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Abstract: Pollution caused by plastic materials has a great impact on the environment. The biodegra-
dation process is a good treatment solution for common polymers and biodegradation susceptible
ones. The present work introduces new insight into the biodegradation process from a mathematical
point of view, as it envisions a new empirical model for this complex process. The model is an
exponential function with two different time constants and a time delay, which follows the weight
loss profile of the polymer during the biodegradation process. Moreover, this function can be gener-
ated as the output variable of a dynamic exogenous system described through state equations. The
newly developed models displayed a good fit against the experimental data, as shown by statistical
indicators. In addition, the new empirical model was compared to kinetics models available in the
literature and the correlation coefficients were closest to 1 for the new empirical model in all discussed
cases. The mathematical operations were performed in the MATLAB Simulink environment.

Keywords: glycopolymer biodegradation; empirical model; model accuracy; dynamic nonlinear system

1. Introduction

The pollution caused by plastic material waste during the last several decades has
become one of mankind’s biggest problems [1–3]. It is noteworthy to mention the floating
plastic island in the Pacific [4,5], debris contaminating soil and drinking water [6,7], birds
and animals suffering injuries after consuming plastic fragments [8,9], etc. Although the
scientific community has concentrated on finding solutions to this problem [10], up to date,
there is no general method for properly disposing of plastic materials after use [8,11]. In the
last decade, there has been an increasing recycling trend [12], which has spread mainly in
Europe due to the UE politics towards environment preservation [13]. Also, new materials
with enhanced biodegradable features have emerged as replacements for the classic ones
especially in the food industry [14–16], although it is not enough to diminish the impact
that plastic exerts on our environment [17–19].

Our group has been involved for more than 15 years in the synthesis and characteri-
zation of new polymeric materials with improved biodegradability based on renewable
feedstock, such as sugars [20–27]. In the past few years, we have focused on the biodegrad-
ability process in terms of modeling the process and being able to determine the most
important parameters that could influence the degradation of plastic materials derived
from sugars in the presence of microorganisms. The biodegradation of sugar-based poly-
mers was studied in liquid media using pure microbiological cultures [26,28], as well as
natural microbiological consortia occurring in rivers [29]; also, the process was allowed
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to develop in static conditions (without shaking but at thermoset temperature) and in dy-
namic conditions inside a bioreactor [30–32]. In light of the good results, our research group
was keen to investigate the development of the process following its dynamic behavior by
using mathematical models that could provide additional information for improving the
process and expanding it to common plastic materials.

Mathematical models can be applied to a variety of chemical and biochemical pro-
cesses, taking into account the static and dynamic behavior of the system based on their
parameters [33–36]. Simplifying theories involving characteristic function are often used
to describe such systems: i.e., the kinetics of the biodegradation process is modeled by
following the weight loss profile of the sample in time [37]. Nonetheless, the disadvantage
of such simplifying statements is that certain intimate characteristics of the phenomena can
be overlooked [38].

A dynamic exogenous mathematical model would be able to generate the character-
istic function for chemical processes as variations of an output variable in time [39]. The
literature in the field of mathematical modeling of chemical/biochemical processes tries to
provide characteristic functions to describe the systems’ kinetics, based on the experimental
results [40–42]. Thus, Benzekry et al. [40] comparatively analyze eight kinetics models
in order to explain the evolution of tumor growth; the considered models are: exponen-
tial, exponential–linear, power law, Gompertz, generalized logistic, von Bertalanffy, and
dynamic carrying capacity. Moreover, Angelucci et al. [41] proposed an integrated, well-
explained, but rather complicated model for a two-step ex-situ bioremediation process of
contaminated soil, while Tashiro and Yoshimura [42] developed a model which indirectly
incorporates the logistic model for the synthesis of inducible enzymes.

As most processes encountered in the chemical and biochemical world involve com-
plex transformations, there is always a gap left to be filled with proper mathematical
models, which accurately describe the system behavior and its alteration of time.

This work proposes a new empirical mathematical model that can be parameter-
ized in order to describe the weight loss profile of the sugar polymer samples during
biodegradation under diverse conditions. The estimation of the model’s parameters used
to model the kinetics of the biodegradation process was also undertaken. For testing the
model, certain sets of experimental data were considered, either acquired in our laboratory
or provided by literature in the field of polymer biodegradation. Accuracy parameters
were calculated for each tested model considered. In addition, a dynamic model was
constructed based on linear and non-linear variations of the weight loss profile during the
biodegradation process.

2. Materials and Methods
2.1. Chemicals

D-mannose-based glycopolymers were synthesized and isolated previously [23,24,26,28].
The biodegradation process of the glycopolymers was studied according to the protocol
established beforehand. The biodegradation process is generally described by the weight
loss function (1).

w (t) =
m(0)−m(t)

m(0)
× 100 (1)

where w(t) is the weight loss at a given time t ≥ 0, (%); m(0) is the initial weight of the
polymeric sample, (mass unit depends on context, e.g., grams); m(t) is the weight of the
polymeric sample at a given time t, (mass unit depends on context, e.g., grams). The
function w(t), t ≥ 0 reflects the process kinetics.
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2.2. Mathematical Models Applied for the Kinetic Biodegradation Process

Usually, for the modeling of the kinetic of the Biodegradation Process the following
four mathematical models are used:

Exponential Growth Model:

w(t) = W∞[1− exp(−t/T)] (2)

where w(t) is the weight loss at a given time t, (%); W∞ is the weight-loss potential, (%);
t is the time, (time unit depends on context); T is the time constant, (time unit depends
on context).

Modified Gompertz Model:

w(t) = W∞· exp{− exp[e·Rm/W∞·(λ− t) + 1]} (3)

where w(t) is the weight loss at a given time, (%); W∞ is the weight-loss potential, (%); Rm is
the maximum value of the weight loss rate, (%/time unit); t is the time, (time unit depends
on context); λ is the time constant of the process, (time unit depends on context).

Logistic Growth Model:

w(t) = W∞/[1 + exp(−k·t))] (4)

where w(t) is the weight loss at a given time, (%); W∞ is the weight-loss potential, (%); t is
the time, (time unit depends on context); k is the time rate constant of the process, (time
unit depends on context).

Gordon-Govind-Green-Imam-Shogren Model [43]

w(t) = w∞1[
1

a11+a21e−a31t+a41e−a51t2+a61e−a71t3
− 1

a11+a21+a41+a61
]+

w∞2[
1

a12+a22e−a32t+a42e−a52t2+a62e−a72t3
− 1

a12+a22+a42+a62
]

(5)

where w(t) is the weight loss at a given time, (%); w∞1, w∞2 are the weight loss potentials,
(%); a1i, a2i, a4i, and a6i are the non-dimensional coefficients, (where i = 1, 2); a3i, a5i, and a7i
are the rate coefficients with the dimensions (time−1), (time−2), respectively, (time−3); t is
the time, (time unit depends on context).

2.3. Theory/Calculation

The new empirical model for predicting biodegradation profiles of polymer samples
proposed herein is a purely mathematic, black-box type model. It is formed by following
the distribution of a weight loss profile for a biodegradation model (e.g., Figure 1) and
assuming that it can be generally adequate to describe such processes. Two remarks can be
emphasized:

- The variation of the weight loss values in time seems to correspond to a monotonous
rising saturation tendency, as w(t) = W∞, where the weight loss potential W∞ has a
finite value;

- The variation of the weight loss values in time reflects an additive property, which
presents two exponential rising variations, separated in time by a time delay. This
variation can be written similarly as the response to a step signal of a first-degree
linear continuous system.

By combining these two assumptions, the following equation was obtained:

w(t) = w1∞[1− exp(−t/T1)] + w2∞ [1− exp(−(t− τ)/T2)]· σ(t− τ) (6)

where σ(t) is the unit step function; w(t) is the weight loss at a given time, (%); w1∞, w2∞
are the weight loss potentials, (%); T1, T2 are the time constants, (days); t ≥ 0 is the time,
(time unit depends on context); τ is the time delay (dead-time) of the process, (days).
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Thus, the mathematical model (6) is a characteristic function of the process depending
on five parameters aggregated in P vector (7): weight loss potentials (w1∞, w2∞) time
constants (T1 and T2), and time delay (τ):

P = [w1∞ , T1, τ, w2∞, T2]
′ (7)

The environment used for the modeling and simulation of the biodegradation process
was the MATLAB R2018a Software Package. The model accuracy was estimated graphically
and evaluated by calculating the following parameters: the relative absolute error (rAE),
correlation coefficient (R), determination coefficient (R2), mean square error (SD), and the
root mean square error (RMSE) [44].
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Figure 1. Weight loss profile in time for a typical biodegradation process [30].

3. Results and Discussions
3.1. Models of Characteristic Function Type for the Prediction of the Biodegradation Processes

From a mathematical perspective, the biodegradation process represents a distributed
parameter process, which can be theoretically described by partial derivative equations. In
practice, however, this approach was not yet exploited. The mathematical models used
now to describe such processes are using characteristic functions, namely functions that
describe the variation of a certain parameter over time (herein weight loss profile in time)
and provide an insight into process kinetics. From a modeling perspective, this approach
requires the choice of a characteristic function that may be parameterized and the fitting
of its parameters according to the experimental data. Figure 1 illustrates the time profile
weight loss corresponding to a biodegradation process, expressed by discrete points [43].
The goal of this work is to find the model for the weight loss parameter, i.e., a parametrized
characteristic function.

All five models (2)–(6) are functions that may be parameterized. The adaptation of
such a mathematical model to a certain biodegradation process consists of the evaluation
of the models’ parameters based on the minimization of a criteria function attached to
the model’s equation and the experimental data. Generally, combined regression and
numerical minimization methods are applied to fit the parameters to minimize the criteria
function, e.g., model (5) in [43], models (2), (3), and (4) in [30], model (4) in [29], and
model (5) in [32].

The new mathematical model (6) proposed herein envisions a general representation
as the one presented in Figure 2. The time constants T1 and T2 appear in the graphical
representation as subtangents cut on the asymptotes of the exponential growing curves.
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From a systemic point of view, models (2)–(6) hide the fact that the biodegradation
process corresponds to a dynamic system with distributed parameters. The idea of a
“system with distributed parameters” is not addressed in this paper. We only limit to the
issue of the behavior of a “dynamic system”. In this context, the starting point consists of
two assumptions:

- The weight loss w(t) obtained experimentally in discrete time adequately describes
the process and represents the output signal of the dynamic system.

- The biodegradation process is monitored from t = 0; the human operator is not
involved in the process development after the process has started. Thus, the system
evolves freely, independently from the operator’s will, from a certain initial state.

Based on the two working hypotheses stated above, the biodegradation process can
be described using dynamic systems that generate signal w(t), as an exogenous signal
corresponding to the experimental weight loss profile. This method is commonly adopted
for control system synthesis, where the exogenous dynamic systems are used as reference
signal generators or as disturbance signal generators [45,46]. The exogenous systems are
obtained based on the shape of the signal they have to generate as free (natural) responses.
Consequently, the exogenous systems are not physically real, but they generate signals
issued by a physical system that is difficult to model.

The signal represented by Equations (2)–(6) can be associated with different exogenous
systems that can generate the weight loss profile w(t): linear systems for signals (2) and
(6), nonlinear systems for signals (3), (4), and (5). For instance, the dynamic nonlinear
first-order model (8) can be associated to signal (4):

W∞·
.

w(t) + k·W∞·w(t)− k·w2(t) = 0, w(0) = 0 (8)

while a time delay system (9), with the state variable x1, . . . , x4, can be attributed to signal (6):


.
x1(t) = 0, x1(0) = 1

.
x2(t) = −T1x2(t), x2(0) = 1

.
x3(t) = 0, x3(0) = 1

.
x4(t) = −T2x4(t), x4(0) = 1

w(t) = w1∞(x1(t)− x2(t)) + w2∞(x3(t− τ)− x4(t− τ))(t− τ)

(9)

The parameters of models (8) and (9) are those of the characteristic functions (4) and (6).
It must be mentioned that although system (9) has four state equations, it is infinitely

dimensional due to time delay (or dead-time) τ. Both models can be easily simulated by
using the Simulink toolbox of MATLAB.
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3.2. Validation of the Proposed Model

For all cases discussed herein, the nonlinear regression MATLAB function nlinfit (10)
was used. This function requires as inputs, the predictor, namely the discrete time moments
vector mt, the regressor, i.e., the corresponding weight loss values gathered in vector mw,
the estimator represented by the model (6), and the initial values of parameters from (7)
aggregated in the vector, vp. The output returned by nlinfit is the vector P of the estimated
values from (7):

P = nlinfit(mt, mw, model(6), vp) (10)

In the sequel, the application of model (6) is limited to some experimental data
corresponding to the biodegradation processes previously studied by authors [28,30] and
to some data from other processes available in the literature linked to the development of a
bacterial population [42,43].

3.2.1. New Empirical Model Applied to Glycopolymer Biodegradation Processes

The newly developed model was applied to the biodegradation patterns of glycopoly-
mers in different aqueous media. In Table 1, the first two rows present the experimental
data obtained during the biodegradation process of a glycopolymer based on D-mannose
and hydroxypropyl methacrylate inside a bioreactor fed with wastewater coming from the
beer fabrication process [30]. According to Figure 2, the initial values of parameters of the
newly proposed empirical model were established as vp = [40 2.2 5.2 38.1 1.15]’. By nlinfit
regression function, the following values for the parameters were calculated:

P = [42.4331 2.2958 6.6296 35.0094 0.6614] (11)

Their values, substituted in (6), lead to the mathematical model (12):

w(t) = 42.4331[1− exp(−t/2.2958)] + 35.0094[1− exp(−(t− 6.6296)/0.6614]σ(t− 6.6296) (12)

The last two rows of Table 1 contain the calculated values of the weight loss using
Equation (12) (CW), and the difference between the measured and the calculated values
(∆W), respectively.

Table 1. Results obtained by applying the new empirical model on the biodegradation data of the glycopolymer depicted in
article [30].

t (day) 0 1 2 3 6 7 8 9 12

w(t) (%) 0 15.6630 23.3730 31.8670 39.1570 55.4520 71.5660 76.6870 79.6870
CW (%) 0 14.9836 24.6763 30.9465 39.3237 55.4341 71.7328 77.2042 77.2042
∆W (%) 0 0.6794 1.3033 0.9205 −0.1667 0.0179 −0.1668 −0.5172 −0.5172
t (day) 13 14 15 16 19 20 22 23

w(t) (%) 76.9280 77.1080 77.2290 77.4100 77.4700 77.7110 77.7110 77.8740
CW (%) 77.2928 77.3466 77.3807 77.4026 77.4317 77.4355 77.4396 77.4406
∆W (%) −0.3648 −0.2386 −0.1517 0.0074 0.0383 0.2755 0.2714 0.4334

Figure 3 presents the graphical representation of the weight loss profile in time by
applying the new empirical mathematical model (6), and (9), with the particularized
parameters in (11).

Table 2 presents the most important statistical indicators which show the accuracy of
the used models (2), (3), (4), and (6), for the data depicted in Table 1. The first three rows
are extracted from the literature [30].

The values of the statistical parameters from Table 2 can provide useful data con-
cerning the adequacy of the used models. The values for model (6) particularized by (12),
confirm that the new empirical model is the most suitable to characterize the biodegrada-
tion process.
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Table 2. Statistical indicators—comparative table for models (2), (3), (4), and (6) in the form of
Equation (12).

Model

Statistical Parameters

Dispersion D

Root-Mean
Square

Deviation
RMSD

Standard
Deviation SD

Determination
Coefficient R2

Correlation
Coefficient R

(2) 0.456946 0.430067 0.67598 0.9164 0.9670
(3) 0.343164 0.322968 0.58579 0.9713 0.9753
(4) 0.26623 0.241527 0.50658 1.0040 0.9818

(6), respective (12) 0.2525 0.2376 0.5024 1.0010 0.9998

This model seems to be very convenient for the modeling of the process because the
two terms of Equation (12), in particular, and Equation (6), in general, could be associ-
ated with the components of the biodegradation process of these materials. It has been
aforementioned in the literature [26,28,32] that these materials tend to first lose the sugar
skeleton by biodegradation, a process illustrated by the first term of the mathematical
model, and then the methacrylic network until saturation occurs, expressed by the second
term of the proposed models. The time delay could thus be explained by the period of time
required by the microorganism to become accustomed to using methacrylates as a carbon
source for their metabolism.

The new empirical model was also applied for experimental data previously pub-
lished in [32]. Table 3 presents the biodegradation weight loss profile for a D-mannose
glycopolymer during the biodegradation process inside a bioreactor fed with water from
the Bega River.

Table 3. Results obtained using the experimental data presented previously [32].

t (day) 0 2 3 6 7 8 9 10

w(t) (%) 0 33.339 34.055 34.1870 34.621 35.267 36.797 36.8
CW (%) 0 33.0208 34.8129 35.4366 35.4450 35.4472 35.4478 35.4479
∆W (%) 0 0.3182 −0.7579 −1.2496 −0.8240 −0.1802 1.3492 1.3521
t(day) 14 15 16 17 20 21 22 23

w(t) (%) 41.924 42 43.581 52.419 55.4 55.4 60.17 60.647
CW (%) 40.6618 43.5446 46.2370 48.7515 55.3413 57.2543 59.0409 60.7095
∆W (%) 1.2622 −1.5446 −2.6560 3.6675 0.0587 −1.8543 1.1291 −0.0625
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This time, model (6) takes the form of Equation (13).

w(t) = 35.448[1− exp(−t/0.7459)] + 48.849[1− exp(−(t− 12.3486)/14.6307)]σ(t− 12.3486) (13)

The comparison with the original model (3) presented in the original article [32] is
based on the correlation coefficients from Table 4 and the graphical illustrations from
Figure 4.

Table 4. Statistical indicators—comparative data using models (4) and (6).

Model

Statistical Parameters
Root-Mean

Square Error
RMSE

Mean Square
Error
SD

Determination
Coefficient

R2

Correlation
Coefficient

R

Relative
Absolute Error

rAE

(4) 1.5534 2.4133 0.9987 0.9942 0.0015
(6), respective (12) 1.4959 2.2376 0.9892 0.9945 0.0188
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3.2.2. Validation of the New Empirical Model for on the Biodegradation Process of
Polymers Derived from Natural Feedstock

Table 5 contains the data presented in the literature [43] corresponding to the biodegra-
dation process of cornstarch and poly (β-hydroxybutyrate-co-β-hydroxyvalerate) in tropi-
cal water close to the shore. The first two rows refer to the coordinates of the seven points
identified in Figure 1 from Gordon et al. [43], the values are presented in a white shade,
and two other points obtained by visual interpolation, were required for the improvement
of the regression calculus.

Table 5. Results obtained using the weight loss profile data from [43]. The grey shaded values are
the result of visual interpolation.

t (day) 0 25 28 50 70 75 99 148 363

mw (%) 0 16.5 18.0 19.1 22.0 23.33 28.33 55.0 79.33
CW (%) 0 16.4114 17.3055 20.9303 22.035 22.1747 28.33 55.0 79.33
∆W (%) 0 0.0886 0.6945 −1.8303 −0.0355 1.1553 0.0 0.0 0.0
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By applying the new empirical model to these data, Equation (14) is obtained.

w(t) = 22.6475[1− exp(−t/19.3845)]
+57.7861[1− exp(−(t− 91.7250)/68.5354)]σ(t− 91.7250)

(14)

Table 6 presents the statistical indicators for this model. The graphical illustrations are
shown in Figure 5.

Table 6. Statistical indicators for the accuracy of model (6) in the case of experimental data from [43].

Model
Statistical Parameters

Root-Mean Square
Error RMSE

Mean Square
Error
SD

Determination
Coefficient

R2

Correlation
Coefficient

R

Relative Absolute
Error
rAE

(6), respective (14) 1.7816 3.1739 0.9985 0.9975 0.0172
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3.2.3. New Empirical Model Applied to Bacteria Population Growth

As the biodegradation process of the polymers can be linked to the development of the
microbial substrate, we have attempted to use the new empirical model in order to explain
the process of bacteria growth in a given environment. The time characteristic function for
the process [42] is given by the colony-forming unit’s logarithm and corresponds to the
general tendency profile presented in Figure 1.

Table 7 presents the results obtained by applying the simulation of these processes
based on Equation (6), while the customization is given by Equation (15).

w(t) = 2.8 + 1.2596[1− exp(−t/8.1116)] + 4.6819[1− exp(−(t− 7.4524)/6.7336)] σ(t− 7.4524) (15)

A supplementary term is added to the equation due to the fact that log b(0) = 2.8 CFU/mL.
The corresponding graphical illustration is presented in Figure 6.
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Table 7. Values of the statistical indicators obtained using the data from [42].

Process Model RMSE MSE R2 R rAE

The temporal evolution of the logarithmic
number of Salmonella spp. per unit mL in

TSB at 30 ◦C, pH 5.3, and aw 0.997
(15), Figure 6 0.2640 0.0697 0.9753 0.9938 0.0245

3.2.4. Remarks on the Proposed Model

Remark 1. As presented in Section 3.2, when calling the MATLAB function nlinfit (8), we had to
introduce the initial values of the five parameters referred to in Equation (7). Thus, in the case study
from Section 3.2.1, the values vp = [40 2.2 5.2 38.1 1.15]’ were introduced, and nlinfit provided
the values P = [42.4331 2.2958 6.6296 35.0094 0.6614]’. The initial values were estimated by
drawing an approximate curve w(t) corresponding to measured weight loss and applying the features
highlighted in Figure 2. The procedure was performed following the sequence:

(i) The horizontal asymptote is drawn with an approximation for the first arc of the w(t) graph.
The result is w1∞.

(ii) On the asymptote thus drawn, a subtangent is delimited by taking a point on the first arc. The
length of the subtangent represents the value of T1.

(iii) The angular point between the first and second arc is identified. The abscissa of this point
represents the value of time delay τ.

(iv) The horizontal asymptote is drawn for the second arc. Its value corresponds to w1∞ + w2∞.
The value of w2∞ is obtained by subtracting from this sum the value obtained under point (i).

(v) On the asymptote referred to in point (iv), a subtangent is delimited by considering a point on
the second arc. Its length represents the value of T2.

Remark 2. The values of the parameters in (6) provided by the nlinfit function are not unique. A
renewed call of the function, with different or the same initial values, vp, nlinfit provides the vector
P with values slightly different from the previous ones. This situation is due to the convergence
of the algorithm used by nlinfit: iterative least-squares estimation. Consequently, the parameters’
values of models (9’)–(12) are not unique. The comparative statistical assessments made in each
case as regards the resulting models were verified in many other recalculations.

Remark 3. The results of model (6), as with models (2)–(5), become more acceptable when the
number n of discrete values of w is determined experimentally, respectively the number of points
(t, w(t)), is greater. If n is small, it is recommended to introduce additional points using an
approximation curve similar to that in Remark 1. The case described in Section 3.2.2 is such
an example.
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Remark 4. The parametrization of model (6) can be performed through nonlinear regression in
different ways. For example, genetic algorithms or particle swarm optimization (PSO) method can be
applied. In such cases, for estimating parameter fitness, functions can be used that penalize, depending
on the acquisition moment, the errors given by the solution compared to measured values of w.

Remark 5. The model (6) is always associated with a set of experimental data obtained from
a biodegradation process, no matter if this is performed in a laboratory or in a natural environ-
ment. The parameters’ values for the model reflect the deployment conditions of the process. The
applicability of the model (6) is not limited to biodegradable processes. It is applicable to other
physical-chemical processes for which a characteristic variable evolves over time through points
placed on curves such as the one in Figure 2.

4. Conclusions

Mathematical models offer great insight into a process from both a practical and
analytical point of view. The biodegradation process of a sugar-based polymer inside a
bioreactor can be modeled with good accuracy using kinetic models, but from a dynamic
point of view, the information they provide is scarce and/or unreliable. The new empirical
model constructed herein by our group envisions the characterization of the process by
means of weight loss w(t), as a time characteristic function.

The proposed expression is a transcendental function with five parameters: two ampli-
fications (gains), two time constants, and a time delay (dead-time). By proper parametriza-
tion of this model, the biodegradation profile of the studied samples in all discussed cases
is well-reproduced. Moreover, the characteristic function can be associated with a dynamic
model, i.e., an exogenous model used to generate it. The new model with two different time
constants can explain the biodegradation pattern of the glycopolymers, as they tend to lose
the sugar-based skeleton at first, by its assimilation due to microorganisms’ metabolism,
and then the synthetic acrylate/methacrylate chain is altered by the microbiological en-
vironment. In mathematical terms, the first process, corresponding to the fast step of
biodegradation can be attributed to the saccharidic chain degradation, while the longer
stage belongs to the adjustment of the microorganism to consume the synthetic polymeric
chain. Also, the new model was tested against the degradation of other polymeric materials
as well as the bacteria population growth process and the results revealed that it presents a
good fit with the experimental data.

For the assessment of the accuracy extent of the new model, the statistical parameters
were calculated and compared to the kinetic models used in the literature; these results
encourage us to believe that the new models used to describe the process are adequate
and have the potential to be applied to other processes, which take into account the
development of bacterial populations.
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