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The ultrastructure of spinal cord 
perivascular spaces: Implications 
for the circulation of cerebrospinal 
fluid
Magdalena A. Lam   1, Sarah J. Hemley1, Elmira Najafi1, Nicole G. F. Vella2, Lynne E. Bilston3 & 
Marcus A. Stoodley1

Perivascular spaces play a pivotal role in the exchange between cerebrospinal and interstitial fluids, and 
in the clearance of waste in the CNS, yet their precise anatomical components are not well described. 
The aim of this study was to characterise the ultrastructure of perivascular spaces and their role in 
the transport of fluid, in the spinal cord of healthy rats, using transmission electron microscopy. The 
distribution of cerebrospinal fluid tracers injected into the subarachnoid space was studied using light, 
confocal and electron microscopy. Perivascular spaces were found around arterioles and venules, 
but not capillaries, throughout the spinal cord white and grey matter. They contained fibroblasts 
and collagen fibres, and were continuous with the extracellular spaces of the surrounding tissue. 
At 5 min post injection, tracers were seen in the subarachnoid space, the peripheral white matter, 
the perivascular spaces, basement membranes, extracellular spaces of the surrounding tissue, and 
surprisingly, in the lumen of blood vessels, suggesting trans-vascular clearance. These findings point out 
an unrecognised outflow pathway for CNS fluids, with potential implications for volume regulation in 
health and disease states, but also clinically for the detection of CNS-derived biomarkers in plasma, the 
immune response and drug pharmacokinetics.

Fluid homeostasis in the central nervous system (CNS) is essential for normal neurological function. The flow 
dynamics and the composition of cerebrospinal fluid (CSF) have been the subject of numerous studies and 
reviews. More recently, perivascular spaces have become a topic of intense debate with regards to their role in 
fluid exchange between the brain or spinal cord parenchymal tissue and the surrounding subarachnoid spaces. 
A large body of evidence indicates that perivascular spaces represent the major route for fluid inflow from the 
subarachnoid space into the brain and spinal cord1–5, and are also the major pathway for solute clearance6–8. The 
anatomical details of their ultrastructure, however, are not well understood. Early electron microscopic studies 
described perivascular spaces in hamster9 and rat10 brain but not in the spinal cord, and the physiological sig-
nificance of these spaces in the transport of fluid and solutes has not been demonstrated. The flow pathways of 
cerebrospinal fluid in the spinal cord have been previously investigated using a combination of small molecular 
weight tracers, light and electron microscopic methods, but with the focus on flow in the central canal rather than 
the perivascular spaces4,5,11.

Conflicting views have been reported in the literature regarding the connection of CSF in the subarachnoid 
space with fluid in the perivascular spaces12,13, and the exchange of CSF with the interstitial fluid is not well 
documented. The direction and detailed pathways involved in the clearance of fluid and solutes from the CNS 
parenchyma are also uncertain, with some studies suggesting peri-arterial6,14 and others peri-venular2,8 outflow. 
The circulation of the CSF along the central canal of the spinal cord and its penetration into the parenchyma along 
perivascular spaces have been described as rapid in some studies3,5,11, while others reported the bulk flow of fluid, 
within perivascular spaces of both arteries and veins, as slow and variable in its direction15.
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The aim of this study was to investigate the ultrastructure of perivascular spaces in the spinal cord with a focus 
on the continuity of flow pathways, and the relationship of perivascular spaces and the pia/arachnoid cells to the 
walls of blood vessels and the surrounding tissue. The physiological role of these structures in the transport of 
CSF and solutes was also studied using a range of CSF tracers.

Results
Ultrastructure of perivascular spaces.  Our electron microscopic investigations of ultrathin sections of 
the spinal cord indicated that perivascular spaces were associated with all arterioles and venules, throughout the 
peripheral white matter and central grey matter of the spinal cord parenchyma. The perivascular compartment 
was contained between the blood vessel wall and the bordering astrocytes of the spinal cord tissue (Fig. 1a). 
Cellular processes originating from pia were the main component of the perivascular space with the remain-
ing area filled by tightly packed collagen fibres. The cellular processes of pia were identified by the presence of 
abundant rough endoplasmic reticulum with multiple ribosomes, characteristic of protein synthesising cells16 
(Fig. 1b,c). Perivascular microglia were sometimes seen between the pia cellular processes and the outer border of 
the perivascular spaces and were characterised by oval shaped, electron-dense, lysosomal bodies (Fig. 1d, white 
arrows).

Larger vessels, arterioles and venules, were entirely surrounded by easily identifiable perivascular spaces. 
Blood vessels that were intermediate between an arteriole and a capillary, or a capillary and a venule, displayed 
pia cellular processes surrounding parts of the vessel wall. These structures were adjacent to areas where the basal 
lamina of endothelial cells and the bordering astrocytes of the surrounding tissue came into direct contact and 
was the only structure separating the vessel wall from the surrounding parenchyma (Fig. 1e,f, black arrows).

The width of perivascular spaces varied between vessels of different types. To assess the relationship between 
the width of perivascular spaces and vessel size, the maximum width of perivascular spaces was measured in 
20 randomly selected blood vessels and the values were plotted against the vessel diameter. The resulting data 
(Fig. 1h) indicate that the width of perivascular spaces increases with vessel size, but the maximum width of 
perivascular spaces observed in the spinal cord did not exceed 2 μm.

Perivascular spaces were not found around capillaries. At this point the basal lamina surrounding a single 
layer of endothelial cells was in direct contact with the outer plasma membrane of the surrounding CNS tissue, 
composed primarily of the bordering astrocytes (Fig. 1g). The basal laminae appeared in the electron micrographs 
as an extracellular space containing extracellular matrix and collagen fibres, and was in continuity with extracel-
lular spaces of the surrounding astrocytes as well as with intercellular spaces between adjacent endothelial cells 
up to the occluding tight junctions (Fig. 1f,g).

Ultrastructure of blood vessels and connective tissue in the subarachnoid space.  We next inves-
tigated the relationship of intra-parenchymal perivascular spaces with the blood vessels in the spinal subarach-
noid space. Transmission electron microscopic analyses of ultra-thin transverse sections demonstrated that the 
subarachnoid space is primarily occupied by cells of the pia and arachnoid, embedded in a fibrous extracellular 
matrix (Fig. 2a,b). These cells were identified as active fibroblasts based on a prominent nucleus with peripheral 
heterochromatin, and well developed rough endoplasmic reticulum and Golgi membranes, indicative of active 
protein synthesis. In the subarachnoid space, the pia and arachnoid cells formed a network of loosely arranged 
cells with extensively branched cytoplasmic processes enclosing pools of firmly packed collagen bundles (Fig. 2a). 
This cellular network, together with the fibrous matrix they produce, seemed to provide support and anchoring 
for the blood vessels passing through the subarachnoid space (Fig. 2b). We found, however, no evidence of con-
tinuous sleeve-like structures accompanying blood vessels in the subarachnoid space. The cellular processes of 
leptomeningeal cells were close but not in contact with the walls of blood vessels, with frequent gaps or fenes-
trations (Fig. 2b). The inner most layer of these cells (often referred to as pia mater) was located close to the 
peripheral white matter (the glia limitans) of the spinal cord. They were, however, separated from the spinal cord 
glial border by bundles of collagen and a thin layer of electron-dense material associated with the glial plasma 
membrane, most likely glycocalyx (Fig. 2c,d). Thus, despite anatomical continuity, the true perivascular spaces 
only exist within the CNS tissue and do not extend into the subarachnoid space beyond the point of entry, or the 
point of exit, of the peripheral blood vessels.

The cellular processes of pia-arachnoid in the subarachnoid space were sometimes connected by desmosomes 
or small nexus junctions (Fig. 2e). We found no obvious morphological differences or anatomical separations 
between pia and arachnoid cells, consistent with earlier views that pia-arachnoid were excavated by the fluid in 
subarachnoid space rather than forming two distinct limiting membranes12,17.

The ventral median fissure appeared as a unique feature of the spinal subarachnoid space, and reached far 
within the white matter, up to the ventral commissure. It contained cellular processes of pia/arachnoid with asso-
ciated collagen fibres (Fig. 2f) and was lined by bordering astrocytes (white arrows). It is known as the location of 
the sulcal arteries and veins that branch off the anterior spinal artery and vein respectively, and split into smaller 
arterioles and venules as they penetrate the ventral spinal cord parenchyma. These smaller vessels spread radially 
and are thought to supply most of the ventral grey and white matter. Importantly, they were also accompanied by 
perivascular spaces.

Distribution of tracers injected into the subarachnoid space (cisterna magna).  Microscopic anal-
ysis of HRP distribution using DAB/H2O2 reaction.  The analysis of HRP distribution using DAB/H2O2 staining 
in sections from cervical and thoracic spinal cord indicated that 5 min after the end of the injection, tracer was 
present predominantly in the subarachnoid space. From there, tracer penetrated the parenchyma across the pia 
and the bordering astrocytes (Fig. 3a). The depth of peripheral staining gradually decreased with increasing dis-
tance from the injection site. Intense staining was also observed in the perivascular spaces of penetrating blood 
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Figure 1.  The ultrastructure of spinal cord perivascular spaces. Perivascular spaces accompany arterioles and 
venules throughout the white and grey matter up to the point where they become capillaries. (a) Venule in the 
peripheral white matter of cervical spinal cord. Perivascular space is present along the entire perimeter of this 
vessel and is bounded by bordering astrocytes and numerous nerve fibres; (b) and (c) Higher magnification 
of an area in A showing the details of pia cell processes with characteristic rough endoplasmic reticulum with 
associated ribosomes, and collagen fibres in the perivascular space; (d) Higher magnification of the inset area 
in A illustrating a perivascular microglial cell located in between the pia cellular processes and the collagen 
fibres on the outer border of perivascular spaces; Note the characteristic electron-dense lysosomal bodies (white 
arrows); (e) Low magnification of a vessel in transition between an arteriole and a capillary; arrow is pointing 
to the portion of the vessel without perivascular spaces; (f) Higher magnification of an area in (e) showing 
the portion of the vessel without perivascular spaces, where the endothelial basement membrane (*) and the 
basement membrane of bordering astrocytes coalesce (arrow). Collagen fibres in the extracellular space (the 
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vessels extending between the subarachnoid space and central grey matter, as well as in the region of spinal nerve 
rootlets, the ventral median fissure, and the central canal (Fig. 3a–d). This pattern of staining was consistent with 
preferential flow along the subarachnoid space, central canal and perivascular spaces. Throughout the spinal 
cord, the tracer appeared to be spreading from the perivascular spaces into the surrounding parenchyma. The 
direction of perivascular and trans-parenchymal flow could not be unambiguously determined based on the 
single time-point investigated.

For more precise localisation of tracers with respect to the vessel wall and perivascular spaces, spinal cord 
sections stained with DAB/H2O2 were further processed for electron microscopy as described in methods. The 
HRP staining was identified in the subarachnoid space (Fig. 3e) and in the central canal lumen (Fig. 3f), but it was 
not found in sections from a control animals, not injected with HRP (Fig. 3g). Within the spinal cord tissue, the 
intensity of HRP reaction product staining enhanced with osmium tetroxide was variable, and could not be easily 
distinguished from the general osmium tetroxide staining of cellular membranes and other lipid-rich structures 
within the spinal cord tissue. Of interest, however, was the severely swollen appearance of the basement mem-
branes of capillaries and the extracellular spaces in the surrounding tissue (Fig. 3h–j). The swollen membranes 
were in continuity with the extracellular spaces of the surrounding parenchyma. As the swollen structures were 
only observed in sections stained with DAB/H2O2, and were present in both HRP treated and to a lesser extent in 
control animals, they were attributed to the mildly oxidising nature of H2O2, which in HRP-treated animals was 
amplified by the peroxidase activity of the enzyme.

Based on the above difficulties, the distribution of HRP was also studied in two separate animals using immu-
nogold labelling and TEM. In these animals the tracer was identified in the subarachnoid space, and peripheral 
spinal cord tissue, including bordering astrocytes, and along white matter nerve fibres (Fig. 3k–n). The immuno-
gold staining for HRP was also noted in the endothelium (Fig. 3l,n), in the central canal lumen and in the cyto-
plasm of ependymal cells, but was not found in control sections where the primary antibody to HRP was omitted 
in the staining protocol. Overall, the distribution of immunogold was consistent with the distribution of DAB/
H2O2 staining observed using light microscopy, but seemed more uniform across the tissue, without preferential 
staining of perivascular spaces.

CSF flow studies using a protein-fluorophore conjugate.  The location of a fluorescent tracer (OAF-647) with 
respect to the walls of blood vessels was investigated using confocal microscopy and representative images were 
matched with electron micrographs from vessels of similar type and size. Near arterioles, the tracer was pre-
dominantly seen in the basement membranes surrounding the smooth muscle cells and along the outer border 
of the perivascular space (Fig. 4a,c). In the electron micrographs, the outer border of perivascular spaces was 
often found in contact with the glia limitans and the extracellular spaces between bordering astrocytes (Fig. 4b), 
and it extended into the extracellular spaces of the surrounding tissue (Fig. 4d). The fluorescent tracer was fre-
quently found in these extracellular spaces and connected with tracer present in vascular basement membranes. 
Surprisingly, tracer was also present in the blood vessel lumen (Fig. 4a,c,e).

Distribution of nanoparticle tracers.  To further investigate the location of CSF tracers at the ultrastructural level, 
we used gold nanoparticles as the fluid tracer in combination with transmission electron microscopy. Five min-
utes after the end of the injection, spherical gold nanoparticles were distributed throughout the cervical and 
thoracic subarachnoid spaces and spinal cord tissue, with no discernible pattern and no apparent preference for 
any anatomical structures or pathways. The particles were present in the subarachnoid spaces, peripheral white 
matter astrocytes, white matter nerve fibres, perivascular spaces associated with both arterioles and venules, 
basement membranes and endothelial cells (Fig. 5). Particles were also frequently found in the vessel lumen, 
suggesting clearance of gold particles into the vasculature, most likely via vesicular transport across the endothe-
lium (Fig. 5c). In samples stained with osmium, particles were difficult to discern from the background, but pro-
vided additional contrast for visualisation of intracellular vesicles (Fig. 5e,f). While the spherical nanoparticles 
(5 nm) were distributed uniformly across the spinal cord parenchyma and subarachnoid space, the distribution of 
nanorods (10 × 20 nm) was restricted to the spinal subarachnoid space. Overall, compared to the distribution of 
protein tracers primarily in the subarachnoid spaces, the perivascular spaces and the ventral median fissure, the 
distribution of spherical gold nanoparticles was more uniform across the CNS.

Discussion
This study investigated the ultrastructure of perivascular spaces in the rat spinal cord as well as their physiological 
role in the transport of cerebrospinal fluid in the CNS. We confirmed that perivascular spaces are anatomical 
structures contained between the walls of blood vessels and the surrounding astrocytes in the brain and spinal 
cord tissue. Furthermore, our observations in the rat spinal cord indicate that these compartments are packed 
with cellular processes of meningeal cells (the pia and arachnoid), bundles of tightly packed collagen fibres and, 
less frequently, perivascular microglia. These findings are consistent with earlier studies of perivascular spaces 
in the brain of cats12 and rats15. The discontinuity of pia and arachnoid layers allows CSF and solutes to move 

basement membrane*) can be clearly distinguished in transverse sections; (g) Capillary in the central grey 
matter. The basement membrane is in continuity with the extracellular spaces between bordering astrocytes 
as well as with intercellular spaces between adjacent endothelial cells up to the occluding tight junction; (h) 
Relationship between the maximum width of perivascular spaces and vessel diameter. A: astrocytes; Ec: 
endothelial cell; L: lumen; M: microglial cell; Rer: rough endoplasmic reticulum; Tj: tight junction. Scale bars: 
2 µm (a), 1 µm (b,d,e), 0.2 µm (c,f), 0.1 µm (g).
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through the subarachnoid space and enter the perivascular spaces, which are in continuity with subarachnoid and 
subpial space, consistent with previous reports on similar structures in the brain12,15,18. The presence of meningeal 
cells and fibrous material in the perivascular spaces may indicate that the movement of solutes and fluid occurs 
mostly via the outer borders of these spaces, specifically the basement membranes. This is supported by the obser-
vation that in this and other studies, the distribution of tracers is primarily confined to the outer borders of the 
perivascular spaces, namely the basement membranes3,11,19–21. In the spinal cord parenchyma, perivascular spaces 
are continuous with the extracellular spaces of the surrounding tissue as well as with the basement membranes 
of vascular walls. This anatomical continuity provides a low resistance access pathway for subarachnoid fluid 
and solutes to enter the nervous tissue, and to mix and exchange with interstitial fluid, or to access the vascular 

Figure 2.  The ultrastructure of spinal subarachnoid space. (a) Transverse section from rat spinal cord showing 
a network of fibroblasts with elongated cellular processes and their characteristic rough endoplasmic reticulum-
bound ribosomes, surrounded by bundles of collagen fibres in the subarachnoid space; (b) Subarachnoid 
venule embedded in loosely arranged network of fibroblasts and collagen fibres; (c) The interface between the 
SAS (containing fibrocytes, collagen and a microglial cell) and peripheral white matter of the spinal cord. (d) 
Magnification of an area in (c) illustrating the relationship of pia and extracellular matrix to the bordering 
astrocytes of the glia limitans. Note discontinuity of the pial cover; (e) Desmosome type junction between pia-
arachnoid cells in SAS. (f) The ventral median fissure of the spinal cord. White arrows: bordering astrocytes 
(glia limitans). A: astrocyte; Col: collagen; L: blood vessel lumen; F: fibroblast; M: microglial cell; Rer: rough 
endoplasmic reticulum; Sas: subarachnoid space; Vmf: ventral median fissure; Wm: white matter. Scale bars: 
1 µm (a–c), 0.2 µm (d), 0.1 µm (e), 2 µm (f).
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Figure 3.  Distribution of cerebrospinal fluid tracer, horseradish peroxidase (HRP). (a–d) Visualisation of 
HRP in cervical spinal cord transverse sections stained with DAB and H2O2. Intense staining was found in the 
subarachnoid space and perivascular spaces of penetrating blood vessels (a) and (d), white arrows, the ventral 
median fissure (b), the central canal (c) and spinal nerve rootlets (d); (e–j) Electron micrographs of ultra-thin 
sections stained with DAB/H2O2 and osmium tetroxide. HRP staining is present in the subarachnoid space, 
associated with leptomeningeal fibroblasts (e); and in the central canal lumen as well as in the cytoplasm of 
ependymal cells of the treated animal (f) but is absent in sections from a control animal (g). Swelling of the 
capillary basement membrane* (h,i) and extracellular spaces (j) in spinal cord sections, due to the oxidising 
properties of H2O2 enhanced by the peroxidase activity of HRP; (k–n) immuno-gold detection of HRP tracer 
in ultra-thin sections, showing gold nanoparticles (10 nm) in the subarachnoid space and glia limitans and 
peripheral white matter (k), vascular basement membranes and endothelial cells as well as vascular lumen (l, 
n) and spinal cord parenchyma (m). Ap: axoplasm; Cc: central canal; Ccl: central canal lumen; Epc: ependymal 
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basement membranes, consistent with earlier observations of tracer distribution in the brain3,15 and spinal cord11. 
Our results are also consistent with earlier reports on the continuity of perivascular spaces with the outer suba-
rachnoid space9,10,12 and with the observed rapid penetration of fluid tracers from subarachnoid spaces into the 
brain or spinal cord tissue via perivascular pathways2,3,5,22,23. Furthermore, the continuity of the subarachnoid 
space with the dorsal and ventral spinal nerve rootlets suggests the existence of an additional outflow pathway for 
fluid towards the peripheral tissue, along lymphatic or venous systems. This is supported by the observation of 
intense staining of tracer molecules (HRP or OAF-647) in the ventral and dorsal nerve rootlets, and is consistent 
with previous reports on the clearance of tracer molecules from the CNS to cervical lymphatics along cranial and 
spinal nerves19,24–28.

An important finding of this study is the possibility of vesicular transport of tracer molecules across the vas-
cular wall (both the smooth muscle and endothelial cells) and clearance to the blood circulation. Similar observa-
tions have previously been reported in the literature11,21,29, but did not receive much attention from the scientific 
community. In the spinal cord, endothelial cells of sub-ependymal capillaries were shown to incorporate HRP 
into pinocytotic vesicles, suggesting trans-vascular clearance, that could be responsible for rapid removal of this 
tracer from the spinal cord11. In the brain, retrograde vesicular transport of HRP through the endothelium, from 
the basement membrane to the vascular lumen, was also demonstrated, after injection of tracer into the lateral 
cerebral ventricle21,29. Wagner and collegues21 proposed that a distinction should be made between fluid and sol-
ute transport from the blood to the brain tissue, and the transport in the opposite direction (i.e., brain to blood). 
While there is a well-established requirement for the active regulation of transport of molecules and cells from the 
peripheral circulation into the CNS (and the free passage of blood borne molecules, including tracers injected iv, 
is limited by the BBB), active transport in the opposite direction may be required for the removal of metabolites 
and toxic substances, as well as for the regulation of fluid volume. Indeed, previous studies suggest that in the 
mouse brain, up to 85% of amyloid beta peptide is eliminated by trans-vascular clearance under normal physi-
ological conditions, while a smaller percentage is cleared via other routes, including interstitial fluid bulk flow, 
followed by transport across the blood brain barrier into the circulation30–32. Our observations of trans-vascular 
CSF tracer clearance suggest that trans-endothelial transport may also be occurring in the spinal cord. Although 
the mechanism of this transport has not been investigated in detail here, trans-vascular endocytosis with or with-
out the involvement of a non-specific receptor is a likely scenario.

Based on morphological and anatomical differences between the brain and the spinal cord33, transport mech-
anisms and pathways across these two interfaces may differ. Accordingly, it is not yet clear to what extent the 
findings from this study in the spinal cord will be relevant to the brain. Previous studies in animal models and in 
vitro, suggest that specific differences in the ultrastructure of the BBB and BSCB (blood-spinal cord barrier) may 
be responsible for the physiological differences between the two barrier systems, including a propensity for cer-
tain pathological conditions33. The main differences reported so far include the presence of glycogen deposits in 
the spinal cord but not brain endothelial cells34, and increased permeability of spinal cord (compared to brain) to 
intravenously infused tracers, [3 H]-D-manitol and [14 C]-carboxyl-inulin35, and interferons36. Based on intrinsic 
anatomical and functional differences between the brain and spinal cord, regional differences in the BBB and 
BSCB may exist, but further studies are needed to confirm the preliminary findings.

Recently, it has been proposed that water filtration across the walls of capillaries generates osmotic 
counter-pressure, essential for the subsequent reabsorption of CNS fluid back into capillaries and venules37. 
Despite existing evidence, the possibility of transport across the vascular wall has been largely discounted. Our 
observations indicate that vascular endothelial cells in the spinal cord possess both tight junctions and cytoplas-
mic vesicles, indicative of transport and clearance across cells of the vascular wall. While it is possible that vesicu-
lar transport is induced by the presence of exogenous tracer, electron transparent, fluid filled vesicles can also be 
identified in vascular cells from control animals, suggesting that active transport across endothelial cells occurs 
in normal physiological conditions and should be considered as a potential outflow pathway from the CNS. The 
existence of such a pathway would have important implications not only for volume regulation and removal of 
metabolites but also clinically for the detection of CNS-derived biomarkers in plasma, for the immune response 
and for drug pharmacokinetics.

Perivascular fluid flow represents a critical component of CSF physiology but many of its aspects remain to be 
clarified. Recently, the existence of bulk fluid flow through the CNS has been proposed, based on the observations 
of fast perivascular transport of fluorescent tracers in the mouse cortex2,8,38. Termed the glymphatic system, this 
bulk flow directed from arterial to venous perivascular spaces has been suggested to play an important role in 
the clearance of metabolites from the CNS parenchyma, with more efficient removal during sleep, and reduced 
clearance in AQP4 deficient animals2,39. This concept has since been questioned by other investigators40,41 who 
have shown that arterial pulsations are unlikely to generate substantial bulk fluid flow, but may generate local 
fluid motion that leads to fast perivascular solute transport by dispersion (i.e., a combination of mixing and dif-
fusion)40. Such a model is in agreement with observations of reduced perivascular tracer movement after aortic 
ligation4,42 or occlusion3, both of which are expected to reduce arterial pulsations and thereby limit dispersion. 
The distribution of tracers around vessels observed in this study supports the dispersion model, and further 
suggests that the main anatomical structures involved in the transport of fluid and solutes across the spinal cord 
tissue are the vascular basement membranes. The volume capacity of these structures depends on the size of 
the blood vessel, with arterioles showing the greatest capacity due to multiple layers of basement membrane 

cell; F: fibroblasts; Hrp: horseradish peroxidase; L: blood vessel lumen; Ml: myelin; Sas: subarachnoid space; Snr: 
spinal nerve rootlets; Vmf: ventral median fissure; Wm: white matter; *basement membrane. Scale bars: 1 µm 
(a–c), 0.2 µm (d), 0.1 µm (e), 2 µm (f).
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(endothelial, and one or two additional layers surrounding the smooth muscle cells), followed by venules (one to 
two layers) and capillaries (only one layer). The vascular basement membranes are in continuity with the extracel-
lular spaces of the surrounding tissue providing access for fluid and small solutes into the adjacent parenchyma, 
including the white matter and central grey matter of the spinal cord, all the way to the central canal. Compared 
to the rapid flow from the subarachnoid space into the perivascular spaces, the subsequent movement of solutes 
from the basement membrane into the narrow gaps between astrocytic processes, (typically 10–20 nm in width) 
is expected to be much slower, and largely dependent on the molecular size and charge. This is supported by the 
observation that 5 nm spherical gold particles, and protein tracers (HRP and OAF-647, 40–45 kD) penetrated the 
spinal cord from subarachnoid spaces to central canal, whereas 10 × 20 nm gold nanorods remained in the suba-
rachnoid spaces after cisterna magna injection, consistent with earlier reports15. A recent study of CSF flow path-
ways in mice demonstrated that in the brain, vascular basement membranes are the major routes for fluid flow 
into and out of the brain and that movement of solutes is limited by molecular size20. Based on the distribution 
of fluorescent amyloid beta and gold nanoparticles (15 nm), the authors proposed that separate pathways exist 

Figure 4.  Distribution of cerebrospinal fluid tracer, Ovalbumin-Alexa Fluor 647 (OAF-647). (a) and (c) 
Localisation of fluorescent tracer (ovalbumin Alexa Fluor-647; shown in red) in 3D reconstructed images of 
a vessel in the spinal cord central grey matter; endothelial staining (blue) and smooth muscle actin (green). 
(b) and (d) Electron micrographs of similar type vessels in the spinal cord grey matter. Note the distribution 
of tracer in (a) and (c) seems to follow the internal and external basement membranes associated with PVS, 
as well as the extracellular spaces between the bordering astrocytes. Tracer was also found on the luminal 
side of the smooth muscle cells and even endothelial cells, suggesting clearance across the endothelium into 
the circulation. (e) Higher resolution images of an arteriole illustrating the distribution of tracer (OAF-647 
shown in red (centre) with respect to the SMA staining (green) (left), and the superimposed images (right). Ec: 
endothelial cell; L: blood vessel lumen; Smc: smooth muscle cell. *Basement membrane (internal); x: basement 
membrane (external).
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for the entry and drainage of fluid with entry via pial-glial membrane and drainage initially via capillary base-
ment membrane followed by smooth muscle cell basement membrane of arterioles20. However, these differential 
pathways observed in the brain were likely due to size limitation (restricted movement of 15 nm nanoparticles) 
rather than real differences in fluid pathways. Our data do not support such separation of inflow and outflow 
pathways. The distribution of protein tracers (HRP and OAF-647) was consistent with preferential flow through 
subarachnoid space, and entry along perivascular spaces of both arterioles and venules, and via the central canal. 
The distribution of 5 nm nanoparticles was in general more uniform throughout the spinal cord tissue with no 
apparent preference for perivascular location, although the movement of spherical particles is possibly faster 
compared to bulky proteins. Overall these results support the notion that the movement of CSF tracers is dictated 
by their molecular size and charge.

Currently, peri-arterial spaces are an established route of fluid entry, but there is debate regarding the routes 
of fluid clearance from the CNS tissue with both peri-arterial6,14 and peri-venular2,8 outflow suggested. Existing 
views are largely based on the spatial distribution and temporal variation of tracer molecules of different molec-
ular size, after injection into the tissue or fluid filled spaces in brain or spinal cord. Interpretation of these types 

Figure 5.  Distribution of cerebrospinal fluid tracer, spherical gold nanoparticles (5 nm). Distribution of 
spherical gold nanoparticles in the spinal cord 5 min after injection at the cisterna magna. Electron micrographs 
of ultra-thin, transverse sections from cervical spinal cord showing nanoparticles in the peripheral white matter 
(a), in peri-arterial spaces and vascular wall, endothelial cells, basement membranes and bordering astrocytes 
(b), clearance of tracer across the capillary endothelium into vascular lumen (c). Nanoparticles in the bordering 
astrocyte and perivenular space (d). Ultra-thin sections stained with osmium showing vesicles budding off 
the outer basement membranes of a capillary (e, white arrows) and moving through the endothelium (f, black 
arrows) and opening into the lumen/fusing with the plasma membrane on the luminal side of endothelial 
cells (f, white arrows). A: astrocytes; Ec: endothelial cell; L: blood vessel lumen; Pvs: perivascular space; Sas: 
subarachnoid space; *basement membrane. Scale bars: 0.1 µm (a–d,f), 0.2 µm (e).
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of experiments requires caution as artefacts can be introduced due to changes in pressure, volume or even the 
nature of the exogenous tracer molecule. The choice of the time point for tracer imaging is crucial. In the spinal 
cord, the 5 min time point is suitable for studies of inflow pathways, but a 30 min time point is difficult to inter-
pret because both inflow and outflow processes are likely to be captured and cannot be differentiated. Longer 
time-points (1–3 h) may seem appropriate for the study of outflow routes, although in our experience most of the 
tracer is cleared from the tissue within the first hour; any tracer molecules remaining may indicate retention due 
to interaction of tracer with cell membranes or cellular uptake, mainly by microglial cells21. Our electron micro-
scopic investigations of the spinal cord tissue indicated that both peri-arterial and peri-venular spaces are in con-
tinuity with the subarachnoid space. Hence, tracers injected in the subarachnoid space (e.g. the cisterna magna) 
should have access to both arterial and venular perivascular spaces, although transport is expected to be faster in 
peri-arterial spaces due to greater width and the mixing effect of arterial pulsations1,40. In our TEM investigations 
of rat spinal cord, we found no evidence of valve structures or any other anatomical features that would allow flow 
in only one direction and tracers injected into subarachnoid space (cisterna magna) were found to penetrate both 
peri-arterial and peri-venular spaces. Therefore, CSF flow through perivascular spaces and basement membranes 
should be possible in both directions, consistent with the “to- and fro- pulsatile movement” observed in vivo43.

Although tracers are used extensively to study the dynamics of CSF flow, the use of exogenous molecules 
can result in artefacts that don’t reflect physiological processes. Cellular uptake has been described for various 
exogenous molecules, in particular nanomaterials44,45, and contributes to the removal of tracers21 from the CSF. 
The appearance of ‘labyrinth structures’11 in ultra-thin sections stained for peroxidase (HRP) is due to swelling 
of the basement membrane and may be explained by oxidative damage induced by DAB/H2O2 staining. This is 
consistent with earlier reports suggesting that compared to cells, the extracellular components are more suscep-
tible to oxidative damage due to lower levels of antioxidant defences and repair systems46,47. The intravascular 
location of tracers could possibly be an artefact generated during the processing of tissue samples, although at 
this stage, it is not clear which process could lead to this result. It is not likely to be due to perfusion of tissue with 
the fixative, paraformaldehyde, which is introduced into the ascending aorta, and could only have an opposite 
effect. The dragging of tracer during sectioning is also unlikely. In the case of gold nanoparticles imaged by elec-
tron microscopy, fixed samples are embedded in acrylic resin, polymerised, and the hardened resin blocks are 
sectioned on an ultramicrotome. The size of the tracers (5–10 nm) relative to the thickness of the section (approx. 
70–80 nm) means that statistically, most particles in the section would have resin on both sides of the tracer, 
preventing them from popping out during sectioning. Also, there was no evidence of poor infiltration (or holes 
in the sections, which would appear paler), that may allow section constituents to come loose and escape during 
sectioning. In the case of fluorescent tracer (Ovalbumin-Alexa Fluor conjugate; 45 kDa; approx. 5 nm) imaged by 
confocal microscopy, fixed samples are embedded, frozen and sectioned (40 μm) on a cryostat. If dragging was 
occurring, the entire image would appear fuzzy, but this is not the case. A potential limitation of this study is that 
the diameter of a blood vessel and the size of the perivascular spaces of the rat spinal cord, measured in our elec-
tron micrographs, could be affected by sample processing, and is therefore an approximation of the true size. It is 
nevertheless more accurate than a measure of these spaces using a light microscopic approach. The observation 
that the size of these spaces (subject to processing) did not exceed 2 µm, remains an interesting finding and can 
be compared, in the future studies, to the size of perivascular space in processed tissue samples from models of 
disease. Furthermore, the diameter of a blood vessel and the width of perivascular space would be affected equally 
by sample processing, therefore their ratio should remain constant.

While our data suggest trans-vascular tracer clearance, based on snap-shot images, the trans-vascular flow, 
as a dynamic process, would be ideally studied in real-time, in vivo, and is one of our future aims. However, the 
limiting factor of most currently available in vivo imaging techniques, including MRI, PET or SPECT, is the rela-
tively low resolution. It is therefore unlikely that an in vivo evidence of trans-vascular flow will become available 
in the near future.

Conclusion
This study adds to the current understanding of the ultrastructure of perivascular spaces and fluid transport path-
ways in the central nervous system, showing that perivascular spaces are expansions of the outermost vascular 
basement membrane, and contain both cellular and fibrous material. The continuity of perivascular spaces with 
the basement membranes and extracellular spaces of the surrounding tissue facilitates fluid flow and clearance. 
The finding of vesicular transport across the wall of blood vessels has to be further validated, but could have 
important implications for fluid outflow and the clearance of macromolecules. The spatial distribution of tracers 
supports the vital role of perivascular spaces and vascular basement membranes in the transport and removal 
of fluid, solutes and cells (e.g. microglia) through the CNS. Whether and how the ultrastructure of perivascular 
spaces is altered in CNS diseases that involve fluid imbalance (such as hydrocephalus, oedema and syringomyelia) 
is unknown, and needs to be investigated.

Methods
Transmission electron microscopy.  All experimental methods involving animals were performed in 
accordance with the Australian code for the care and use of animals for scientific purposes, and were approved by 
the Macquarie University Animal Ethics Committee (ARA 2013/047). The ultrastructure of perivascular spaces 
in the spinal cord was investigated in five Sprague Dawley rats (250–300 g) using transmission electron micros-
copy of transverse ultra-thin sections from cervical and thoracic spinal segments. Animals were placed under 
general anaesthesia using isoflurane (5% for induction, 2% for maintenance). Transcardiac perfusion with 200 mL 
0.1 M PBS containing 5000U of heparin was followed by a mixture of 3% paraformaldehyde and 2.5% glutar-
aldehyde in 0.1 M sodium phosphate buffer, pH 7.2. The spinal cord and brain were removed and postfixed at 
room temperature for 1 h. Transverse sections (1 mm) from each spinal segment (C2-T4) were incubated in fresh 
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fixative overnight at 4 °C. Samples were postfixed in osmium tetroxide (1%, 1 h) and stained en bloc with uranyl 
acetate (2%; 30 min), followed by dehydration in graded ethanol solutions and infiltration with LR white resin 
(ProSciTech). Polymerised resin blocks were sectioned on an ultramicrotome (Leica, UC7). Semi-thin sections 
(750 nM) were stained with a mixture of 1% methylene blue, 0.6% sodium bicarbonate and 40% glycerol, and 
were used for orientation. Ultra-thin sections (70–80 nm) were dried on coated copper grids, stained with uranyl 
acetate (7%; 8 min) and Reynolds lead citrate48 (3 min) and imaged using a Philips CM10 TEM equipped with an 
Olympus SIS Megaview G2 digital camera.

Cisterna magna injection of tracers.  Cerebrospinal fluid flow from the subarachnoid space into the spi-
nal cord central grey matter was studied in 10 Sprague Dawley rats using small protein tracers, (horseradish 
peroxidase [HRP-Type VI A, Sigma Aldrich, 10% solution] and ovalbumin-Alexa Fluor 647 conjugate [OAF; 
Life Technologies; 20 mg/mL]) or gold nanoparticles (5 nm spheres; 1 mg/mL, or gold nanorods 10 × 20 nm; 
NanoPartz, 35 µg/mL). Tracers were suspended in sterile saline (0.9% NaCl) and injected in the cisterna magna 
using a 10 µL Hamilton syringe with a 30-gauge needle, held in a stereotactic frame, and advanced through the 
exposed atlanto-occipital membrane. A micropump (Ultramicropump III with Micro4 controller, WPI) was used 
to infuse 10 µL of HRP (10% solution) or gold nanoparticles (1 mg/mL) at a rate of 33 nL/s. The needle was left 
in place for 3 min after the injection to prevent tracer or CSF loss. Five minutes after the end of the injection, rats 
were perfused and spinal cord tissue processed as above. To allow for fixation of gold within the spinal cord tis-
sue during aldehyde perfusion, COOH-capped spherical gold nanoparticles were conjugated to lysine (L-lysine, 
Sigma Aldrich) at a molar ratio of 1:1, using the reaction with N-hydroxysulfosuccinimide (Sulfo-NHS) enhanced 
by 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide chloride (EDC). The heavy metal stains, osmium tetroxide 
and uranyl acetate, typically used in preparation of tissue samples for electron microscopy, can form a fine pre-
cipitate and were therefore not used during sample preparation, to ensure particles were easily identified and not 
confused with precipitating stains. For visualisation of nanoparticles, ultra-thin sections were imaged without or 
with minimal uranyl acetate and lead citrate staining (8 and 3 min respectively). For visualisation of HRP, tissue 
was embedded in 1.5% agarose and 50 µM sections were cut on a vibratome. After reaction with diaminobenzi-
dine (DAB, 0.1%) and hydrogen peroxide (H2O2, 0.02%) in Tris-PBS, pH 7.4 for 15 min, sections were washed and 
mounted on glass slides with glycerol, cover-slipped and imaged using a Zeiss Axio Imager in brightfield mode. 
Some sections were further processed for electron microscopy as described above.

Confocal microscopy.  For visualisation of ovalbumin-Alexa Fluor 647 sections were imaged on a confocal 
laser scanning microscope (LSM880, Zeiss). To determine the location of tracer with regards to the walls of blood 
vessels, sections were incubated with Rat Endothelial Cell Antibody (1:100; RECA-1; AB9774 Abcam, Cambridge, 
United Kingdom) followed by a secondary antibody (1:400; anti-mouse IgG Alexa Fluor 488; Molecular Probes, 
Life Technologies, New York, USA) and with actin α-smooth muscle antibody (1:400; SMA-Cy3; Sigma-Aldrich, 
St. Louis, Montana). Images were acquired in a z-stack scan mode, with interval of 0.5 μm, as a 4 line average, 
pixel dwell 0.76 μs, using a plan-apochromat 40x/1.3 oil DIC UV-IR M27 objective. Image dimensions were x: 
1024, y: 1024, z: 36 μm; 8-bit.

Image processing.  3D projections were generated from raw data, using the transparency rendering mode in 
Carl Zeiss Zen 2012 software (black edition, version 8).

Immunogold detection of horseradish peroxidase.  Immunogold labelling of HRP was carried out on 
ultra-thin (70 - 80 nm) transverse spinal cord sections using a standard protocol with modifications49. Sections 
were dried on coated nickel grids, incubated with a primary antibody to HRP (1:25; mouse monoclonal anti-HRP, 
Abcam) followed by a secondary antibody conjugated to 10 nm gold particles (1:250; BBI goat anti-mouse IgG; 
H&L; EM grade; 10 nm; ProSciTech). Negative controls included sections where the primary antibody was omit-
ted, as well as spinal cord sections from an animal that did not receive HRP injection.

Data availability.  All data generated or analysed during this study are available from the corresponding 
author on reasonable request.
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