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Genetic regulation of gene 
expression of MIF family members 
in lung tissue
Laura Florez‑Sampedro1,2,3*, Corry‑Anke Brandsma  3,4, Maaike de Vries  3,5, Wim Timens 
3,4, Rene Bults6, Cornelis J. Vermeulen  3,6, Maarten van den Berge3,6, Ma’en Obeidat 
7, Philippe Joubert8, David C. Nickle9,10, Gerrit J. Poelarends1, Alen Faiz3,11,12* & 
Barbro N. Melgert  2,3,4,12

Macrophage migration inhibitory factor (MIF) is a cytokine found to be associated with chronic 
obstructive pulmonary disease (COPD). However, there is no consensus on how MIF levels differ in 
COPD compared to control conditions and there are no reports on MIF expression in lung tissue. 
Here we studied gene expression of members of the MIF family MIF, D-Dopachrome Tautomerase 
(DDT) and DDT-like (DDTL) in a lung tissue dataset with 1087 subjects and identified single nucleotide 
polymorphisms (SNPs) regulating their gene expression. We found higher MIF and DDT expression 
in COPD patients compared to non-COPD subjects and found 71 SNPs significantly influencing gene 
expression of MIF and DDTL. Furthermore, the platform used to measure MIF (microarray or RNAseq) 
was found to influence the splice variants detected and subsequently the direction of the SNP effects 
on MIF expression. Among the SNPs found to regulate MIF expression, the major LD block identified 
was linked to rs5844572, a SNP previously found to be associated with lower diffusion capacity 
in COPD. This suggests that MIF may be contributing to the pathogenesis of COPD, as SNPs that 
influence MIF expression are also associated with symptoms of COPD. Our study shows that MIF levels 
are affected not only by disease but also by genetic diversity (i.e. SNPs). Since none of our significant 
eSNPs for MIF or DDTL have been described in GWAS for COPD or lung function, MIF expression in 
COPD patients is more likely a consequence of disease-related factors rather than a cause of the 
disease.

Macrophage migration inhibitory factor (MIF) is a protein present in many species, which in humans has been 
identified as a pleiotropic or proinflammatory cytokine1. MIF is expressed by many immune and non-immune 
cell types and in most tissues in humans2. Unlike many other cytokines, MIF is produced and pre-stored in 
intracellular vesicles for rapid release and its release has been shown to be associated with conditions of stress, 
toxicity and apoptosis3,4. Due to MIF’s early associations with inflammation and to its role in cell damage, it has 
been extensively studied in a variety of human diseases and has been shown to associate with chronic diseases, 
with MIF levels differing in comparison to healthy conditions5–8.

MIF has also been linked to respiratory diseases, including chronic obstructive pulmonary disease (COPD)6,9. 
Yet, the reported data for MIF in COPD appear to be inconsistent. Higher levels of MIF were shown in serum, 
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sputum, and in macrophages present in bronchoalveolar lavage of COPD patients compared to healthy smokers 
and (non-smoker) controls10,11. However, other studies showed lower levels of MIF in serum of COPD patients 
(GOLD stages II–IV) compared to controls12, and also lower plasma MIF levels in COPD patients compared to 
healthy smokers13. Interestingly, MIF expression levels were shown to be influenced by the MIF-794 CATT​5–8 
microsatellite (rs5844572), in which 5, 6, 7, or 8 repeats of the CATT sequence could be found and the 5-CATT 
repeat (CATT​5 allele) leads to the lowest level of MIF expression under basal or stimulated conditions14. Addi-
tionally, it was reported that the MIF-794 CATT​5 allele was associated with a lower diffusion capacity in COPD 
patients15. Therefore, genetic variation may explain some of the differences found for MIF expression in COPD 
and may also influence disease severity as defined by the level of diffusion capacity.

D-Dopachrome tautomerase (DDT, also known as MIF-2) is another member of the MIF protein superfam-
ily that has been suggested to play similar roles to those of MIF16. However, studies linking DDT to COPD are 
lacking. Furthermore, the human genome also encodes a gene known as DDT-like (DDTL), which according 
to genomic records appears to be primarily present in primates17. DDTL shows high sequence similarity with 
DDT (approximately 80%), and is located in close proximity to DDT and MIF. To date, nothing is known about 
the biological function of DDTL or its expression in lung tissue.

Due to the association of MIF with numerous chronic inflammatory diseases, the scientific community 
currently has an interest in generating MIF inhibitors to fight chronic diseases18. For COPD however, given the 
inconsistent reports, it is not clear yet whether inhibiting or mimicking MIF would be beneficial. Therefore, it 
is important to attain more clarity on the levels and regulation of MIF and other MIF family members in lung 
tissue in COPD.

Here, we aimed to investigate the gene expression levels of the MIF family members MIF, DDT and DDTL 
in lung tissue of patients with and without COPD and to assess whether their gene expression is regulated by 
single nucleotide polymorphisms (SNPs).

Results
Gene expression of MIF family members in lung samples.  We first compared gene expression lev-
els of MIF, DDT and DDTL in lung tissue samples from a subset of subjects from the lung tissue dataset, with 
(n = 276) and without COPD (n = 236). An overview of the lung tissue dataset and methods used in our study are 
shown in Fig. 1. Clinical characteristics of the subjects included for the gene expression analysis are presented in 
Table 1. Gene expression was adjusted for gender, age and smoking status. We found significantly higher expres-
sion of MIF (p-value = 0.0017, Fig. 2a) and DDT (p-value = 0.0001, Fig. 2b) in subjects with COPD compared 
to those not having COPD, and no significant differences for DDTL expression (Fig. 2c). The higher expression 
of MIF and DDT in COPD was driven by patients with COPD GOLD stage 4 for MIF and COPD GOLD stage 
2 and 4 for DDT (Fig. S1). In contrast, we did not find biologically meaningful correlations with either FEV1 or 
FEV1/FVC (no r values above 0.1) when either analyzing non-COPD and COPD patients together or separately.

eQTL analysis of the lung tissue dataset.  We then investigated whether MIF, DDT and DDTL expres-
sion levels were influenced by the presence of SNPs. To this end, we performed a cis-eQTL analysis19 for these 
three genes using the entire lung tissue dataset (n = 1087), which contains mostly patients with COPD with or 
without lung cancer, lung cancer patients with normal lung function (Non-COPD controls), and a few patients 
with a variety of interstitial lung diseases. A schematic representation of the step-by-step approach for the eQTL, 
subsequent analyses and the main results are shown in Fig. 3a. We only included subjects with both gene expres-
sion and genotype data available from the groups described previously20.

We found 206 significant SNPs regulating gene expression (eSNPs) in lung tissue, 72 eSNPs for MIF and 134 
eSNPs for DDTL, with p-values as low as 4.09E−31 and 1E−314, respectively. No significant eSNPs were found for 
DDT. Subsequently, in order to clear the redundant SNPs that are inherited as a cluster, we organized the signifi-
cant eSNPs in linkage disequilibrium (LD) blocks. We tested this with an LD analysis and found 11 LD blocks 
and 19 additional independent signals among the 72 eSNPs of MIF and 19 LD blocks and 25 independent signals 
among the 134 eSNPs of DDTL. From the SNPs regulating MIF, 71 out of 72 were also regulating DDTL (11 LD 
blocks and 18 single signals). All significant SNPs found in our study are shown in Table 2. One of the strongest 
eSNP blocks for both MIF and DDTL was represented by rs5751777, which significantly influences expression 
levels of both MIF and DDTL as seen in Fig. 3b. We replicated these significant eSNPs using the Genotype-Tissue 
Expression (GTEx) project21, a comprehensive public resource to study tissue-specific gene expression. For this 
analysis we included only the significant GTEx eQTL data from lung tissue (n = 383). We confirmed 34 of 134 
eSNPs for DDTL with the same direction of effect (3 LD blocks and 8 independent signals). For MIF no eSNPs 
were confirmed in GTEx with the same direction of effect, whereas we did identify 57 significant MIF eSNPs in 
GTEx with opposite effects (10 LD blocks and 12 independent signals).

MIF splice variants and spliceQTL analysis.  A puzzling finding was the difference in effect direction 
between our study and the GTEx study for the 57 significant MIF eSNPs. Considering that our study used 
microarray and the GTEx study used RNA-Seq to assess gene expression, we investigated the binding site of the 
microarray MIF probe set used in our study. MIF has three known splice variants: one protein-coding splice 
variant which contains 3 exons, and two non-coding splice variants that either retain an intron between exon 1 
and 2 or between exon 2 and 3 (Fig. 4a). Interestingly, the MIF probe set in our assay targeted the splicing junc-
tion Exon2-Exon3 (Fig. 4b), thus detecting only splice variants 1 and 3. Since RNA-Seq would include all splice 
variant, the opposite eQTL effects may be due to selective expression of MIF splice variants.

To first confirm the direction of the eQTL effect found in our study with the Exon2-Exon3 junction, we used 
a previously reported dataset of airway wall biopsies in which the exon–exon reads data were present22. Here 
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we evaluated SNP rs5751777, belonging to one of the most significant LD blocks for MIF, as a representative of 
all other MIF eSNPs. An overview of the airway wall biopsy dataset and methods used in our study are shown 
in Fig. 5. We found that in airway wall biopsies, rs5751777 significantly regulated MIF split read between Exon 
2-Exon 3 with the CC genotype leading to higher expression (Fig. 6a), which is the same direction as in our 
lung tissue dataset. Additionally, rs5751777 influenced the MIF split read between Exon1-Exon 2 in the same 
direction. Thus indicating that the protein-coding MIF splice variant, which contains both exon–exon junctions, 
is increased by the CC genotype of rs5751777, while the other non-coding splice variants are influenced in the 

Figure 1.   Schematic representation of the lung tissue dataset and methods used in our study. The total lung 
tissue dataset (n = 1087) was used for the eQTL analysis and a subset of COPD patients (n = 276) and matched 
non-COPD subjects (n = 236) from the same dataset was used for the gene expression analysis, comparing 
expression levels of MIF, DDT and DDTL. *DNA was isolated from blood samples in the Laval cohort and from 
lung tissue samples in the Groningen and British Columbia cohorts.
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opposite direction. To test this hypothesis we next assessed the eQTL effect of rs5751777 on total MIF expression 
(which includes the protein-coding splice variant and both non-coding splice variants of MIF) on the same airway 
wall biopsies samples. We found indeed a lower expression in the CC genotype for all splice variants together, 
with the same direction as reported in GTEx (Fig. 6b).

SNPs in genome‑wide association studies (GWAS).  Lastly, we evaluated whether the eSNPs found in 
our study were reported by the GWAS for COPD or FEV1 listed in Table 3. None of our significant eSNPs for MIF 
and DDTL (or their LD partners) have been described in GWAS for COPD or lung function.

Discussion
The primary objective of this study was to evaluate gene expression of the MIF family members MIF, DDT and 
DDTL in lung tissue of COPD patients compared to non-COPD subjects and to elucidate whether MIF expression 
in lung tissue is regulated genetically by SNPs. We found higher gene expression levels of MIF and DDT in lung 
tissue samples of COPD patients, compared to non-COPD subjects. While previous studies have not assessed MIF 
levels in lung tissue, higher levels of MIF have also been reported in serum, sputum and macrophages of bron-
choalveolar lavage of COPD patients10,11. However, other studies have also detected lower levels of MIF in serum 
and plasma of COPD patients compared to controls12,13, which could be due to patient selection or the different 
nature and origin of the samples these studies used. MIF has been described as a proinflammatory cytokine, but 
there is also evidence that MIF can exert many other functions related to cell survival and anti-apoptosis12,23,24. 
Interestingly, MIF may actually be involved in tissue repair more than in promoting inflammation, but its role 
varies across lung diseases as discussed in detail in our recent review9. In fact, it was previously reported that 
MIF-deficient mice spontaneously develop age-related emphysema13, which suggests that in lung tissue MIF may 

Table 1.   Characteristics of patients with or without COPD used for gene expression analysis. Data are 
represented as numbers (n) or as median with interquartile range. Differences between groups were tested with 
Mann–Whitney test for quantitative traits and Chi-square for categorical traits. FEV1 and FVC values were 
obtained before treatment with a bronchodilator. NS not significant.

COPD Non-COPD p-value

Number 276 236

Age (years) 64 (56–70) 62 (55–69.75) NS

Male/female (n) 162/114 132/104 NS

Smokers/ex-smokers 84/192 58/178 NS

Pack-years 41.5 (30–57) 38 (25–49) 0.0007

GOLD stage (n)

I 1 –

II 197 –

III 22 –

IV 46 –

Not classified 10 –

FEV1 (% predicted) 62.17 (53.15–70.43) 94.31 (87.14–105.6) 0.0001

FEV1/FVC (%) 58.33 (50.95–64.06) 75.12 (72.83–78.6) 0.0001

Figure 2.   MIF, DDT and DDTL expression in lung tissue from COPD and non-COPD patients. Gene 
expression profiles for MIF (A), DDT (B) and DDTL (C) were obtained using a custom Affymetrix array (see 
GEO platform GPL10379), using 276 samples of COPD patients and 236 samples of non-COPD subjects, from 
the lung tissue database. Units of gene expression (y axis) represent Log2(microarray intensity) units. Data are 
presented as box and whiskers plots of the 5–95 percentile with median. Statistical differences were tested with 
Mann Whitney test.
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protect against tissue destruction. The higher MIF expression we found in COPD could therefore be a result of 
activation of protective mechanisms triggered to combat tissue destruction in COPD development. Due to the 
various shared biological functions between MIF and DDT, and the observed higher MIF and DDT expression 
in COPD, it seems likely that DTT may also play a protective role in the lung. However, this is still a hypothesis 
and requires further testing.

We did not find differences in expression between COPD and non-COPD for DDTL, but our eQTL results 
suggest that the regulation of DDTL expression resembled that of MIF. Considering that MIF and DDTL are 
located in close proximity (less than 0.1 Mb between the two genes), it is not surprising that our cis-eQTL analy-
sis, which identifies SNPs within 1 Mb from the binding site of the probe, found SNPs regulating the expression 
of both genes, indicating possible dual regulation. Surprisingly, we did not find significant eSNPs for DDT, which 
is also in the vicinity of MIF and DDTL. This suggests that there are different regulatory mechanisms between 
MIF and DDT and that DDT expression is not regulated by the genetic mechanisms included in our study.

To validate our findings, we replicated our eQTL results with the publicly available GTEx dataset. While 
we confirmed a group of eSNPs for DDTL, to our surprise we found a group of significant eSNPs for MIF with 
opposite effects in our study and in the GTEx dataset. The most likely explanation for these opposite effects of 
MIF eSNPs is that different splice variants were present in the quantitation of gene expression in our study and in 
the GTEx. The MIF probe set in the gene expression array of our lung tissue dataset binds across an exon–exon 

Figure 3.   eQTL analysis and main results. (A) Schematic representation of the methodology used for the eQTL 
analysis, subsequent analyses and their corresponding main results. (B) eQTL result for rs5751777. Effect of 
the rs5751777 genotype on MIF and DDTL expression levels in lung tissue samples from the lung tissue dataset 
(n = 1087). Data are presented as mean ± standard error of the mean.
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Table 2.   Significant SNPs regulating MIF and DDTL expression in the lung tissue dataset and results for 
the same SNPs from the GTEx (lung) dataset. Empty spaces indicate that the SNP was not found to be 
significant in the GTEx dataset. FDR = false discovery rate, eQTL meta-p-value from the lung tissue dataset. 
Beta = indicates the direction of the eQTL effect per SNP in our study. NES = normalized effect size, indicates 
the direction of the eQTL effect per SNP from the GTEx dataset. The genotype shown indicates the genotype 
of each SNP leading to higher MIF or DDTL gene expression. *rs5751770 is a proxy SNP of the LD block 
rs5751777 (LD coefficient (r2) = 0.8477; genotype of high expression in our study for rs5751777: TT; this SNP is 
not included in the GTEx study).

SNP ID

MIF DDTL

Our results GTEx Our results GTEx

FDR Beta

Genotype 
of high 
expression P value NES

Genotype 
of high 
expression FDR Beta

Genotype 
of high 
expression P value NES

Genotype 
of high 
expression

rs140188 4.09E−31 1.05E−01 CC 3.90E−30 7.50E−01 GG 1E−314 6.45E−01 CC 8.40E−08 − 2.60E−01 CC

rs140245 4.72E−31 1.05E−01 AA 1E−314 6.42E−01 AA

rs113413 1.59E−27 1.12E−01 CC 4.20E−31 − 7.70E−01 TT 1E−314 6.98E−01 CC

rs6003980 1.01E−22 1.48E−01 AA 3.28E−298 9.18E−01 AA

rs1006771 2.06E−21 9.27E−02 GG 4.50E−45 8.90E−01 TT 2.04E−270 5.82E−01 GG 1.90E−08 − 2.70E−01 GG

rs5760147 4.68E−18 8.67E−02 CC 7.70E−35 − 8.10E−01 AA 1E−314 6.11E−01 CC

rs738807 2.93E−17 − 1.20E−01 CC 1.51E−06 − 2.13E−01 CC

rs140289 1.26E−16 9.29E−02 TT 1.20E−20 7.50E−01 CC 2.98E−104 4.98E−01 TT 1.20E−06 − 2.70E−01 TT

rs5760176 1.50E−16 8.79E−02 GG 2.20E−36 8.40E−01 AA 1.93E−256 6.12E−01 GG 1.20E−06 − 2.40E−01 GG

rs140199 3.99E−15 1.50E−01 TT 1.80E−99 8.15E−01 TT

rs17004811 1.36E−14 1.51E−01 CC 8.50E−15 − 6.80E−01 GG 1.81E−112 8.63E−01 CC

rs1018743 3.40E−08 6.61E−02 GG 1.50E−14 6.50E−01 TT 2.75E−53 3.75E−01 GG

rs738809 9.10E−05 5.19E−02 GG 1.50E−09 − 4.90E−01 AA 1.53E−51 3.56E−01 GG

rs915590 7.92E−04 8.48E−02 AA 1.80E−13 7.30E−01 GG 1.36E−39 5.52E−01 AA 9.50E−09 − 3.90E−01 AA

rs1018744 2.61E−03 6.50E−02 TT 1.40E−11 7.50E−01 CC 2.55E−32 4.09E−01 TT 1.90E−06 − 3.60E−01 TT

rs9624364 4.03E−03 8.41E−02 AA 2.88E−20 4.53E−01 AA

rs2858908 7.69E−03 7.46E−02 AA 3.10E−06 5.00E−01 GG 1.10E−26 4.64E−01 AA 6.20E−06 − 3.30E−01 AA

rs405597 4.59E−02 8.12E−02 CC 3.33E−07 3.22E−01 CC

rs11703791 3.59E−03 − 1.09E−01 CC – – –

rs6003909 – – – 1.49E−03 1.47E−01 AA

rs131445 – – – 3.29E−03 1.32E−01 CC

rs9608216 – – – 3.70E−03 − 2.40E−01 CC

rs9620328 – – – 8.14E−03 − 1.12E−01 CC

rs12157360 – – – 2.53E−13 2.63E−01 GG

rs422674 – – – 2.47E−06 − 1.47E−01 CC

rs9608247 – – – 3.15E−02 1.24E−01 AA

LD blocks

rs5751770* 3.64E−22 9.08E−02 TT 2.50E−55 9.20E−01 CC 1E−314 5.96E−01 TT 4.30E−09 − 2.70E−01 TT

rs5751759 2.71E−26 − 1.27E−01 AA 5.05E−12 − 2.40E−01 AA

rs4461358 2.42E−17 8.34E−02 CC 8.30E−30 − 8.30E−01 TT 4.15E−277 5.81E−01 CC

rs4822453 1.07E−19 8.72E−02 GG 2.90E−46 8.80E−01 TT 1E−314 5.89E−01 GG 1.70E−07 − 2.50E−01 GG

rs3884794 3.88E−16 8.52E−02 CC 2.90E−25 8.20E−01 AA 4.17E−162 5.37E−01 CC

rs738806 1.03E−12 7.74E−02 AA 2.30E−17 6.50E−01 GG 1.24E−68 4.05E−01 AA

rs5760101 1.61E−11 7.53E−02 TT 2.80E−26 7.60E−01 CC 5.27E−113 4.88E−01 TT

rs2000467 3.94E−10 7.18E−02 AA 6.40E−46 9.00E−01 GG 4.03E−157 5.44E−01 AA 2.60E−07 − 2.50E−01 AA

rs4822461 7.03E−10 8.52E−02 GG 1.70E−13 7.00E−01 TT 1.15E−64 4.81E−01 GG 1.30E−08 − 3.70E−01 GG

rs6004011 2.90E−03 5.56E−02 GG 4.00E−13 − 6.50E−01 TT 9.24E−53 4.39E−01 GG

rs1984309 1.69E−02 4.18E−02 GG 3.40E−09 5.00E−01 AA 1.31E−36 3.08E−01 GG

rs5760090 – – – 2.89E−58 − 3.84E−01 CC

rs9612498 – – – 6.44E−56 − 3.29E−01 CC

rs17004046 – – – 1.62E−18 2.91E−01 TT

rs9624472 – – – 8.06E−06 2.30E−01 GG

rs17004049 – – – 2.38E−04 2.91E−01 GG

rs2236624 – – – 2.46E−02 − 1.14E−01 CC

rs5760062 – – – 1.13E−02 2.10E−01 CC

rs9612623 – – – 2.05E−02 − 1.02E−01 GG
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junction (exon2-exon3; Fig. 4b) and thus can only detect splice variants 1 and 3 and not splice variant 2 (Fig. 4a). 
The GTEx study assessed gene expression by RNAseq but did not perform a spliceQTL analysis to study the effect 
of SNPs on each of the splice variants. Focusing on one of the most significant SNP blocks for MIF and DDTL, 
rs5751777, and using the airway wall biopsy dataset we were able to assess the effect of this SNP on the expression 
of all splice variants combined or just variants for each exon–exon junction. We confirmed that the direction 

Figure 4.   MIF splice variants and binding site of Affymetrix MIF probe. (A) Graphic representation of MIF and 
its splice variants. (B) Sequence and binding site of Affymetrix probes for MIF.

Figure 5.   Schematic representation of the airway wall biopsy dataset and methods used in our study. The 
airway wall biopsy dataset was used for the splice QTL analysis and cis-eQTL analysis in the same dataset. In the 
current study only results for rs5751777 are shown.
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of the eQTL effect for the sets of MIF splice-variants is opposite to that of all MIF splice variants combined and 
that the effect of the total MIF matches the direction of the effect found by GTEx. Even though we could not 
investigate this splice variant effect in our lung tissue dataset directly, due to the lack of splice variant data, these 
results do show that the effect of rs5751777 on MIF expression has the same direction in the airway wall dataset 
and in the lung tissue dataset, suggesting the difference with GTEx is indeed cause by splice variants. While this 
was only tested for rs5751777, this effect also affected all other MIF eSNPs described in Table 2. This highlights 
the complexity of genetic studies and the importance of measuring only protein-coding splice variants for more 
relevant interpretation of expression data. Nonetheless, it is unknown whether the non-coding splice variants of 
MIF have a different yet relevant molecular function, which may be a point of interest for future studies on MIF.

We found higher MIF expression in COPD patients and also found that MIF expression can be regulated by 
SNPs, we therefore investigated whether those SNPs or their LD partners are genetically predisposing individu-
als for the development of COPD. To that end we evaluated whether any of the significant eSNPs found in our 
study were reported in GWAS for COPD or lung function, available in the GWAS catalog from the European 
Bioinformatics Institute. None of our significant eSNPs for MIF or DDTL have been described in GWAS for 
COPD or lung function, suggesting that these SNPs are not predominant in COPD patients and most likely do 
not confer susceptibility for the development of COPD. It is therefore unlikely that the differences in MIF mRNA 
expression are due to a predominant presence of these SNPs in COPD patients but could be due to a combination 
of the SNP and environment. We hypothesize that the differential expression in MIF and DDT between COPD 
and control patients may be the result of epigenetic regulation, likely caused by multiple factors, but this theory 
requires further testing.

We also found that the higher MIF and DDT expression in COPD patients was driven by GOLD stage 4 for 
MIF and stages 2 and 4 for DDT, but no correlation with FEV1 of FEV1/FVC. The fact that MIF knock out mice 
develop emphysema suggests that the role of MIF may indeed be more related to parenchymal lung tissue than 
airways13. This peripheral role is also suggested by the finding that rs5844572, the MIF-794 CATT​5-8 micros-
atellite, was associated with low diffusion capacity and incidentally is in high LD with the LD block rs5751759 
we identified for MIF and DDTL. Unfortunately, no data on diffusion capacity were available in our datasets to 
confirm said association. Nonetheless, this suggests that the eSNPs located in this LD block not only regulate 
MIF and DDTL gene expression but are also linked to a low diffusion capacity, which is associated with disease 
severity in COPD patients.

In summary, we have shown that COPD patients have higher mRNA expression levels of MIF and DDT and 
similar DDTL expression in lung tissue, compared to non-COPD subjects. In addition, we have shown that 
expression of MIF and DDTL in lung tissue is at least partially controlled genetically and some of these eSNPs 
are shared between these two genes. This is interesting because little is known about the biological function 
of DDTL and this provides a basis for understanding the regulation of DDTL expression. Moreover, we found 
that eSNPs for MIF, as demonstrated for rs5751777, can have a significant effect on gene expression but that the 
direction of such effect is influenced by the MIF splice variants included in the analysis.

Due to the lack of protein data in our datasets we do not know whether higher MIF and DDT gene expression 
translates into higher protein levels. Moreover, we did not have epigenetic data in our datasets, which would have 
allowed us to look into possible epigenetic mechanisms differentially regulating MIF and DDT gene expression 
between COPD and non-COPD patients. Therefore, there is need for further investigation to identify the main 
cause and reason for the higher expression of MIF and DDT in lung tissue of COPD patients. Given the complex-
ity of COPD pathogenesis and the fact that MIF has been shown to be involved in diverse cellular processes, we 
believe that the high levels of MIF in lung tissue of COPD patients could be the consequence of multiple factors 
associated with this disease (e.g. injury, oxidative stress, cellular senescence). Based on our current knowledge 

Figure 6.   Effect of rs5751777 on expression of MIF splice variants and on total MIF. (A) SpliceQTL results. 
Split read counts mapping across exon–exon junction according to rs5751777 genotype. The number of 
split reads of a given junction pair was normalized per sample by correcting for variation in library size 
and transcript abundance in a gene-wise fashion. (B) Effect of rs5751777 on normalized MIF expression, 
represented as fragments per kilobase of exon model per million reads mapped (FPKM). Graphs are presented 
as mean ± standard error of the mean.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:16980  | https://doi.org/10.1038/s41598-020-74121-w

www.nature.com/scientificreports/

on various causes and effects of MIF expression, it is currently unclear whether increasing or decreasing MIF 
expression as a therapeutic strategy would be beneficial for COPD or other chronic lung diseases.

In conclusion, MIF expression is not only influenced by the presence of disease (COPD) but also by the eSNPs 
we identified here. While these SNPs do not appear to be the cause of the gene expression differences observed 
in our cohort, our data suggest that genetic diversity (i.e. SNPs) could contribute to the discrepancies in the MIF 
levels reported in COPD studies. Future studies aiming to assess MIF levels and their association with diseases 
should take into consideration the SNPs reported in our study, as they can have an additional effect on the gene 
expression levels already influenced by pathological processes. Moreover, it is important to consider that the 
direction of the effect of SNPs on MIF expression is influenced by the MIF splice variants detected and care 
should be taken to distinguish between protein-coding and non-coding variants.

Materials and methods
Lung tissue dataset.  We used the lung tissue dataset from the Universities of Groningen, Laval and British 
Columbia25. A description of sample collection, demographics of the dataset and gene expression and geno-
typing analysis has been published previously19,25. Briefly, lung tissue was collected from patients with diverse 
lung diseases who underwent lung resection surgery at Laval University, University of British Columbia, and 

Table 3.   List of GWAS on COPD and lung function reported by the GWAS catalog and analyzed in our study.

First author Year Study Disease/trait References

Pillai, SG 2009
A genome-wide association study in chronic obstructive pulmo-
nary disease (COPD): identification of two major susceptibility 
Loci

COPD 26

Siedlinski, M 2011 Genome-wide association study of smoking behaviours in patients 
with COPD

Lifetime average and current cigarettes per day, age at smoking 
initiation, and smoking cessation in COPD

27

Cho, MH 2012 A genome-wide association study of COPD identifies a susceptibil-
ity locus on chromosome 19q13 COPD 28

McDonald, ML 2014 Common genetic variants associated with resting oxygenation in 
chronic obstructive pulmonary disease Resting oxygen saturation [SpO2] in COPD 29

Smolonska, J 2014 Common genes underlying asthma and COPD? Genome-wide 
analysis on the Dutch hypothesis COPD; asthma 30

Dijkstra, AE 2015 Dissecting the genetics of chronic mucus hypersecretion in smok-
ers with and without COPD

Chronic mucus hypersecretion in heavy smokers with and without 
COPD

31

Hobbs, BD 2017 Genetic loci associated with chronic obstructive pulmonary disease 
overlap with loci for lung function and pulmonary fibrosis COPD 32

Sakornsakolpat, P 2019 Genetic landscape of chronic obstructive pulmonary disease identi-
fies heterogeneous cell-type and phenotype associations COPD 33

Lutz, SM 2019
Common and rare variants genetic association analysis of cigarettes 
per day among ever-smokers in chronic obstructive pulmonary 
disease cases and controls

Average cigarettes per day in COPD 34

Repapi, E 2010 Genome-wide association study identifies five loci associated with 
lung function Lung function (FEV1 and FEV1/FVC) 35

Hancock, DB 2010 Meta-analyses of genome-wide association studies identify multiple 
loci associated with pulmonary function Lung function (FEV1 and FEV1/FVC) 36

Yao, TC 2014 Genome-wide association study of lung function phenotypes in a 
founder population Lung function (FEV1, FVC and FEV1/FVC) 37

Liao, SY 2014 Genome-wide association and network analysis of lung function in 
the Framingham Heart Study Lung function (FEV1 and FVC) 38

Lutz, SM 2015 A genome-wide association study identifies risk loci for spirometric 
measures among smokers of European and African ancestry Lung function (PostBD FEV1 and FEV1/FVC ratio) 39

Soler Artigas, M 2015 Sixteen new lung function signals identified through 1000 
Genomes Project reference panel imputation Lung function (FEV1, FVC and FEV1/FVC) 40

Wain, LV 2015
Novel insights into the genetics of smoking behaviour, lung func-
tion, and chronic obstructive pulmonary disease (UK BiLEVE): a 
genetic association study in UK Biobank

FEV1 and smoking behaviour 41

de Jong, K 2015 Genome-wide interaction study of gene-by-occupational exposure 
and effects on FEV1 levels FEV1 in occupational exposure 42

de Jong, K 2017 Genes and pathways underlying susceptibility to impaired lung 
function in the context of environmental tobacco smoke exposure FEV1 in environmental tobacco smoke 43

Suh, Y 2017
Genome-wide association study for genetic variants related with 
maximal voluntary ventilation reveals two novel genomic signals 
associated with lung function

Lung function (inspiratory muscle strength -maximal voluntary 
ventilation)

44

Wyss, AB 2018 Multiethnic meta-analysis identifies ancestry-specific and cross-
ancestry loci for pulmonary function Lung function (FEV1, FVC and FEV1/FVC) 45

Li, X 2018 Genome-wide association study of lung function and clinical 
implication in heavy smokers Lung function (PostBD FEV1 and FEV1/FVC ratio) 46

Shrine, N 2019
New genetic signals for lung function highlight pathways and 
chronic obstructive pulmonary disease associations across multiple 
ancestries

Lung function (FEV1, FVC and FEV1/FVC) 47
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University of Groningen. All lung tissue samples were obtained in accordance with Institutional Review Board 
guidelines at the three sites. All patients provided written informed consent and the study was approved by 
the ethics committees of the Institut universitaire de cardiologie et de pneumologie de Quebec (Laval) and 
the UBC-Providence Health Care Research Institute Ethics Board (British Columbia). The study protocol was 
consistent with the Research Code of the University Medical Center Groningen and Dutch national ethical and 
professional guidelines. RNA was isolated from lung tissue samples and DNA was isolated from the same lung 
tissue (British Columbia and Groningen) or from blood samples (Laval). RNA converted to fluorescently labeled 
cDNA was hybridized to a custom Affymetrix HU133 array (see GEO platform GPL10379) and DNA sample 
was genotyped on the Illumina Human1M-Duo BeadChip array. From this dataset, the samples from 1087 
subjects passed all quality controls for DNA and RNA analysis and were included in our study. An overview of 
this dataset and associated methods is shown in Fig. 1. This dataset has been deposited in the National Center 
for Biotechnology Information’s Gene Expression Omnibus repository and is accessible through GEO Series 
accession number GSE23546.

Airway wall biopsy dataset.  A description of sample collection and demographics of this dataset has 
been published previously22. Briefly, bronchial biopsies were taken from segmental divisions of the main bron-
chi from healthy subjects and asthmatic patients. All protocols were approved by the University Medical Center 
Groningen medical ethics committee and all subjects provided written informed consent. RNA was isolated 
from the biopsies using AllPrep DNA/RNA Mini kit (Qiagen) and RNA samples were further processed using 
the TruSeq Stranded Total RNA Sample Preparation Kit (Illumina). The cDNA fragment libraries were then 
loaded in pools of multiple samples unto an Illumina HiSeq2500 sequencer. The gene level quantification was 
performed by HTSeq (version 0.6.1p1) using Ensembl version 75 as gene annotation database. DNA from blood 
samples was genotyped on Illumina genotyping platforms and submitted to the Michigan imputation server. 
Imputation was performed using the HRC r1.1 2016 reference panel, the Eagle v2.3 Phasing algorithm, the EUR 
(European) population parameter and the quality control plus imputation mode. From this dataset, the samples 
from 148 subjects passed all quality controls for DNA and RNA analysis and were included in our study. An 
overview of this dataset and associated methods is shown in Fig. 5.

Gene expression analysis.  For the gene expression analysis of the current study, data from the lung tissue 
dataset was used. Unfiltered gene expression was normalized with the Robust Multichip Average method imple-
mented in the Affymetrix Power Tools softwareV.1.8.5. The Log2(microarray intensity) values of gene expression 
are used for all subsequent analyses. Gene expression data were adjusted for age, gender and smoking status, 
using a robust linear model. For gene expression analysis (MIF, DDT and DDTL) a subset of COPD patients and 
non-COPD control subjects from the lung tissue dataset was selected. COPD was defined as an FEV1/ FVC ratio 
< 70%. Non-COPD was defined as an FEV1/FVC ≥ 70% predicted and subjects were selected to match COPD 
patients as closely as possible on age, gender and smoking status. From both groups, current and ex-smokers of 
> 40 years with ≥ 5 pack-years were included. For FEV1 and FEV1/FVC, pre-bronchodilator values were used. 
Subjects with other lung diseases such as asthma, cystic fibrosis or interstitial lung diseases were excluded. Gene 
expression values in COPD and non-COPD patients were tested for normal distribution with a Kolmogorov–
Smirnov test. These data did not have a normal distribution; therefore differences in gene expression levels 
between groups were tested with a Mann Whitney U test and correlations between gene expression and other 
parameters were performed with a nonparametric Spearman correlation analysis.

Expression quantitative trait loci (eQTL) analysis.  To identify SNPs significantly regulating gene 
expression of MIF, DDT and DDTL, a cis-eQTL analysis was performed. Here cis-eQTL is defined as the SNPs 
significantly associated with gene expression and located within 1 Mb from either side of the binding side of 
the probe. The eQTL analysis was performed using the lung tissue dataset, as described previously19. Briefly, 
the association between SNPs and the 2-log transformed gene expression of MIF, DDT and DDTL was tested 
in each cohort (Laval, British Columbia and Groningen). Subsequently, an eQTL for all cohorts was calculated 
and a Bonferroni-adjusted p-value < 0.05 was used as a significance threshold to correct for multiple testing. An 
overview of the methods and the step-by-step approach are shown in Figs. 1 and 3a, respectively.

Linkage disequilibrium analysis.  Linkage disequilibrium (LD) between eSNPs for MIF and DDTL was 
tested with the LDlink tool from the National Institutes of Health of the United States (https​://ldlin​k.nci.nih.
gov), for European populations using an R2 threshold of 0.8. The SNPs belonging to the same LD block (R2 > 0.8) 
were clustered together and the remaining SNPs were catalogued as independent signals.

MIF splice variants and spliceQTL.  The effect of eSNPs on MIF splice variant expression was performed 
with the airway wall biopsy dataset. Using the MatrixEQTL package it was determined whether SNP allele dos-
ages were associated with split read counts of splice junction pairs within 1 Mb of the SNP (Cis-SpliceQTL). 
Predicted dosage of the alternative allele was used as the explanatory variable and age, gender and current smok-
ing status were set as covariables. SNPs with a minor allele frequency lower than 0.05 were removed. A custom 
script was used to quantify split reads in the sequence alignment map files, as identified by the N-operation in 
the CIGAR string. Splice junction pairs identified by split reads were grouped by strand, start and end position 
of the intron and annotated to the host gene. Number of split reads of a given junction pair were normalized per 
sample by correcting for variation in library size and transcript abundance in a gene-wise fashion.

https://ldlink.nci.nih.gov
https://ldlink.nci.nih.gov
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Identification of significant eSNPs in GWAS for COPD.  To identify the presence of the significant 
eSNPs from our study in GWAS for COPD, the LD partners of all SNPs found in our study were identified 
with the LDproxy tool of the National Institutes of Health of the United States (https​://ldlin​k.nci.nih.gov) for 
European populations. All significant SNPs found in our study and all proxy variants reported by the LDproxy 
analysis were cross-referenced with the list of SNPs reported in the GWAS catalog from the European Bioinfor-
matics Institute (https​://www.ebi.ac.uk/gwas/; reporting SNPs with p-value < 1 × 10–5) found by the GWAS for 
FEV1 and COPD listed in Table 3.

Data availability
The lung tissue dataset analyzed in the current study is available in the National Center for Biotechnology 
Information’s Gene Expression Omnibus repository and is accessible through GEO Series accession number 
GSE23546. Sequence data from the bronchial biopsy dataset analyzed in the current study has been deposited 
at the European Genome-phenome Archive (EGA), which is hosted by the EBI and the CRG, under accession 
number EGAS00001003735.
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