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Abstract

In the Himalayas, a number of secondary contact zones have been described for vi-
cariant vertebrate taxa. However, analyses of genetic divergence and admixture are
missing for most of these examples. In this study, we provide a population genetic
analysis for the coal tit (Periparus ater) hybrid zone in Nepal. Intermediate phenotypes
between the distinctive western “spot-winged tit” (P. a. melanolophus) and Eastern
Himalayan coal tits (P. a. aemodius) occur across a narrow range of <100 km in west-
ern Nepal. As a peculiarity, another distinctive cinnamon-bellied form is known from
a single population so far. Genetic admixture of western and eastern mitochondrial
lineages was restricted to the narrow zone of phenotypically intermediate popula-
tions. The cline width was estimated 46 km only with a center close to the population
of the cinnamon-bellied phenotype. In contrast, allelic introgression of microsatellite
loci was asymmetrical from eastern P. a. aemodius into far western populations of
phenotypic P. a. melanolophus but not vice versa. Accordingly, the microsatellite cline

was about 3.7 times wider than the mitochondrial one.
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Mediterranean islands like Corsica, Sardinia, or the Balearic Islands
(Brambilla et al., 2008; Brito, 2007; Nespoli et al., 2021; Pellegrino

Phylogeographic patterns of many Holarctic terrestrial vertebrate
species are considered a legacy of Pleistocene range fragmentation
and divergence of genetic lineages in glacial refuges (Hewitt, 2000,
2004, 2011; Lovette, 2005; Schmitt, 2007; Stewart et al., 2010). In
southern Europe, for example, distinct mitochondrial lineages within
several avian species groups can be traced back to major refugia on

the Iberian, the Italian and the Balkan Peninsula as well as on some

etal., 2014; Pons et al., 2016; Tritsch et al., 2018; Zuccon et al., 2020).
Along with Holocene range expansion from those source areas close
relatives with divergent gene pools have come into secondary con-
tact in various zones of overlap of different extent (Aliabadian et al.,
2005; Avise & Walker, 1998; Haffer, 1989). Patterns of genetic vari-
ation (e.g., divergence and gene flow among parental taxa, local ad-

mixture, etc.) can be diverse and depend, for example, on the spatial
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extent of range overlap, local abundances of parental taxa and hy-
brids as well as on strength and directionality of selective pressures
acting on phenotypical or behavioral traits and on neutral and adap-
tive genetic variation (Curry, 2015; Jiggins & Mallet, 2000; Joseph,
2018). Generally, models for a clinal hybrid zone distinguish between
(i) bimodal distributions of parental phenotypes and genotypes dom-
inating due to strong selection against hybrids (Figure 1a) and (ii) uni-
modal distributions of phenotypes with hybrids dominating because
of selective advantages of hybrids (Figure 1b). However, it must be
stressed that distributions can strongly differ for distinct phenotypic
traits, behavioral traits or different genetic markers in the same hy-
brid zone (Gay et al., 2007; Shipilina et al., 2017). Unimodal distribu-
tions of phenotypes are characteristic for wide areas of gene flow
and phenotypic intergradation between subspecific taxa (e.g., from
European birds and mammals in Hermansen et al., 2011; Pentzold
et al., 2013; Smadja et al., 2003; Tritsch et al., 2018). A rare pattern
is that of a mosaic hybrid zone with patchy distributions of paren-
tal taxa and hybrids in different local communities (Figure 1c), such
as in the North African area of overlap between the house spar-
row, Passer domesticus, and the Spanish sparrow, P. hispaniolensis
(Belkacem et al., 2016; Packert et al., 2019).

In many terrestrial vertebrates of Eurasia, such contact zones
typically correspond to biogeographic barriers such as large moun-
tain chains, for example, the Pyrenees (birds: Helbig et al., 2001; Pons
et al., 2019; reptiles: Mila et al., 2013; Poschel et al., 2018), the Alps
(birds: Hermansen et al., 2011; toads: Arntzen et al., 2017; rodents:
Giménez et al., 2017; Sutter et al., 2013), the Carpathians (newts:
Babik et al., 2003; Gherghel et al., 2012; toads: Fijarczyk et al., 2011;
Hofman et al., 2007), and the Urals (birds: Shipilina et al., 2017).
Contact zones between northern and southern lineages can occur in
more than one mountain range, such as the capercaillie (Tetrao uro-
gallus) in the Pyrenees, the Dinaric mountains and the Carpathians
(Bajc et al., 2011; Segelbacher & Piertney, 2007). As the largest
Eurasian mountain system with the highest peaks on Earth the
Himalayas are a prominent global biodiversity hotspot (Marchese,
2015; Martens, 2015; Myers, 2003; Myers et al., 2000). Its local and
regional faunal and floral assemblages have long and complex evolu-
tionary and biogeographic histories including both in-situ speciation
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and immigration from adjacent regions (Favre et al., 2015; Martens,
2015; Mosbrugger et al., 2018; Packert et al., 2020). While past di-
versification has been subject to a great number of studies, extant
patterns of distribution and gene flow in secondary range overlap for
the Himalayan fauna have been less intensely studied to date.
Along the Himalayan mountain chain eastwest vicariance is
typically found for many avian taxon pairs regardless of their tax-
onomic rank at the species or subspecies level (Martens, 2015;
Martens et al., 2011; Packert et al., 2011, 2015). These Himalayan
vicariants typically (i) diverged during the early or mid-Pleistocene
and (ii) meet in narrow zones of range overlap in secondary contact
(e.g., in Figure 2). Despite a considerable knowledge gain on the
genetic diversification of Himalayan birds there is still a great de-
ficiency of field data and therefore the extent of putative zones of
overlap remain poorly described to date for many Himalayan taxon
pairs. Several areas of secondary overlap and gene flow among vi-
cariant vertebrate taxa were described from the western Himalayas
(Figure 2; Maheshwari et al., 2013). For Nepal, Martens and Eck
(1995) defined four subspecies transition areas, where western
and eastern vicariants of the same species co-occur in secondary
contact. Across the Dhaulagiri transition zone (Figure S1, Martens
& Eck, 1995) extends a narrow belt of putative hybrid populations
between two subspecies of the the coal tit: the western dark-bellied
and red-flanked form P. a. melanolophus (Figure 3, phenotype 1) and
the eastern pale-bellied form P. a. aemodius (Figure 3, phenotype
4). These intermediate phenotypes were already described in the
1970s based on morphology and territorial songs (Diesselhorst &
Martens, 1972; Martens, 1975). At its easternmost range margins on
the southwestern slopes of the Dhaulagiri massif (Parbat and Dolpa
Districts), local aberrant plumage color variants of P. a. melanol-
ophus (so called “spot-winged-type hybrids”; Harrap & Quinn, 1996)
were suggested to have originated from hybridization with eastern
pale-bellied coal tit populations (Diesselhorst & Martens, 1972). As
a peculiarity of the hybrid zone, another very distinctive pheno-
type occurs only locally: from Dhorpatan Valley (Baglung District) a
cinnamon-bellied form was documented that occurs in local syntopy
with the latter “spot-winged-type hybrids” (Figure 3, phenotype 2;
Diesselhorst & Martens, 1972; Eck & Martens, 2006; Martens, 1975;

(c) @ (d)

FIGURE 1 Hybrid zone models,
modified and extended from Curry (2015),
parental forms in black and white, hybrids
in gray. (a) clinal zone, bimodal (e.g.,
crows, great tits); (b) clinal zone, unimodal
(hybrids dominate); (c) mosaic hybrid

zone (e.g., sparrows in North Africa);

(d) microallopatry (e.g., coal tits in the
Himalayas, this study)
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FIGURE 2 Areas of secondary overlap in the Western
Himalayas for three passerine taxon pairs, each represented by
two distinct genetic mtDNA lineages (western = yellow; eastern
=red). (a) orange bullfinch, Pyrrhula aurantiaca, and red-headed
bullfinch, P. erythrocephala (data from eBird, 2020; Topfer et al.,
2011; Wunderlich, 1992a, 1992b), local sympatry: orange circles);
(b) white-throated bushtit, Aegithalos niveogularis, and black-browed
tit, Ae. iouschistos (data from eBird, 2020; Packert et al., 2010;
Waunderlich, 1989, 1991); (c) greenish warbler, P. trochiloides, pie
charts show local frequencies of haplotypes from the eastern

(P. t. trochiloides: red) and western (P. t. ludlowi: yellow) mtDNA
lineage; data modified from Irwin et al. (2001) and Irwin et al.
(2005); distribution shape files from BirdLife International (2020);
Shape file for P. trochiloides modified according to Irwin et al. (2001)
and Irwin et al. (2005); maps produced with QGIS v. 3.10

Martens & Eck, 1995). A suspected hybrid origin of these cinnamon-
bellied birds received further support from cross-fostering experi-
ments by Lohrl (1994) whose F1 and F2 hybrids P. a. melanolophus
x P. a. ater showed that aberrant phenotype, too. In western Nepal,
pale-bellied populations from the upper Kali Gandaki Valley (Figure 3,
phenotype 3) were classified as “coal-type hybrids” by Harrap and
Quinn (1996: Figure 63.2) but later described as a distinct subspecies

P. a. martensi by Eck (1998) based on morphological differences from

P. a. aemodius. From the upper Myagdi Khola Martens and Eck (1995)
described local intermediate phenotypes between P. a. martensi and
P. a. melanolophus and first genetic analyses by Martens et al. (2006)
confirmed that specimes from this population disposed of either of
two separate parental mitochondrial lineages. However, their sam-
pling included only four putative hybrid individuals.

Each of those diverse local coal tit phenotypes is restricted to
narrow and isolated breeding areas in separate steep mountain val-
leys of central Himalayan river catchments (Figure 3; Diesselhorst &
Martens, 1972; Martens, 1975; Martens & Eck, 1995). Thus, accord-
ing to phenotypical variation the spatial pattern in the Himalayan
coal tit hybrid zone is one of microallopatry (Figure 1d; according to
a geographical concept instead of an ecological concept; see review
by Fitzpatrick et al., 2008) comparable to that of other montane taxa
like Himalayan ground beetles (genus Ethira; Schmidt et al., 2012)
or Buthus scorpions of the Atlas Mountains in North Africa (Habel
etal., 2012).

With this study, we describe patterns of genetic divergence and
admixture of Himalayan coal tit populations across a wide transect
from the Hindukush in the West to eastern Nepal in the East. We
expect (i) strong genetic admixture of phenotypically intermediate
populations in western Nepal (Figure 3, blue marked populations)
and (ii) genetic distinctiveness of putative parental populations at
both ends of the phenotypic cline, that is, P. a. melanolophus in the
Western Himalayas and its extensions to the Hindukush and P. a. ae-
modius in eastern Nepal. The study material is largely based on his-
torical samplings from natural history museums collected during the
1960s and the 1970s emphasizing the importance of collections as
biological archives (Kuhn et al., 2013; Mecke et al., 2016; Meineke
et al., 2018; Rocha et al., 2014; Winston, 2007).

2 | MATERIALS AND METHODS
2.1 | Sampling and DNA extraction

We analyzed 70 coal tit samples from 20 localities across a transect
from Afghanistan in the West (P. a. melanolophus) to eastern Nepal
in the East (P. a. aemodius; Figure 3; Table 1). Material from Nepal
was mainly collected by J.M. during five expeditions in 1969/1970
and 2004 and most specimens analyzed are housed at Zoological
Research Museum Koenig Bonn (ZFMK) and Naturkundemuseum
Erfurt (see Table S1). Our sampling included the following pheno-
typically distinct populations (morphological diagnosis in Martens
& Eck, 1995): P. a. melanolophus (n = 20), P. a. martensi (n = 10),
P. a. aemodius (n = 11), cinnamon-bellied hybrids (n = 6), pale-bellied
hybrids (n = 7) spot-winged type hybrids (n = 16). We used DNA
extracts from previous studies (e.g., Pentzold et al., 2013) and newly
extracted DNA from additional frozen blood and muscle tissue
samples using innuPREP DNA Mini Kit™ (Analytik Jena, Jena, D).
Further additional toe pad samples from historical specimens col-
lected during the 1970s were processed in a separate clean room

facility to avoid cross contamination with DNA from fresh samples
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FIGURE 3 The Himalayan contact zone of western and eastern subspecific taxa of the coal tit. Parental taxa: Periparus ater melanolophus
(phenotype 1, population i) and P. a. aemodius (phenotype 4, population vi); pie charts show local frequencies of CR haplotypes from the
western (yellow; n = 9) and eastern (red; n = 8) lineages (compare Figure 4); putative hybrid populations with intermediate phenotypes

exist in a narrow area of overlap in Central Nepal (from west to east): spot-winged-type hybrids (population ii), cinnamon-bellied hybrids
(phenotype 2, population iii, occurrence at Dhorpatan in local sympatry with the spot-winged-type), pale-bellied hybrids (population iv, at
Myagdi Khola) and P. a. martensi (phenotype 3, population v); symbolization: brightly-colored dots = own samples, pale dots = records by
Martens and Eck (1995), triangles = data from online databases (sound recordings from xeno-canto, 2017; photographs revisited at Oriental
Bird Club, 2017), red-shaded area = distribution according to BirdLife International (2021); drawings by K. Rehbinder

(for specification of lab protocols in clean room facilities see Tritsch
et al., 2018). DNA from toe pads was extracted using sheadex™ fo-
rensic Kit (LGC, Teddington, UK) with an extraction volume of 75 pl
elution buffer (see Tritsch et al., 2018).

2.2 | Mitochondrial DNA

We amplified a fragment covering the first domain and parts of the
second domain of the mitochondrial control region (CR) from frozen
tissue samples using primers L16700 (5'-ATCATAAATTCTCGCCG
GGACTCT-3') and H636 (5'-GAGATGAGGAGTATTCAACCGAC-3';
both from Kvist et al., 2003) following lab protocols of Pentzold
et al. (2013). For amplification of two shorter fragments with
degraded DNA from toe pad extracts we used OligoAnalyzer
v. 1.0.2 for design of two internal primers PeripCR_183f
(3'-ACGCCCAAGAGATAATGTTCG-5') combined with H636 and
PeripCR_451r (3-AGGTCCTCTGGCTTGGG-5') combined with
L16700. In order to determine the optimum annealing temperature
for each primer pair we performed gradient PCRs. According to this
a-priori evaluation, the PCR profile for amplification of the short
fragments was (i) denaturation at 94°C for 5 min followed by 30 cy-
cles of (ii) denaturation at 94°C for 45 s, (iii) annealing at 53°C for
45 s, and (iv) elongation at 72°C for 1 min with final elongation phase
at 72°C for 8 min. PCRs for DNA extracts from toe pad samples

were prepared in the clean-room facility (for protocols see Tritsch

et al., 2018). PCR products were purified in an enzymatic reaction
using ExoSAPit and sequenced on an ABI 3130xl capillary sequencer
(Applied Biosystems™).

We aligned CR sequences using ClustalW as implemented in
MEGA 5.1 (Tamura et al., 2011) and checked chromatograms for po-
tential sequencing errors such as double peaks with Chromas lite
(Technelysium Pty Ltd). For comparison we added CR sequences
from Chinese populations (P. a. eckodedicatus) and Far East Russian
populations (P. a. ater) from Pentzold et al. (2013). For Genbank ac-
cession numbers of newly generated sequences and those inferred
from previous studies, see Tables S1 and S2. Because amplification
of the first CR fragment (primers L16700 + PeripCR_451r) per-
formed poorly for a considerable number of toe pad samples, we
used only the second 437 bp long fragment for analysis (inferred
from amplification with primers PeripCR_183f and H636). To en-
sure that all sequences had the same length, we had to cut down the
alignment to 324 base pairs. We used PopArt v1.7 (Leigh & Bryant,
2015) for construction of a minimum-spanning haplotype network
(Bandelt et al., 1999) of CR sequences.

Furthermore, we reconstructed a time-calibrated phylogeny
using BEAST v.1.8.1 (Drummond et al., 2012). For hierarchical
outgroup rooting, we used one sequence of the yellow-bellied tit,
Pardaliparus venustulus (inferred from a mitochondrial genome:
NC_026701), and another sequence of the blue tit, Cyanistes caeru-
leus (JF828052) as a more distantly related relative. The best-fit
model estimated with MrModeltest v.2 (Nylander, 2004) for our
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data set was the K80 + G model with equal base frequencies (ac-
cording to the Akaike Information Criterion, AlCc). According to
these model estimates, we applied normal priors to kappa (mean:
2.2465, SD: 0.2) and to the gamma-shape parameter (mean: 0.3027,
SD: 0.03). For inference of divergence times estimates, we applied
a molecular clock calibration using mean substitution rates for
different domains of the CR estimated by Lerner et al. (2011) for
Hawaiian honeycreepers (Drepanidinae). Their rate estimates for
the CR ranged between 0.011 and 0.029 substitutions per site per
lineage per Million years, so we applied a mean normal prior of 0.2
and a standard deviation of 0.2 to adjust the 95% Cl of the rate prior
to that range. We ran BEAST for 50 million generations (with trees
sampled every 5000 generation) under the uncorrelated lognormal
clock model with the “auto-optimize” option activated and a Yule
prior applied to the trees. We checked for convergence of MCMC
chains comparing ESS values for all model parameters using Tracer v.
1.4 (all ESS values > 4.000; Rambaut & Drummond, 2007). We used
TreeAnnotator for reconstruction of a consensus tree with a burnin
of 30% applied and we used FigTree v. 1.4.2 (Rambaut, 2009) for
editing of the Bayesian tree.

For each population we calculated diversity estimates like num-
ber of haplotypes (h), haplotype diversity (Hd), nucleotide diversity
(n), and Tajima's D with DNASP v. 5.10.01 (Librado & Rozas, 2009).
Divergence between populations was estimated by calculating pair-
wise Fg; values using ARLEQUIN 3.5.1.3 (Excoffier et al., 2005) with
20,000 permutations to test for significance. All p-values from mul-
tiple comparisons were adjusted using the Bonferroni correction to

reestimate the significance level (Rice, 1989).

2.3 | Microsatellite genotyping

We performed pilot analyses using a set of 13 microsatellite loci de-
veloped for European coal tit populations by Tritsch et al. (2018).
We designed a new multiplex microsatellite protocol based on frag-
ment length variation evaluated in the previous study (Tritsch et al.,
2018). To maximize spacing between markers with overlapping fluo-
rescence spectra (Guichoux et al., 2011), we divided the primer pairs
into two separate multiplex sets (Table S3). For multiplex PCR, we
used the Type-it® Microsatellite PCR Kit (Qiagen) following the man-
ufacturer's instructions. For each of the two multiplex approaches
a primer premix was prepared containing 10 ul primer solution
(10 ng/ul) for each primer filled up to a total volume of 500 pl. For
each sample, a total multiplex reaction volume of 13.5 ul contained
6.25 ul Master-Mix (Type-it Kit), 1.25 ul primer mix, 4 ul ddH,0O, and
2 ul DNA. The thermo-cycling protocol for both multiplex sets was
(i) denaturation at 95°C for 5 min followed by 30 cycles for fresh
DNA extracts (35 cycles for toe pad DNA extracts) with (ii) dena-
turation at 95°C for 30 s, (i) annealing at 56°C for 1 min 30 s, and
(iv) elongation at 72°C for 45 s and a final elongation phase at 60°C
for 30 min. Fragment length analysis was performed on a 16-column
ABI 3130xl capillary sequencer (Applied Biosystems™) for total vol-
umes of 10 pl containing 1 pl diluted muliplex PCR products (1:10 for
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toe pad samples and 1:25 for frozen tissue/blood samples), 8.5 ul
Hi-Di™ Formamid (Applied Biosystems™), 0.25 pl GeneScan™-600
LIz® dye size standard, and 0.25 ul ddH,0.

In the few cases, when the multiplex PCR failed for a single locus
(in most cases the longer fragments failed to amplify) we repeated
the microsatellite genotyping for that locus in a separate PCR to ac-
count for possible allelic dropout that can typically occur with de-
graded DNA from historical samples (Sefc et al., 2003). Results were
significantly improved for most samples and loci except three loci
Pmaé69, PmaC25, and PmaTGAN33 that produced missing or ambigu-
ous signal for a larger number of samples. Due to this data deficiency
and because these loci were originally designed for great tit (Parus
major) populations (Kawano, 2003; Saladin et al., 2003) these three
loci were discarded from further analyses.

Alleles were scored manually using Peak Scanner™ Software
Version 1.0 (Applied Biosystems™). We converted raw allele size
data from Excel sheets to generate input files for various population
genetic software packages using CONVERT v. 1.31 (Glaubitz, 2004)
and PGDSPIDER v. 2.1.1.0 (Lischer & Excoffier, 2012). A data pack-
age including microsatellite allele lengths and the CR alignment was
deposited at Dryad Digital Repository and is available under https://
doi.org/10.5061/dryad.0Ogb5mkm28.

We used MICROCHECKER v. 2.2.3 (van Oosterhout et al., 2004)
to test for the presence of null alleles (Falush et al., 2007) and pos-
sible allele scoring errors due to the presence of stutter bands. We
tested for locus specific deviations from Hardy Weinberg expecta-
tions (HWE) and for linkage bewteen loci with ARLEQUIN v. 3.5.1.3.
Deviations from HWE and presence of null alleles were predomi-
nately found at loci Parate06 and Parate08 in three and five popu-
lations, respectively (Table S4). For these two loci similar deviations
from HWE were found in a previous study on the European zone of
gene flow and introgression of the coal tit (Tritsch et al., 2018) sug-
gesting that these loci should be treated precautiously. Therefore,
we performed most downstream analysis twice, for both the en-
tire set of 10 loci and for a reduced set of 8 loci under exclusion of
Parate06 and Parate08. Quantitative diversity and divergence esti-
mates were calculated for eight loci only (ParateO6 and Parate08 ex-
cluded). Further deviations from HWE and null alleles appeared only
in the populations of the spot-winged-type hybrids and P. a. melanol-
ophus for individual loci. In these western populations as well as
in the eastern population of P. a. aemodius, two and three pairs of
loci, respectively, were also found in pairwise linkage disequilibrium
(Table S4). It should be noted that these deviations from the HWE
might be caused by the genetic structure of the populations as well
as by the small sample size.

Due to low sample sizes for local populations, we pooled our
samplings according to the distinct phenotypes in the zone of
overlap and compared six metapopulations from west to east
(Figure 3, populations i-vi): (1) P. a. melanolophus from Afghanistan
and mid-western Nepal, (2) spot-winged-type hybrids from Dolpa
and Baglung Districts (locally sympatric with cinnamon-bellied hy-
brids), (3) cinnamon-bellied hybrids from Dhorpatan, (4) pale-bellied
hybrids from Myagdi District, (5) P. a. martensi from Mustang and
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FIGURE 4 Genetic differentiation of coal tits across and beyond the Himalayan contact zone. (a) minimum-spanning haplotype network

of mtDNA CR sequences (324 bp), including mitochondrial lineages from

the Himalayas (western = yellow; eastern = red) and adjacent

lineages from China (blue) and from the Russian Far East (white; including sequence data from Pentzold et al., 2013); (b) PCA of microsatellite
data (all ten loci; x-axis = PC1, y-axis = PC2; boxes = centroids for the three groups); first three principal components each explain 4.58%,
4.03% and 3.66% of variation (Eigenvalues shown in square lower left); drawings by K. Rehbinder

Parbat Districts, (6) P. a. aemodius from Rasuwa and Sindhupalchok
Districts. We calculated locus specific observed and expected het-
erozygosities (Ho, HE), mean allele numbers per locus, mean allelic
richness (AR) and inbreeding coefficients (F ) for each sample popu-
lation with the software FSTAT v. 2.9.3.2 (Goudet, 1995); 1200 per-
mutations were performed in a randomization test for significance
of these values. Divergence between populations was estimated by
calculating pairwise F¢; values using ARLEQUIN 3.5.1.3 with 20,000
permutations to test for significance. All p-values from multiple
comparisons were adjusted using the Bonferroni correction to re-
estimate the significance level (Rice, 1989).

2.4 | Inference of population structure

Bayesian inference of population structure was performed using the
software package STRUCTURE v. 2.3.3. (Falush et al., 2003; Pritchard
et al., 2000). STRUCTURE runs were performed for both the entire
set of 10 loci and the reduced set of 8 loci under (i) the a priori as-
sumption of genetic admixture and correlated allele frequencies and
(ii) a LOCPRIOR model allows for classification of the individuals into
groups, which are given to the algorithm as an a priori parameter
(Hubisz et al., 2009). All STRUCTURE runs were conducted for 1-10
putative genetic clusters (K) with 10 replicates for each value of K.
We used a MCMC chain length of 10° repetitions with a burn-in pe-

riod of 25,000 throughout all model runs. For further processing of

the output, we used STRUCTURE HARVESTER (Earl & vonHoldt,
2012), results were visualized using DISTRUCT (Rosenberg, 2004).
In order to select the most likely number of genetic clusters (K), we
followed the approach by Evanno et al. (2005). As an estimate for
the extent of genetic admixture in different populations we adhered
to the approach by Randi (2008) and used a threshold of g > 0.8 for
individual assignment probability to one cluster. Individuals with in-
ferred q scores between 0.2 < q < 0.8 as well as individuals showing
mitonuclear discordance (cluster assignment according to mito-
chondrial CR haplotype and g score is contradictory) are considered
hybrids.

In addition to STRUCTURE analyses, we examined our microsat-
ellite data with Principal Component Analysis (PCA) using the R pack-
age adegenet (Jombart, 2008; Jombart & Ahmed, 2011) executed in
R version 3.2.3 (R Core Team, 2015) for three groups: (1) western
lineage: P. a. melanolophus from Afghanistan and mid-western Nepal,
(2) eastern lineage: P. a. aemodius and P. a. martensi, and (3) admixed:
all phenotypic hybrids.

2.5 | Geographic cline analysis

To explore the extent of the genetic cline in the Himalayas,
maximum-likelihood cline models were generated in the R package
HZAR (Derryberry et al., 2014). We applied the example script “Data

S1” with modifications according to Stuckas et al. (2017) executed
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in R version 3.4.1 (R Core Team, 2020) in the RStudio environment
(RStudio Team, 2020). In HZAR, 15 model variants can be fitted,
varying in the combination of three possible scaling parameters (as-
signment probability at the transect ends p ;,and p,_,, fixed at 0 and
1, set to estimated values or fit to observed values) and five possible
tail fittings (none fitted, left only, right only, mirror tails, and both
tails estimated separately). Previous applications of HZAR for cline
analyses focused, for example, on hybrid zones of newts (Tominaga
et al., 2018), toads (Arntzen et al., 2017; van Riemsdijk et al., 2019)
and butterflies (Capblancq et al., 2020). To collapse sample localities
of our study in the one-dimensional axis, we defined the cinnamon-
bellied population at Dhorpatan as the tentative center of the cline
and estimated great circle geographical distances of each population
from Dhorpatan. For localities west of Dhorpatan distances were
expressed as negative values, for those east of Dhorpatan as posi-
tive values (Table S1). These values were transferred to positive val-
ues on a theoretical transect of 1887 km length starting at Peiwar,
Afghanistan in the West and ending in Nepal at Ghunsa, Taplejung
District, in the East. Clines were estimated for CR haplotype fre-
quencies (pooled populations see Table S1) and the g score for each
individual as inferred from our STRUCTURE analysis with 10 micro-
satellite loci for K = 2. The best-fit model each was selected accord-
ing to corrected AICc (Akaike, 2011) scores including a comparison
against a null model. We extracted maximum-likelihood width and
center of the cline as well as the two log-likelihood confidence inter-
vals for both. Parameters were considered statistically significant to

each other if the confidence intervals did not overlap.
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3 | RESULTS
A total of 30 CR haplotypes was found in the Asian coal tit data set.
The 324-bp long alignment contained 37 variable sites of which
21 were parsimony-informative. The minimum-spanning network
was divided into four haplotype clusters (Figure 4a) corresponding
to four well supported clades in the time-calibrated Bayesian tree
(Figure 5). Three outer haplotype clusters from the Eastern and
Western Himalayas and from China were separated from the central
haplotype cluser of the network (Far East Russia and Central Asia)
at equal distances (minimum of five substitutions; Figure 4a). The
central haplotype of the starlike Western Himalayan cluster (melal)
was shared by 30 individuals (Figure 4a) and was the dominating
haplotype in P. a. melanolophus populations from Afghanistan and
from Western Nepal as well as in the cinnamon-bellied hybrid popu-
lation from Dhorpatan (Figure 3, populations i, ii, and iii). The most
common haplotype of the Eastern Himalayan cluster (aem1) was
shared by 18 individuals (Figure 4a) and was the dominant haplo-
type in populations of P. a. martensi and of pale-bellied hybrids (both
Myagdi District, Nepal; Figure 3, populations iv and v). According to
our time calibration, the earliest split occurred between the Eastern
Himalayan mitochondrial lineage and the remaining three Asian line-
ages during the mid-Pleistocene at about 1.5 Ma (95% highest pos-
terior density interval [HPDI] = [0.6-2.7 Ma]; Figure 5).

Local mitochondrial gene pools in Afghanistan and mid-western
Nepal (Humla District) comprised only haplotypes of the western

P. a. melanolophus lineage (Figure 3, population i) and local gene
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topology of each of the four Asian clades; . . . . ,
most values < 0.9) 2.0 15 1.0 05 0.0 Ma
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pools in central and eastern Nepal (Mustang District, Parbat District,
Rasuwa District, Sindhupalchok District and Taplejung District) com-
prised only haplotypes of the eastern P. a. aemodius lineage (Figure 3,
populations v [P. a. martensi] and vi [P. a. aemodius]). Local admix-
ture of the two haplotype lineages was found across all phenotypic
hybrid populations from western Nepal Myagdi District (Figure 3,
populations ii, iii, iv). Accordingly, nucleotide diversity was at least
two times higher in admixed populations from western Nepal as
compared to populations at the western and eastern ends of the
Himalayan transect (Table 2). Haplotype diversity was highest in
P. a. aemodius and rather low in allopatric P. a. melanolophus (low-
est Hd for pale-bellied hybrids; Table 2). Tajima's D was significantly
negative for two populations only: Allopatric P. a. melanolophus
(Afghanistan and mid-western Nepal) and pale-bellied hybrids from
Myagdi District.

Microsatellite data showed a less clear distinction of the two
genetic clusters than mtDNA and suggested a broader area of ad-
mixture between western P. a. melanolophus and eastern P. a. aemo-
dius. PCA for 10 loci distinguished two separate clusters of western
and eastern parental lineages with hybrid populations from west-
ern Nepal showing a greater overlap with the western P. a. melanol-
ophus cluster (Figure 4b). As to be expected F¢; values from mtDNA
and microsatellite data were highest and significant for pairwise
comparisons among westernmost and easternmost populations of
P. a. melanolophus and P. a. aemodius, as well as among spot-winged-
type hybrids and P. a. aemodius (Table 3). For the mtDNA dataset F¢
values for pairwise comparisons of P. a. melanolophus and P. a. mar-
tensi, P. a. melanolophus and pale-bellied hybrids, spot-winged-type
hybrids and P. a. martensi, spot-winged-type hybrids and pale-bellied
hybrids as well as cinnamon-bellied hybrids and P. a. aemodius were
significant, too (Table 3). The western P. a. melanolophus shows as
well as the populations of P. a. martensi and the spot-winged-type
hybrids significant F¢ values (Table 2).

The results from STRUCTURE
Figure 6. Under both the admixture-frequency-correlated model and
the LOCPRIOR model, Evanno's AK separated two clusters (K = 2) as
the most plausible population structure. Admixture between these

analysis are shown in

two groups was generally high in most populations. For assignment
probabilities of g < 0.8 eastern P. a. aemodius was the only unad-
mixed population, whereas all populations west of Bagmati Pradesh
(Rasuwa District, westernmost range limit of P. a. aemodius) showed
signs of admixture between the two genetic clusters (Figure 6; the
results were similar for the separate run based on eight loci; not
shown). In fact, only a minority of individuals in western Nepal could
be clearly assigned to the eastern lineage (4 out of 10 P. a. martensi,
2 out of 10 pale-bellied hybrids, 1 out of 6 cinnamon-bellied hybrids)
or to the western lineage (5 out of 16 spot-winged-type hybrids).
Even phenotypical P. a. melanolophus from Afghanistan (who rep-
resented an unadmixed mtDNA gene pool of the western lineage)
showed evidence of strong introgression of eastern P. a. aemodius
alleles for more than half of the sampling (7 out of 13; Figure 6).
Both molecular data sets showed a clinal variation across the hy-
brid zone (Figure 7; Table 4), the null model had higher AICc values

than those of all other cline models in the CR data set and than most
cline models in the microsatellite data set (except three models).
The best-fit model for the mitochondrial CR data was model 1 from
Derryberry et al. (2014) with p_, and p,_,. fixed to 0 and 1, respec-
tively, at the tails of the cline (log likelihood = —0.740). For microsat-
ellite data the best-fit model was model 11 with observed p,; and
Prnax Of 0.048 and 0.950, respectively (log likelihood = -8.220), re-
flecting a strong differentiation between westernmost P. a. melanol-
ophus and easternmost P. a. aemodius anyway. Nevertheless, cline
parameters differed significantly between the two data sets. The
mean cline width estimate was 3.7 times larger for microsatellite
data as compared to mitochondrial CR data (172 vs. 46 km). The cen-
ter of the cline was estimated at 11 km east of Dhorpatan based on
the CR data set and at 8 km east of Dhorpatan based on the micro-

satellite data set (for model and cline parameters see Table 4).

4 | DISCUSSION

4.1 | Location and characteristic of the Himalayan
coal tit hybrid zone

Despite the outstanding species richness of the Himalayan biodi-
versity hotspot, phylogeographical patterns of the regional fauna
are rather unexplored to date (review in Martens, 2015). So far, pat-
terns of divergence and gene flow across zones of secondary overlap
and contact in the Himalayas have been analyzed for a few coni-
fer species (Poudel et al., 2012; Ryan et al., 2018) and for only two
vertebrate species: wolves, Canis lupus (Werhahn et al., 2020) and
greenish warblers, Phylloscopus trochiloides (Figure 2c; Alcaide et al.,
2014).

The coal tit hybrid zone in western Nepal roughly corresponds to
the Dhaulagiri transition zone of avian subspecies (Martens & Eck,
1995; Figure S1), where ranges of vicariant sister species may over-
lap, for example, those of Himalayan bush tits, Aegithalos (Figure 2b).
While parental taxa and hybrids cooccur over wide areas of sec-
ondary overlap in other tit and chickadee taxa (e.g., great tits, Parus
major, in the Middle Amur Valley: Kvist & Rytkdnen, 2006; Fedorov
et al., 2009; Figure 1a), the situation is different in Himalayan coal
tits: The P. ater hybrid zone in Nepal is characterized by a chain of
phenotypically diverse populations (Figure 1d) across an east-west
distance of roughly 100 km width (from the Dhorpatan Valley to
easternmost records of P. a. martensi at Manang, Marsyandi Valley).
The distinct color phenotypes of coal tit hybrids are confined to the
same mountain valleys like, for example, distinct genetic lineages of
Himalayan ground beetles in the catchments of Marsyandi Khola,
Kali Gandaki and its side river valley Myagdi Khola (Schmidt et al.,
2012). However, unlike in the ground beetle example, microallopatry
does not seem to have triggered genetic diversification in the center
of the Himalayan coal tit hybrid zone: Neither are populations genet-
ically distinct, nor are the parameters of genetic variation lowered,
as would be expected for small, isolated populations (Dixo et al.,
2009; Frankham, 1996; Ortego et al., 2008). The main reason for
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TABLE 2 Genetic diversity indices of Himalayan coal tit populations (n, number of individuals)

Pop

Periparus ater melanolophus
Spot-winged-type hybrids
Cinnamon-bellied hybrids
Pale-bellied hybrids

P. a. martensi

P. a. aemodius

mtDNA (CR) Microsatellites (8 loci)

n h Hd T Tajima'sD  p (D) n AR Hg He g p(Fyg)

20 6 0.447 0.00376 -2.0976 <.05 19 4.463 0.586 0.673 0.134 .0010

16 6 0.542 0.01508 -0.23269 >.10 16 4986 0.643 0.747 0.144 .0031
3 0.600 0.02484 0.90194 >.10 5.500 0.771 0.775 0.005 5177
2 0.286 0.01195 -1.62257 <.05 7 5.955 0.857 0.782 -0.105 0677

10 3 0.600 0.00606 0.50521 >.10 10 5.667 0.685 0.790 0.139 .0052

11 6 0.836 0.00730 0.49420 >.10 9 6.022 0.875 0.843  -0.040 .2698

Note: Significant values shown in bold.

mtDNA: h, number of haplotypes; Hd, haplotype diversity; &, nucleotide diversity and Tajima's D (including p-value; p(D)); Microsatellites (8 loci,
Parate06 and Parate08 excluded): AR, mean allelic richness; Hg, mean observed heterozygosity; He, mean expected heterozygosity; F s, inbreeding
coefficient (including p-value; level of significance after Bonferroni correction p < .05/6 =.008).

TABLE 3 Pairwise F¢; values inferred from the mitochondrial DNA (CR; data set below diagonal) and inferred from the microsatellite data
set (8 loci, Parate06, and Parate08 excluded; above diagonal)

Periparus
Periparus ater Periparus ater ater
melanolophus Spot-winged-type Cinnamon-bellied Pale-bellied martensi aemodius
P. a. melanolophus 0.02470 0.01662 0.04732 0.04508 0.10819
Spot-winged-type 0.07319 0.02018 0.00154 0.00967 0.06155
hybrids
Cinnamon-bellied 0.30171 -0.04505 0.01221 0.00998 0.04060
hybrids
Pale-bellied hybrids 0.83856 0.55655 0.33511 -0.01722 0.01946
P. a. martensi 0.90149 0.69061 0.56754 0.05186 0.00540
P. a. aemodius 0.89086 0.68416 0.56089 0.12339 -0.04375
Note: Significant values shown in bold.
Significance level after Bonferroni correction p <.05/15 =.0034.
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FIGURE 6 Genetic variation of Himalayan coal tit populations (Periparus ater; n = 67) based on 10 microsatellite loci. STRUCTURE
analysis under the admixture-frequency-correlated model without locpriors a priori defined, STRUCTURE plot for most plausible K = 2;
threshold g > 0.8 for assignment of individuals to genetic clusters according to Randi (2008); colored bars above the plot indicate individual
assignment to the western (P. a. melanolophus) and eastern (P. a. aemodius) mitochondrial lineage, respectively; bars below the plot indicate
phenotypically distinct populations along the east-west gradient; asterisks at the top highlight genetic hybrid individuals

this might be that mountain ridges provide less effective barriers to

birds than to less mobile invertebrates, for example, flightless bee-

tles (Schmidt et al., 2012) or scorpions of the North African Atlas

Mountains (Habel et al., 2012). Accordingly, we found a signal of

introgression of eastern P. a. aemodius microsatellite alleles even into

westernmost populations of phenotypic P. a. melanolophus.

In several other avian hybrid zones, phenotypic clines were nar-

rower than genetic clines (Hermansen et al., 2011; Kvist & Rytkonen,
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FIGURE 7 Cline analysis for Himalayan coal tits, Periparus ater. Based on mitochondrial CR sequences (a) shape, (c) center, (e) width and

based on 10 microsatellite loci (b) shape, (d) center, (f) width; shape of the cline, (a, b): crosses indicate observed values (haplotype and allele
frequencies) for each population; solid curves indicate maximum-likelihood estimates of the cline with gray shapes indicating 95% Cl of the
estimates; solid lines indicate cline center estimates with dashed lines indication 95% Cl of the estimates; major areas of origin indicated
above: AFG, Afghanistan; HUM, Humla Distr.; DOL, Dolpo Distr.; DHO, Dhorpatan (Baglung Distr.); MYA, Myagdi Distr.; RAS, Rasuwa Distr.;
SIN, Sindhu Palchok Distr.; TAP, Taplejung Distr

TABLE 4 Estimated cline shape parameters of best-fit models for CR (haplotype frequencies; mtDNA) and 10 microsatellite loci (q score

as inferred from STRUCTURE analysis for K = 2)

Best-fit model

Cline center
Data Prin Prnax (km) Cline width (km) logLike No. Prnin/Prmax Tail fitting
CR 0.000 1.000 11 [0 - 25] 46 [24 - 95] -0.740 1 Fixed No fitting
Microsatellites  0.048 0.950 8 [-102 - 80] 172 [70 - 1040] -8.220 11 Observed Left tail only

Note: Estimates for frequencies at the western (pmin) and eastern (pmax) end of the cline, cline centers (95% Cl of two log-likelihood units in
parenthesizes), cline widths (95% Cl of two log-likelihood units in parenthesizes) and log-likelihood scores for fitted clines according to the best-fit
model selected based on the corrected AlCc. Model number and scaling parameters according to Derryberry et al. (2014).

2006; Poelstra et al., 2014), and allelic introgression might extend far
beyond areas of, for example, vocal admixture (Sattler et al., 2007) or
even across species boundaries (Kingston et al., 2014). With an esti-
mated width of 46 km the mitochondrial cline across the Himalayan
coal tit hybrid zone is rather narrow, because populations of P. a. mar-

tensi appeared to be unadmixed (only the eastern mtDNA lineage

was present). That distance roughly corresponds to the east-west
extent of the European crow (Corvus corone) hybrid zone (Poelstra
et al., 2013, 2014). In contrast, the microsatellite cline is about 3.7
times wider. This wide range of the hybrid zone is also reflected in
the calculated divergence and diversity indices, that is, Fs; values

confirmed a rather low diversification even between nonadjacent
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populations (Table 3). At the same time, the moderate heterozygote
deficit indicates an ongoing admixture also in populations located
at the margins of the hybrid zone. Taken together, and taking into
account that wide clines indicate only weak selection against hybrids
(Barton & Gale, 1993) and that microsatellites likely uncover more
recent processes (Selkoe & Toonen, 2006), the Himalayan coal tit
hybrid zone appears as a nonstable zone of ongoing hybridization
and potentially continuing expansion.

4.2 | Discordance of genetical clines

The microsatellite cline and the mitochondrial cline across the
Himalayan coal tit range differ from each other. Not only is the mi-
crosatellite cline 3.7 times wider than the mitochondrial one (dis-
cordant clines), especially the left tail is clearly shallower in the
microsattelite cline. Discongruity of clines inferred from different
sets of molecular markes is a common phenomenon of terrestrial
vertebrate hybrid zones: For several Nearctic avian taxon pairs, mi-
tochondrial clines were about 1.9 to 20 times narrower than those
inferred from neutral nuclear markers (Gowen et al., 2014; Kingston
et al., 2012; Walsh et al., 2016). Similar discordance between mito-
chondrial and nuclear cline shapes was documented for Nearctic
mule deer, Odocoileus hemionus (Haines et al., 2019) and Iberian
Bosca's newts, Lissotriton boscai (Sequeira et al., 2020). The opposite
pattern of microsatellite clines being narrower than mitochondrial
clines seems to be less common (e.g., in the Japanese fire-bellied
newt, Cynops pyrrhogaster: Tominaga et al., 2018). More complex
spatial patterns can even result in concordant and discordant clines
for mtDNA and microsatellites across different hybrid zones of the
same species, as shown for European grass snakes, Natrix natrix
(Kindler et al., 2017) and the European pond turtle, Emys orbicularis
(Poschel et al., 2018; Vamberger et al., 2015). That great variation of
terrestrial vertebrate hybrid zones in shape and extent is explained
by a number of factors. For birds, comparisons among vertebrate
classes suggested a positive correlation of hybrid zone width with
dispersal abilities and mitochondrial DNA distance among parental
taxa (McEntee et al., 2020). Sex-biased dispersal in turn is one of sev-
eral factors that might shape mitonuclear discordance of admixture
patterns (Prugnolle & de Meeus, 2002) along with incomplete line-
age sorting, differential drift (Bonnet et al., 2017; Toews & Brelsford,
2012), the particular mechanism of mutation of short tandem re-
peats such as microsatellites (Karl et al., 2012; Putman & Carbone,
2014) or purifying selection on mitochondrial markers (Morales
et al., 2015). Another process that can cause discordant clines is hy-
brid zone movement (Taylor et al., 2014; van Riemsdijk et al., 2019;
Wielstra et al., 2017). Since in hybrid zone movement one of the two
hybridizing populations expands its distribution, the hybrid zone
shifts while selectively neutral loci of the displaced population re-
main in the displacing population (Currat et al., 2008; Wielstra et al.,
2017) and cause a tail of introgression in the wake of the hybrid zone
(van Riemsdijk et al., 2019). This genetic footprint is thought to be

primary reflected by microsatellite markers, as these are noncoding
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and have higher mutation rates than other markers (Ellegren, 2000,
2004). Indeed, introgression of microsatellite alleles seems to be
asymmetric from eastern P. a. aemodius into western populations of
phenotypic P. a. melanolophus but not vice versa. At the same time,
significantly negative Tajima's D for western P. a. melanolophus and
pale-bellied hybrids might be another sign of an expanding popula-
tion but may also be due to selection against mitochondrial markers
(Tajima, 1989). Which of the named factors predominantly shape the
clines and whether in fact movement or nondirectional expansion of
the Himalayan coal tit hybrid zone is taking place remains to be fur-
ther elucidated. After all, extent and directionality of introgression
may depend on further factors like variation of morphological and
behavioral traits such as passerine territorial song. Some of these
might also help explaining the asymmetrical introgression of micros-

atellite alleles in Himalayan coal tits.

4.3 | Asymmetric introgression across the
hybrid zone

In vertebrates, asymmetric introgression between closely related
taxa is often associated with differences in phenotype like in wall
lizards (Podacris muralis; While et al., 2015; Yang et al., 2020), in
particular when mate choice is related to differential body size
such as in Nearctic woodrats, Neotoma sp. (Coyner et al., 2015) and
the European pond turtle, Emys orbicularis (Péschel et al., 2018;
Vamberger et al., 2015). In birds, such a correlation between as-
sortative mating, body size and differential introgression was found
even in the rare case of female competition for mates in polyan-
drous tropical waders, Jacana spinosa and J. jacana (Lipshutz et al.,
2019). Indeed, in the Himalayas the western and eastern paren-
tal taxa (P. a. melanolophus and P. a. aemodius) were shown to dif-
fer in body size and plumage proportions (Martens et al., 2006).
Furthemore, in birds, sexually selective ornamental plumage traits
can trigger directional mate choice, such as beneficial golden plum-
age in manakins, Manacus sp. (Parchman et al., 2013; Uy & Stein,
2007) and head coloration in white wagtails, Motacilla alba (Semenov
et al., 2017) or Ficedula flycatchers (Haavie et al., 2000). In Australia,
there is evidence of directional introgression of red-plumage alleles
across a hybrid zone of fairy wrens (Malurus sp., Baldassarre et al.,
2014). Admixture patterns in a Nearctic warbler hybrid zone showed
clustering of single-nucleotide polymorphisms (SNPs) across pa-
rental genomes with candidate gene regions associated with color
pigments, such as carotinoids or melanin (Brelsford et al., 2017).
Likewise, in the Himalayan coal tit hybrid zone phenotypes of west-
ern and eastern parental taxa are highly distinctive (Figure 3), which
might have facilitated assortative mating in past secondary contact
prior to hybrid zone formation. This situation contrasts the European
transition zone of the coal tit: There, phenotypes at both ends of
a wide cline from the Iberian Peninsula towards Scandinavia show
only subtle differences in plumage coloration (photographic images
in Martens, 2012; for trans-European patterns of genetic admix-

ture see Tritsch et al., 2018). While there is evidence of an effect of
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ornamental plumage traits on assortative mating, for example, in the
blue tit, Cyanistes caeruleus (Fargevieille et al., 2017; Garcia-Navas
et al., 2009), this remains to be tested for the coal tit.

In songbirds (Oscines), territorial song plays a key role not only in
territorial defense (intrasexual behavior) but also in mate choice (in-
tersexual behavior; Naguib & Riebel, 2014; Packert, 2018). Therefore,
differences between song types facilitate assortative mating in sec-
ondary contact as shown for several oscine contact zones (Ficedula
flycatchers in central Europe: Qvarnstrom et al., 2010; Phylloscopus
leaf warblers in the Pyrenees: Helbig et al., 2001). Sexual selection
acting on song types or larger and highly variable repertoires can
lead to differences in mating success between parental taxa and thus
lead to asymmetric gene flow across a hybrid zone. This was sug-
gested for some hybridizing taxon pairs of tits and chickadees (great
tit/ Japanese tit, Parus major/P. minor: Packert et al., 2005; Kvist &
Rytkdnen, 2006; subspecies of the mountain chickadee, Poecile gam-
beli: Reudink et al., 2007; Manthey et al., 2012; Taylor et al., 2014).
In playback experiments in a Nearctic titmice contact zone females
of both species showed a clear preference for songs and phenotypes
of the tufted titmouse, Baeolophus bicolor, and discriminated against
those of the syntopic black-crested titmouse, B. atricristatus (Curry
& Patten, 2016). Similar asymmetries have been described for male
aggression, such as in the hybrid area of hermit and Townsend's war-
bler (Dendroica occidentalis, D. townsendi; Pearson & Rohwer, 2000).

At a similar level of genetic divergence, the coal tit does not
show strong diversification of song patterns among European pop-
ulations and their Asian relatives (Pentzold et al., 2016; Tietze et al.,
2011). Such uniformity of vocal patterns strongly contrasts strong
divergence of European and Asian song structures in other tit spe-
cies (groups), such as the great tits, Parus major (Packert et al., 2005)
or willow tits, Poecile montanus (Martens et al., 2003; Tritsch et al.,
2017). Though Tietze et al. (2011) found subtle differences in maxi-
mum frequencies and element number among Himalayan song types
of western P. a. melanolophus and eastern P. a. aemodius, variation of
song types does not seem to affect species recognition in the coal
tit. Playback experiments with Himalayan test birds suggested that
the latter two subspecies mutually understand local song types and
discriminated these strongly against European coal tit song and great
tit song from Afghanistan (Martens, 1975: pp. 417-421). Therefore,
vocalizations might be a less effective premating barrier for the
Himalayan coal tits as compared with hybrid zones among other tit
taxon pairs (Kvist & Rytkénen, 2006; Manthey et al., 2012; Taylor
et al., 2014) or among leaf warbler species with strongly distinc-
tive song types (Helbig et al., 2001; Shipilina et al., 2017; see Zhang
et al., 2019 for a scenario of strong introgression among Eastern

Himalayan leaf warbler taxa with less distinctive song types).

5 | CONCLUSIONS

The existence of putative hybrid populations in the central
Himalayas was the main argument for inclusion of all Himalayan

taxa in one species-level taxon, Periparus ater, under the Biospecies

Concept (BSC). In contrast, the western Himalayan “spot-winged
tit” was often treated as a species of its own, Periparus melanolo-
phus (Dickinson, 2003; Gosler & Clement, 2007; Vaurie, 1959) based
on its distinctiveness in plumage coloration and thus according to
the diagnosability criterion of the Phylogenetic Species Concept
(PSC) (Sangster, 2014). This mere typological approach was already
challenged by Packert and Martens (2008) who outlined two major
problems that resulted from earlier molecular studies (Martens et al.,
2006): (i) paraphyly of a least-inclusive species-level taxon P. ater ex-
cluding the form melanolophus (in conflict with the PSC; confirmed
by Packert et al., 2011; Tietze et al., 2011), (ii) the existence of puta-
tive hybrid populations in the central Himalayas (in conflict with the
BSC). However, the putative hybrid origin of the central Himalayan
populations from Myagdi District and Baglung District has not been
verified by any comprehensive population genetic analysis to date.
Our results shed new light on the Himalayan coal tits hybrid zone
showing strong genetic admixture of the putative phenotypic hybrid
populations (both marker systems) that overcome the phenotypic
pattern of microallopatry. While we thus could confirm our first hy-
pothesis of strong genetic admixture of phenotypically intermediate
populations, the second hypothesis of genetic distinctiveness of po-
tential parental populations has to be rejected (at least on the basis
of a limited number of microsatellite loci) as introgression of eastern
alleles even extends beyond the range of phenotypic hybrids into
the western parental form P. a. melanolophus. This is in good accord-
ance with the current consent among taxonomist on the inclusion of
this western Himalayan taxon in one species-level taxon Periparus
ater (Gill et al., 2020; del Hoyo et al., 2016).

Despite all reservations against inference of admixture propor-
tions from microsatellite data (Balloux et al., 2000; Lemopoulos et al.,
2019; Putman & Carbone, 2014), microsatellite data sets performed
equally well for detection of patterns of divergence and admixture
as genome-wide SNPs in several studies (Fernandez et al., 2013;
Ljungqvist et al., 2010; Narum et al., 2008; Roques et al., 2019).
However, additional markers offer a chance for a better small-scale
resolution of the phylogeographical structure in the center of the
Himalayan hybrid zone. By this, they are a perspective to better un-
derstand the putative diversification patterns, for example, among
the distinctive cinnamon-bellied hybrids and other phenotypes.
Whole-genome data might also provide a deeper insight into pro-
cesses causing asymmetric introgression and shaping the Himalayan
coal tit hybrid zone as one of the rare examples of a genetically well-
defined avian hybrid zone in the Himalayas.
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