibration

https://covidmodels.shinyapps.io/COVID_score_app/
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this tool might help to screen through phone call the patients who 
need more intensive monitoring.

The predictors of death after COVID-19 have already been es-
tablished for non-transplanted population, such as advanced age, 
high BMI, presence of diabetes, hypertension, and cardiovascular 
disease.8,25 Risk factors for death were also previously explored 
for KT recipients,26,27 but no study focused on the baseline and 

initial clinical presentation, enabling to stratify the patient into risk 
groups.28–30 In our analyses, two variables should be pointed out 
owing to the particularities of this group of patients: the important 
impact of baseline graft function and the association between main-
tenance immunosuppressive regimen and death.

First, reduced baseline kidney function has been associated 
with poor outcome in the course of COVID-19 in the general 

F I G U R E  3  AUC-ROC in the derivation 
cohort of COVID-19-associated death. 
The red line represents the ROC curve of 
the reduced Elastic Net, which achieved 
the best performance to predict 28-day 
mortality in the derivation cohort: 0.767 
(95% CI 0.698–0.834) [Color figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  4  Confusion matrix of 28-day COVID-19-associated death in the derivation cohort. The lower number of patients for whom 
the model did not predict the outcome but it occurred in the real life was achieved by the reduced Elastic net (n = 15) [Color figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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population. For instance, in a national cohort study carried out in 
England that included more than 17 million patients, the risk of 
death was increased by 33% when the baseline eGFR (estimated 

by CKD-EPI) between 30 and 60 was compared to eGFR >60 ml/
min/1.73m2, whereas this risk more than doubled when eGFR was 
lower than 30.31 Although the association between baseline eGFR 
and unfavorable outcomes has been frequently described in sev-
eral scenarios,32,33 it has not been consistently demonstrated in 
the COVID-19 infection. Second, it is still unclear whether immu-
nosuppressive drugs impact on COVID-19-related signs and symp-
toms and outcomes.34 Similarly, despite the well-known beneficial 
effects of corticosteroids on the management of the severe forms 
of COVID-19,35 its effect on patients who are chronically under 
corticosteroids has not been established.36 In our analyses, the use 
of mycophenolate acid analogs or azathioprine was associated with 
higher fatality risk while the use of mTOR inhibitors was protective. 
Some hypothesis to explain the negative impact of antiprolifera-
tive drugs on outcomes were the commonly associated lympho-
penia, a known risk factor for COVID-related death,37,38 and the 
potential impairment in the development of neutralizing antiviral 
antibodies. In contrast, in vitro studies have suggested that SARS-
CoV-2 replication depends on the Akt/mTOR/HIF-1 pathway, po-
tentially explaining the protective effect of chronic use of mTOR 
inhibitors.39–41

Four initial symptoms were included in the prediction model: 
anosmia, headache, and coryza were associated with better out-
comes, while dyspnea was associated with the risk of death. The 
typical COVID-19 symptoms, such as fever, dry cough, myalgia, fa-
tigue, and anorexia42 were not discriminant. Anosmia, which could 
be present in half of the infected patients,43 has been previously 
associated with a better outcome resulting in lower COVID-19 mor-
tality in the general population.44 The reason why upper respira-
tory symptoms are associated with favorable outcome is not clear. 

TA B L E  4  Sensitivity analysis of COVID-19 mortality models in 
the first validation cohort

Groups
AUC-ROC
First validation cohort

All cohort (n = 344) 0.767 (0.698–0.834)

Type of donor

Living (n = 98) 0.706 (0.558–0.853)

Deceased (n = 246) 0.788 (0.711–0.865)

Time between transplant and COVID−19 diagnose

More than 1 year (n = 291) 0.775 (0.700– 0.849)

Less than 1 year (n = 53) 0.753 (0.554–0.952)

Allocation for treatment

In-hospital (n = 265) 0.784 (0.617–0.952)

Domiciliary (n = 79) 0.762 (0.683–0.842)

Type of center (number of patients enrolled)

High volume (n = 152) 0.762 (0.663–0.862)

Low volume (n = 137) 0.763 (0.627–0.897)

Time between transplant and COVID-19 diagnosis

More than 1 year (n = 291) 0.775 (0.700– 0.849)

Less than 1 year (n = 53) 0.753 (0.554–0.952)

Note: Center was considered as high volume if the number of patients 
enrolled was higher than 100, and low if the number was lower than 50. 
For this analysis, centers with mild volume (between 50 and 100) were 
not included (55 patients). 95% Confidence intervals (in parentheses) 
are based on 2000 bootstrap resamples.

F I G U R E  5  Coefficients of Elastic 
Net of COVID-19-associated death 
model. The plot represents the variable 
importance. The red bars represent the 
variables related to the probability of 
death, whereas the blue bars were related 
to the probability of surviving. The model 
was fitted with 15 predictors and natural 
splines in the variables age and eGFR were 
derived. The natural splines computed 
a different risk for each stratum aiming 
to capture the non-linear association 
between these predictors and outcome. 
AZA, azathioprine; BMI, body mass 
index; ESKD, end stage kidney disease; 
DM, diabetes mellitus; eGFR, estimated 
glomerular filtration rate; MPAA, 
mycophenolate acid analogs; mTOR, 
mammalian target of rapamycin [Color 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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However it is possible that these typical flu or flu-like symptoms 
drive the perception of the disease, while asymptomatic hypoxia is 
associated with poor outcome, and infected patients who are feel-
ing well or only slightly ill can suddenly progress to severe respi-
ratory impartment within a few hours.45 Additionally, the shorter 
time from COVID-19 symptoms associated with death suggests 
that the longer time between first symptoms and the requirement 
for in-person medical evaluation is a predictor of less aggressive 
disease.46

Previous published prediction models were developed in the 
general population. Most of them included physical examination 
findings, laboratory, and chest radiological exams.47–49 Distinctly, 
our purpose was to construct a model including only informa-
tion easily available before the presential medical evaluation. This 
tool can be useful in the decision-making process regarding timely 

presential appointments, hospital admissions, and clinical manage-
ment, minimizing unnecessary medical visits, and enabling stratify-
ing patients to closer remote monitoring. Importantly, the ImAgeS 
score achieved the optimal discriminative capacity to detect patients 
with a high probability of death within 28 days.

Our study has important strengths that should be emphasized. 
The data of the large number of patients were extracted from the 
COVID-19 KT Brazilian study. Brazil has the largest public transplant 
program in the world,50 and the country has been dramatically af-
fected by the pandemic since March 2020. Furthermore, the use 
of machine learning principles to fit different models, the internal 
validation in a cohort independent from those that were used to 
fit the model, validation in a second cohort, and the calibration51 
contributed to improving the robustness and quality of the ImAgeS 
Score. The final model was developed through the generalized linear 

Scores Sensitivity Specificity PPV NPV AUC-ROC (95% CI)

CHA2DS2-VASC 0.84 0.25 0.88 0.18 0.62 (0.598–0.654)

Wuhan model 0.93 0.21 0.87 0.34 0.68 (0.651–0.711)

COVID SEIMC 0.86 0.37 0.88 0.37 0.69 (0.654–0.728)

Images score 0.72 0.63 0.90 0.31 0.76 (0.698–0.834)

Note: The ImAgeS score metrics were performed in the first validation cohort.
Abbreviations: AUC-ROC, area under curve of receiving operator curve; CI, confidence interval; 
NPV, negative predictive value; PPV, positive predictive value.

TA B L E  5  Performances of models 
derived from the general population in 
transplanted patients

Patient 1 Patient 2 Patient 3 Patient 4

Demography

Age (years) 40 40 60 60

Diabetes as CKD etiology No No No Yes

Hypertension as comorbidity Yes Yes Yes Yes

Previous cardiovascular disease No No No Yes

Smoking No No No No

BMI (kg/m2) 24 35 25 30

eGFR (ml/min/1,73m2) 60 20 50 40

Immunosuppression

Steroid Yes Yes Yes Yes

MPA or AZA No Yes Yes Yes

mTORI Yes No No No

Symptoms

Time of COVID−19 symptoms (days) 5 2 5 6

Dyspnea No Yes Yes Yes

Anosmia Yes No No No

Headache No No No No

Diarrhea No No No No

Predictions

Probability 28 days death 3.5% 67.8% 78.0% 82.0%

Abbreviations: AZA, azathioprine; BMI, body mass index; CKD, chronic kidney disease; COVID-19, 
coronavirus disease 2019; eGFR, glomerular filtration rate estimated by CKD-EPI; MPA, 
mycophenolate; mTORI, mammalian target of rapamycin inhibitors.

TA B L E  6  COVID-19 mortality 
prediction (ImAgeS score) in four 
hypothetical kidney transplant recipients
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model Elastic Net, and the regularization path was computed for the 
LASSO penalty at a grid of values for the regularization parameter 
lambda.52

Despite the start of immunization, COVID-19 is still a concern. 
First, the vaccination rollout is limited in low- and mild-income owing 
to the shortage of vaccines. Second, even in countries where vac-
cines are wildly available, the rate of vaccine refusal is relevant.53 
Last, some initial evidence has suggested that the humoral response 
to vaccines in KT recipients is lower than non-transplanted; conse-
quently, the effectiveness of vaccination for this population can be 
disappointed.54,55 Therefore, a tool for early identification of cases 
with potential for unfavorable outcomes explicitly fitted and vali-
dated for kidney transplanted patients is valuable.

Although, to date, it is the largest cohort of KT recipients diag-
nosed with COVID-19 to date, some limitations should be pointed 
out. Being a multicenter and historical study, some regional vari-
ations in the clinical management are expected. Owing to its ret-
rospective nature, some information was missing, although this 
amount was extremely low considering the total number of patients 
included. The present analysis focused on predictors of death in an 
acute scenario of infection, the COVID19-associated severe acute 
respiratory acute syndrome. Despite the well-known association 
between donor parameters, anti-HLA donor-specific antibody, pro-
teinuria, and acute rejection with long-term clinical outcomes, we 
believe that baseline graft function is a suitable proxy in our analysis, 
confirmed by the robust association between baseline graft function 

F I G U R E  6  Shapley Additive Explanations (SHAP plot) showing the contribution of each predictor in COVID-19-associated death score 
in simulated transplant patients. The red bars represent variables with a positive coefficient that means a positive association between the 
predictor and the outcome, while the blue bars represent variables with a negative coefficient that means an inverse association between 
the predictor and the outcome. eGFR, estimated glomerular filtration rate; mTOR, mammalian target of rapamycin [Color figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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and the outcome. Additionally, we acknowledge that assuming the 
strategy of using only rapidly accessible parameters, which was 
thought to be used in the remote assistance, without the need for 
biochemical or scale-based predictors, our study ultimately lacks 
some basic determinants of death. For instance, biological and phys-
iological predictors strongly associated with COVID-19-associated 
mortality in the general population, such as Glasgow coma scale, 
C-reactive protein, D-dimer, and neutrophil/lymphocyte ratio, were 
not included in the analysis. Yet, validated scores for the general 
population that included these parameters did not outperform the 
ImAgeS Score. Finally, the predictive models had a primary aim in 
prediction with lower explanatory capacity compared to classic 
statistical analysis, which could reduce the inferential conclusions. 
Thus, additional studies are required to determine the impact of spe-
cific immunosuppressive agents on the outcome of COVID-19.

In conclusion, the factors associated with higher fatality in KT re-
cipients were similar to the general population. Some clinical symp-
toms at baseline such as anosmia and coryza had a better prognosis. 
Baseline immunosuppression could predict the outcome. The use of 
machine learning techniques allowed the development of a predic-
tive model with good accuracy, easily applicable using demographics 
and symptoms. Its application in triage can indicate patients that re-
quire observation or more intensive monitoring.
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