
lowing the observation that epigenetic modifications of sev-
eral genes occur in the average CRC genome.2 It is believed 
that CRC is the consequence of the accumulation of both 
genetic and epigenetic genomic alterations.3

The 5-year survival rates are approximately 90% in early 
CRC patients but decrease to less than 10% in patients with 
distant metastases.3 Recurrence is observed in 10%−20% of 
patients with stage II CRC and 30%−40% of those with stage 
III CRC.4 The risk of recurrence and subsequent death due to 
CRC is closely related to the stage of the disease at the time 
of first diagnosis.5 Therefore, considerable efforts have been 
directed a identifying biomarker that enables early diagnosis 
and assists in selecting the most suitable therapeutic meth-
ods. Over the past few years, a growing body of evidence has 
been implying that the genetic features of the tumor deter-
mine the prognosis and response to targeted treatment.6

In this review, we will discuss the current knowledge on 
colorectal carcinogenesis and its clinical implications for the 
early detection and personalized treatment of CRC.
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INTRODUCTION

Despite recent advances in detection and treatment, 
colorectal cancer (CRC) represents a major global public 
health problem. In Korea, the incidence of CRC has been 
rapidly increasing over the last few years. According to the 
National Cancer Registry, CRC is the second most common 
cancer in males and the third most common cancer in fe-
males, and the fourth leading cause of cancer death.1

The original theory of the multi-step process leading to 
CRC, which suggested that the disease result from the accu-
mulation of mutations in oncogenes and tumor suppressor 
genes in colonic mucosa cells, has been largely revised fol-
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COLORECTAL CARCINOGENESIS

The mechanism underlying CRC pathogenesis continues 
to require extensive investigation in the field of cancer biol-
ogy. There are at least 3 major pathways that lead to colorec-
tal carcinogenesis: (1) the chromosomal instability (CIN) 
pathway, (2) the microsatellite instability (MSI) pathway, 
and (3) the cytosine-phospho-guanine (CpG) island methyl-
ator phenotype (CIMP) pathway. 

Genomic stability is strictly controlled to maintain cell 
homeostasis. Any defect in the mechanisms governing this 
phenomenon will promote mutational processes and the se-
lection, and clonal expansion of mutated cells, contributing 
to cancer progression.7 Two types of genetic instability have 
been identified in CRC. CIN is the most common genomic 
instability encompassing approximately 85% of all sporadic 
CRCs.5,8 CIN refers to an accelerated rate of gains or losses of 
whole or large portions of chromosomes, resulting in karyo-
typic variability from cell to cell.9-11 The consequence of CIN 
is an imbalance in chromosome number (aneuploidy), sub-
chromosomal genomic amplifications, and a high frequency 
of loss of heterozygosity.10 The accumulation of a character-
istic set of mutations in specific tumor suppressor genes and 
oncogenes is coupled with the karyotypic abnormalities ob-
served in CIN tumors which leads to the activation of path-
ways critical for CRC initiation and progression.10,12,13 CRC 
caused by CIN is more commonly observed in distal than in 
proximal CRC, and usually has a poor prognosis regardless 
of stage and therapy.14-16

MSI is another form of genomic instability observed at the 
nucleotide level. MSI accounts for approximately 15%−20% 
of sporadic CRCs.5,11,14 Microsatellites are small stretches 
of repeated DNA sequences of 1−6 bases that are scattered 
throughout the human genome.12,17,18 These sequence mo-
tifs are prone to the accumulation of mutations, mainly 
because DNA polymerases cannot efficiently bind DNA.12,18 
The mismatch repair (MMR) system corrects errors missed 
by the proofreading function of DNA polymerase and acts 
as an additional system for preserving genomic integrity.17 
Because microsatellite sequences are present in the coding 
regions of key genes that regulate cell growth and apoptosis, 
defective MMR can result in frameshift mutations, ultimately 
creating a favorable environment for cell survival and the 
carcinogenic process.18 Frameshift mutations in the TGF-β
RII  gene are found in 90% of CRCs with MSI.19 The inactiva-
tion of the DNA MMR system may be due to an epigenetic 
mechanism or a mutation. Germ-line mutations in one of 
the MMR genes (MLH1, MSH2, MSH6, and PMS2) are pres-

ent in Lynch syndrome (hereditary non-polyposis colorec-
tal cancer, HNPCC), whereas sporadic CRCs with MSI are 
caused by the aberrant epigenetic methylation of MLH1.5,14 
MSI tumors are associated with a proximal location, muci-
nous histology, poor differentiation, and a dense lympho-
cytic infiltration.17,20,21 Compared to patients diagnosed with 
CRC without MSI, patients with MSI-associated CRC have a 
slightly better prognosis at all stages of the disease, despite 
their resistance to alkylating agents and cisplatin.3,17

Although genomic instability is the most common phe-
nomenon in CRC, epigenetic instability is also an important 
mechanism in the pathogenesis of CRC.14 The term “epi-
genetics” is used to describe those mechanisms able to mod-
ify the expression levels of selected genes without necessar-
ily altering the primary DNA sequence.2 There are several 
epigenetic mechanisms that regulate gene expression: DNA 
methylation, histone modifications, chromatin remodeling 
and non-coding RNA molecules.2,7,22,23 The most widely stud-
ied epigenetic modification in humans is DNA methylation, 
which refers to the enzymatic addition of a methyl group 
to the 5′ position of cytosine by DNA methyltransferases 
to produce 5-methyl cytosine predominantly in the CpG 
dinucleotide.24-26 DNA methylation is essential for normal 
embryonic development and serves an important function 
in X-chromosome inactivation and genomic imprinting.26-28 
The non-cancerous mammalian cell genome contains ap-
proximately 70%−80% methylated CpGs in the non-promot-
er region. However, approximately 50% of CpG islands, short 
regions 0.5−4 kb in length possessing a rich (60%−70%) CpG 
content, are located in the promoter region and around the 
transcription start sites and are unmethylated in normal 
cells.16,29,30 In this unmethylated status, CpG-island contain-
ing genes are normally transcribed in the presence of the 
necessary transcriptional activators.17,25 In cancer cells, the 
transcriptional silencing of tumor-suppressor genes by CpG-
island-promoter hypermethylation is key to the tumorigenic 
process, contributing to the development of all the typical 
hallmarks of a cancer cell that result from tumor-suppressor 
inactivation.17,25 The CIMP pathway refers to widespread 
promoter CpG island methylation.6,12 CIMP tumors have a 
distinct clinical, pathological, and molecular profile, includ-
ing an association with older age, proximal location, poor 
differentiation, wild type p53 , MSI (usually MLH1  methyla-
tion), and B-type Raf (BRAF) mutations, and are believed to 
arise via the serrated pathway.14,16 CIMP is helpful in distin-
guishing HNPCC from sporadic MSI CRC because HNPCC-
related CRCs present with KRAS mutations but not BRAF 
mutations, whereas sporadic MSI CRCs are associated with 
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BRAF mutation and MLH1 methylation.14,31,32

HEREDITARY COLON CANCER

Genetic mutations can be either inherited or acquired. 
Any genetic mutation that occurs at or before ovum fertiliza-
tion is termed a germline mutation and can be transmitted 
from parent to offspring as an inherited defect. If the muta-
tion occurs spontaneously in the sperm, ovum, or zygote, 
the affected individual’s parents do not manifest the cancer 
phenotype, but future progeny may inherit the de novo mu-
tation.33

It is presently estimated that 15%−30% of CRCs may have 
a major hereditary component given the incidence of CRC 
in first- or second-degree relatives, even though the etiolo-
gies are not completely understood.34 Approximately 5% of 
all CRC cases occur in the setting of an established familial 
genetic syndrome, demonstrating the profound influence of 
inheritable genetic mechanisms on the development of this 
disease (Table 1).12,35,36 

1. Lynch Syndrome/HNPCC Syndrome

Lynch syndrome (also known HNPCC) is the most com-
mon inherited colon cancer syndrome, accounting for ap-
proximately 3% of all CRCs.14,37 It is inherited in an autosomal 
dominant manner and characterized by an increased risk 
for CRC and endometrial cancer as well as a lower risk for 
some other cancers (ovary, gastric, small intestine, hepato-
biliary tract, upper urinary tract, brain and skin).6,38,39 Lynch 
syndrome is formally defined as the presence of a germline 
mutation in one of the 4 MMR genes: MSH2, MLH1, MSH6, 
or PMS2, with 90% of the mutations involving either MLH1 
(50%) or MSH2 (40%),18,40,41 compared to MSH2 mutataions, 
MLH1 mutations have been associated with an earlier age of 
presentation with CRC.42 PMS2 mutations are rarely detect-
ed. PMS2 carriers have been observed to present with CRC 
at an older age and to have a lower overall risk for CRC.35,36 
Recently, germline deletions in the epithelial cell adhesion 
molecule gene (EpCAM), also known as the TACSTD1 gene, 
upstream of MSH2 , were detected in a subset of families 
with Lynch syndrome.43 In these Lynch syndrome families, 
findings included hypermethylation of the MSH2 promoter 
without MMR gene mutations and germline deletions in 
the 3’ region of EpCAM, resulting in EpCAM-hMSH2 fusion 
transcripts.36,43 One estimate suggests that EpCAM  deletion 
is present in 6.3% of genetically proven Lynch syndrome 
cases.44

The Amsterdam criteria and revised Bethesda guide-
lines are used in clinical practice to identify individuals at 
risk for Lynch syndrome (Table 2).36 Studies evaluating the 
performance of clinical criteria in populations at high risk 
for Lynch Syndrome, have demonstrated that the Bethesda 
guidelines have a higher sensitivity compared to the Amster-
dam and Amsterdam II criteria.45 Patients that meet only the 
Bethesda guidelines should first have their tumors assessed 
for MSI and/or stained for MMR protein by immunohisto-
chemistry, followed by gene sequencing if positive. Tumors 
that display MSI and loss of MLH1 protein expression by im-
munohistochemistry should then be subjected to reflex test-
ing for BRAF V600E mutation status and MLH1 promoter 
hypermethylation to help distinguish sporadic MSI tumors 
from Lynch syndrome (Table 3).46

2. Familial Adenomatous Polyposis

Familial adenomatous polyposis (FAP) is the most com-
mon polyposis syndrome, with a prevalence of approximate-
ly 0.5% of all CRCs.14,35 FAP is characterized by the presence 
of hundreds or thousands of adenomas, and carries a 100% 
lifetime risk of CRC. In FAP patients, CRC develops around 
the age of 40 years, or 10 to 15 years after the initial develop-
ment of polyposis, compared to a median age of diagnosis of 
70 years for sporadic cases.35 It is inherited in an autosomal 
dominant fashion. Attenuated FAP is a less-severe form of 
the disease, characterized by an average 69% lifetime risk 
of CRC, an oligopolyposis of less than 100 adenomas with 
right-sided predominance and a flat morphology, and polyp 
and CRC development at a later age.14,36,47 Patients with FAP 
may manifest several important extracolonic malignan-
cies or signs such as upper gastrointestinal tract polyps and 
carcinomas, congenital hypertrophy of the retinal pigment 
epithelium, desmoid tumors, thyroid cancer, and hepato-
blastomas.14,48,49

FAP and attenuated FAP are caused by germline muta-
tions in the adenomatous polyposis coli (APC ) gene on 
chromosome 5q21, which encodes a tumor suppressor. 
The APC gene normally blocks the transition from the G1 
to the S phase of the cell cycle. Unmutated APC induces the 
degradation of β-catenin and therefore functions as a nega-
tive regulator of the Wnt signaling pathway. Sustained levels 
of intracellular β-catenin result in the prolonged activation 
of the Wnt pathway in APC mutated CRC cells.17 Distinc-
tive phenotypic correlations exist for specific mutations in 
the APC  gene.35 Classic FAP is associated with mutations 
between codons 169 and 1393, with a particularly severe 
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Table 1. Characteristic Features of Hereditary Colorectal Cancer Syndrome36

Condition Inheritance Gene Lifetime cancer risks %
Nonpolyposis 
    Lynch syndrome Autosomal dominant MLH1 Colon 50–80

MLH2 Endometrium 40–60
MSH6 Stomach 11–19
PMS2 Ovary 9–12
*EpCAM Hepatobiliary tract 2–7

Upper urinary tract 4–5
Pancreatic 3–4
Small bowel 1–4
CNS (glioblastoma) 1–3

Adenomatous polyposis
    FAP Autosomal dominant APC Colon 100

Duodenum/periampullary 4–12
Stomach <1
Pancreas 2
Thyroid 1–2
Liver (hepatoblastoma) 1–2
CNS (medulloblastoma) <1

    AFAP Autosomal dominant APC Colon 70
Duodenum/periampullary 4–12
Thyroid 1–2

    MAP Autosomal recessive MUTYH Colon 80
Duodenum 4

    PPAP Autosomal dominant POLD1 and POLE Colon ?
Endometrium in female with POLD1 mutation ?

    HMP Appears to be autosomal dominant GREM1 Colon ?
Hamartomatous polyposis
    PJS Autosomal dominant STK11 Breast 54

Colon 39
Pancreas 11–36
Stomach 29
†Ovary 21
Lung 15
Small bowel 13
‡Uterine/cervix 9
§Testicle <1

    JPS Autosomal dominant  SMAD4 Colon 39
BMPR1A Stomach, pancreas, and small bowel 21

*Risks associated with EpCAM mutations are not yet known.
†Sex cord tumors with annular tubules. 
‡Adenoma malignum. 
§Sertoli cell tumors.
MLH1, MutL homolog 1; MSH6, MutS homolog 6; PMS2, PostMeiotic Segregation increased 2; EpCAM, epithelial cell adhesion molecule gene; FAP, 
familial adenomatous polyposis; APC, adenomatous polyposis coli; AFAP, attenuated familial adenomatous polyposis; MAP, MUTYH-associated 
polyposis; MUTYH, MutY Homolog; PPAP, polymerase proofreading associated polyposis; POLD1, Polymerase (DNA Directed), Delta 1, Catalytic subunit; 
POLE, Polymerase (DNA Directed), Epsilon, Catalytic Subunit; HMP, hereditary mixed polyposis; GREM1, Gremlin 1; STK11, Serine/threonine kinase 11; 
PJS, Peutz-Jeghers syndrome; JPS, juvenile polyposis syndrome; SMAD4, SMAD family member 4; BMPR1A, Bone Morphogenetic Protein Receptor, 
Type IA.
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phenotype observed with mutations between codons 1250 
and 1464.14,35,50 By contrast, the attenuated FAP phenotype 
results from mutations either in the 5’part of the APC gene 
(5’to codon 158), exon 9, or in the 3’part of the gene beyond 
codon 1595.51

A diagnosis of FAP is made when at least 100 colonic ad-
enomas are identified. The identification of APC mutations 
in a proband confirms the diagnosis. If a mutation is found 
in the proband, other at-risk family members (particularly 
first-degree relatives) should be tested for this specific muta-

Table 2. Clinical Guidelines for the Diagnosis of Lynch Syndrome35

Amsterdam I criteria

    At least 3 relatives with CRC including all of the following:

        1) One should be a first- degree relative of the other 2

        2) At least 2 successive generations should be involved

        3) At least 1 CRC case diagnosed before the age of 50 years

        4) FAP should be excluded in any cases of CRC

        5) Tumors should be verified by pathological examination

Amsterdam II criteria

    3 relatives with a Lynch-associated cancer (colorectal, endometrial, small bowel, ureter, or renal pelvis) including all of the following:

        1) 1 should be a first-degree relative of the other 2

        2) At least 2 successive generations should be involved

        3) Cancer in one of the affected individuals should be diagnosed before the age of 50 years

        4) FAP should be excluded in any cases of CRC

        5) Tumors should be verified by pathological examination

Revised Bethesda guidelines

    1) CRC diagnosed in a patient younger than 50 years

    2) Synchronous, metachronous CRC, or other *Lynch-related cancer regardless of age

    3) CRC with MSI-H histology (presence of tumor infiltrating lymphocytes, Crohn’s-like lymphocytic reaction, mucinous/signet-ring differentiation, 
or medullary growth pattern) diagnosed in a patient younger than 60 years.

    4) CRC diagnosed in 1 or more first-degree relatives with a *Lynch-related tumor, with 1 of the cancers diagnosed under than the age of 50 years

    5) CRC diagnosed in 2 or more first- or second-degree relatives with *Lynch-related tumors, regardless of age

*Includes endometrial, ovarian, gastric, small bowel, urinary tract, biliary tract, pancreas, brain, and sebaceous gland.
CRC, colorectal cancer; FAP, familial adenomatous polyposis; MSI-H, microsatellite instability high.

Table 3. Biomarkers Used in the Diagnosis of Lynch Syndrome46

Biomarker
Frequency

Sporadic Lynch syndrome

MSI 15% >95%

BRAF V600E mutations 50% of sporadic MSI <1%

5% of MSS

10% overall

Mismatch repair protein loss by IHC 10−15%, mostly MLH1 ~ 90%

~99% of sporadic MSI <1%

<1% MSS

15% overall

MSI, microsatellite instability; BRAF, B-type Raf; MSS, microsatellite stable; IHC, immunohistochemistry; MLH1, MutL homolog 1.
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tion.35,36 Though most patients have a family history of the 
disease, approximately 25% emerge as having ‘de novo’ APC 
gene mutations.6,52

3. MUTYH-Associated Polyposis

MUTYH -associated polyposis (MAP) is a more recently 
described hereditary cancer syndrome, and is transmitted 
in an autosomal recessive fashion. While the true incidence 
remains unknown, MAP may account for 0.5%−1% of all 
CRCs.14,52 The colonic phenotype of MAP mimics that of at-
tenuated FAP (AFAP), including a propensity for proximal 
colonic neoplasms. Extracolonic manifestations similar to 
those observed in FAP/AFAP have been reported.6,35

This condition is caused by a biallelic germline mutation 
in the base-excision repair gene MUTYH, which is involved 
in defending against oxidative DNA damage.6,36 Individuals 
with more than 10 adenomatous polyps (particularly those 
with a family history of colon cancer consistent with reces-
sive inheritance) and significant polyposis similar to that 
observed in AFAP/FAP who test negative for APC mutations 
should be tested for MAP. If a mutation is identified in the 
proband, siblings should be offered testing as well.35,36

4. Hamartomatous Polyposis

The hamartomatous polyposis syndromes are character-
ized by an overgrowth of cells native to the area in which 
they normally occur.53 Peutz-Jeghers syndrome (PJS) and 
juvenile polyposis syndrome (JPS) are 2 major hamarto-
matous polyposis conditions, and are both inherited in an 
autosomal dominant fashion. It is now known that many of 
these syndromes carry a substantial risk for developing CRC 
as well as other gastrointestinal and pancreatic cancers. The 
lifetime risk of CRC is 39% in patients with PJS (70%−90% 
lifetime risk of cancer) and 10%−38% in patients with 
JPS.35,54,55

PJS has been associated with germline mutations or dele-
tions in LKB1 (STK11), a serine-threonine kinase that regu-
lates p53-mediated apoptosis and the mammalian target of 
rapamycin pathway, whereas JPS is caused by mutations in 
SMADH4, BMPR1A , and ENG  related to the transforming 
growth factor-beta (TGF-β)/SMAD pathway.35,56,57

The diagnostic criteria of PJS and JPS are summarized in 
Table 4.36,58 The correct diagnosis of JPS is complicated by its 
morphological similarities to hyperplastic polyps, lympho-
cytic infiltrates, and dysplastic components. Positive genetic 
testing in an affected individual helps guide testing in at-risk 

relatives. If no mutation is identified, first-degree relatives 
should undergo thorough, regular physical examinations 
from birth to vigilantly monitor signs and symptoms.35

5. Polymerase Proofreading Associated Polyposis

Polymerase proofreading associated polyposis (PPAP) 
is another polyposis syndrome characterized by multiple 
colorectal adenomas and/or early onset carcinoma, and 
shows autosomal dominant inheritance.59

It is associated with germline mutations in the proofread-
ing domains of 2 DNA polymerases, POLE  and POLD1 .60 
POLE  encodes the catalytic and proofreading activities of 
the leading-strand DNA polymerase ε (Pol ε). POLD1  is 

Table 4. Diagnostic Criteria of Hereditary Gastrointestinal Polyposis 
Syndromes58

Adenomatous polyposis

    >10 to 20 synchronous colorectal adenomas

    • Classical FAP

       – >100 adenomas, early clinical onset (typical)

       – Extraintestinal manifestations (osteomas, desmoids, CHRPE)

       – Autosomal dominant pattern of inheritance (affected persons in 
several generations)

    • AFAP

       – >10 to 100 colorectal adenomas or >100 adenomas if late 
clinical onset (>45 years of age)

    • MAP

       – >20 adenomas, clinical onset in 4th to 7th decade of life

       – Autosomal-recessive pattern of inheritance (affected persons in 
1 set of siblings)

       – Biallelic MUTYH mutation (homozygous or compound 
heterozygous)

PJS

    • 2 or more histologically confirmed PJPs or

    • 1 confirmed PJP and typical perioral pigmentation or

    • 1 confirmed PJP and positive family history

JPS

    • >5 JPs in the colorectum or

    • Multiple JPs throughout the gastrointestinal tract or

    • One or more JP and a positive family history of JPS

FAP, familial adenomatous polyposis; CHRPE, congenital hypertrophy of 
the retinal pigment epithelium; AFAP, attenuated familial adenomatous 
polyposis; MAP, MUTYH-associated polyposis; PJS, Peutz-Jeghers 
syndrome; PJP, Peutz–Jeghers polyp; JPS, juvenile polyposis syndrome; 
JP, juvenile polyp.
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the catalytic and proofreading subunit of the lagging-strand 
polymerase δ (Pol δ).61 Their proofreading (exonuclease) 
function detects and removes misincorporated bases in the 
daughter strand through failed complementary pairing with 
the parental strand.59 The phenotype of PPAP is similar to 
that of MAP or Lynch syndrome, except that tumors in PPAP 
are microsatellite stable.61 In particular, female POLD1 carri-
ers have a greatly increased risk of endometrial cancer.59,62

6. Hereditary Mixed Polyposis Syndrome

Hereditary mixed polyposis syndrome (HMPS) is an auto-
somal dominantly inherited polyposis syndrome presenting 
with polyps of multiple and mixed morphologies including 
serrated lesions, Peutz-Jeghers polyps, juvenile polyps, con-
ventional adenomas and CRC without any identifiable extra-
colonic features.63

HMPS is associated with a 40kb duplication spanning 
the 3’ end of the SCG5  gene and a region upstream of the 
GREM1  locus, subsequently increasing allele-specific 
GREM1 expression.63 In the colon, GREM1 is one of several 
bone morphogenetic protein antagonists produced by sub-
epithelial myofibroblasts (ISEMFs).64 Polyposis is associ-
ated with stem cell expansion and crypt fission, reflecting a 
crucial homeostatic role for bone morphogenetic proteins in 
limiting intestinal stem cell self-renewal.65

CLINICAL APPLICATION OF GENETICS TO 
CRC TREATMENT AND THE PREDICTION OF 
PROGNOSIS

Currently, the tumor biomarkers show the greatest prom-
ise for guiding adjuvant chemotherapy with conventional 
drugs in patients with CRC. It is now recognized that MSI-
positive CRC is a distinct subgroup of CRC with a favorable 
stage-adjusted prognosis compared to microsatellite stable 
CRC or CIN CRC.6,66 MSI CRC shows resistance to fluoro-
uracil-based treatment, which is even potentially harmful 
in such cases.67 Recently, a large randomized trial of stage 
III CRC demonstrated improved outcomes in MSI patients 
treated with an irinotecan-containing regimen that included 
5-fluorouracil compared with 5-fluorouracil/leucovorin 
alone.68 MSI CRC appear to be more responsive to irinote-
can-based adjuvant chemotherapy.46,69

In the last few years, the endothelial growth factor receptor 
(EGFR)-targeted monoclonal antibody (mAb) cetuximab 
and the fully humanized mAb panitumumab, have proven 
to be effective in patients with metastatic CRC both as single 

agents and in combination with traditional fluorouracil 
treatment.3,46 EGFR is a transmembrane tyrosine kinase 
that transduces signals through two parallel intracellular 
pathways to activate cellular proliferation and survival. Fol-
lowing the dimerization of EGFR by endothelial growth 
factor (EGF) binding, the intracellular domain of EGFR is 
autophosphorylated and activates multiple downstream 
proteins of the RAS/RAF/MARK and PI3K/AKT pathway.17 
This signaling cascade induce cell proliferation, angiogen-
esis, cell motility, and metastasis. EGFR-targeted mAbs block 
this signal pathway. Therefore, KRAS mutations are predic-
tive of resistance to anti-EGFR mAbs, and the response is 
also negatively affected by NRAS, BRAF and PI3KCA muta-
tions. Recently, randomized trials reported that the benefit 
of cetuximab was limited to patients with KRAS wild-type 
tumors, and established the use of KRAS mutational analy-
sis as a predictive marker for anti-EGFR mAb resistance in 
patients with metastatic CRC.70,71 In addition, a recent meta-
analysis showed that the BRAF mutation is associated with 
a poor response to anti-EGFR mAbs and that it is an adverse 
prognostic biomarker of survival in patients with metastatic 
CRC.72

With regard to aspirin use for CRC risk reduction,73 regular 
aspirin use was associated with a lower risk of BRAF wild 
- type colorectal cancer but not BRAF  mutated cancer in 
a recently published cohort study. These findings suggest 
that BRAF mutant colon tumor cells may be less sensitive to 
the effect of aspirin.74 In another study, regular aspirin use 
after diagnosis was associated with longer survival among 
patients with mutated-PIK3CA  CRC, but not among pa-
tients with wild-type PIK3CA cancer. The findings from this 
molecular pathological epidemiology study suggest that the 
PIK3CA mutation in CRC may serve as a predictive molecu-
lar biomarker for adjuvant aspirin therapy.75

CONCLUSIONS

Although we do not yet possess an in depth and compre-
hensive understanding, interesting biological insights and 
promising translational tools have enhanced our knowledge 
of genetic and epigenetic mechanisms involved in tumor 
progression.

Regarding inherited disease, specific genetic testing can 
help identify at-risk patients and at-risk relatives. Using 
a simple algorithmic approach based on the genetic and 
epigenetic mechanisms of CRC, such as MSI testing with a 
sequential BRAF mutation or MLH1 promoter methylation 
test, inheritable diseases can be distinguished from sporadic 
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CRC. Moreover, rapid advances in our understanding of the 
molecular mechanisms of CRC are useful in predicting the 
response to chemotherapy and prognosis. The use of as-
says for mutant KRAS and BRAF reduced medical costs and 
improved patient outcomes by enabling the application of 
targeted therapies such as anti-EGFR mAbs, the use of which 
has recently increased, to selected CRC patients. However, a 
fair number of additional oncogenes and tumor suppressor 
genes with roles in the pathogenesis of CRC remains, and 
the identification of these genes and characterization of their 
contribution to cancer will be an important yet challenging 
task.
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