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Advances in computer hardware and the availability of high-performance supercomputing
platforms and parallel computing, along with artificial intelligence methods are successfully
complementing traditional approaches in medicinal chemistry. In particular, machine
learning is gaining importance with the growth of the available data collections. One of
the critical areas where this methodology can be successfully applied is in the development
of new antibacterial agents. The latter is essential because of the high attrition rates in new
drug discovery, both in industry and in academic research programs. Scientific
involvement in this area is even more urgent as antibacterial drug resistance becomes
a public health concern worldwide and pushes us increasingly into the post-antibiotic era.
In this review, we focus on the latest machine learning approaches used in the discovery of
new antibacterial agents and targets, covering both small molecules and antibacterial
peptides. For the benefit of the reader, we summarize all applied machine learning
approaches and available databases useful for the design of new antibacterial agents
and address the current shortcomings.
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INTRODUCTION

Modern antibacterial drug development currently notes a lack of novel antibacterial classes, an
observation that is critical in the context of antibacterial drug resistance (Brown and Wright,
2016). Furthermore, not only single-drug resistance but also multiple-drug antibiotic resistance
(MDR) has been observed in clinically relevant pathogens worldwide, rendering current
established therapies ineffective (Laxminarayan et al., 2020; Vila et al., 2020). The annual
number of deaths caused by infections with resistant pathogens alone is currently high and is
expected to reach into millions by 2050, making high-quality data collection and reporting and
antibacterial research essential (de Kraker et al., 2016; Matamoros-Recio et al., 2021). Recent
advances in Computer-aided drug design (CADD) coupled with parallel and high-performance
computing (HPC) platforms and new in silico methods represent a new paradigm for
antibacterial drug discovery. In particular, machine learning methods have the potential to

Edited by:
Leonardo L. G. Ferreira,

University of São Paulo, Brazil

Reviewed by:
Tihomir Tomašič,

University of Ljubljana, Slovenia
Amit Kumar Banerjee,

Indian Institute of Chemical
Technology (CSIR), India

*Correspondence:
Marko Jukič

marko.jukic@um.si
Urban Bren

urban.bren@um.si

Specialty section:
This article was submitted to

Experimental Pharmacology and
Drug Discovery,

a section of the journal
Frontiers in Pharmacology

Received: 28 January 2022
Accepted: 28 March 2022
Published: 03 May 2022

Citation:
Jukič M and Bren U (2022) Machine
Learning in Antibacterial Drug Design.

Front. Pharmacol. 13:864412.
doi: 10.3389/fphar.2022.864412

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; CADD, computer-assisted drug design; DT, decision
tree; FSC, feedback system control; kNN, k-nearest neighbors; LOR, logistic regression; (M)LR, (multiple) linear regression;
MDR, multidrug resistant; MIC, minimum inhibitory concentration; MRSA, methicillin-resistant Staphylococcus aureus; NB,
naïve Bayes; RF, random forest; RiPPS, ribosomally synthesized and posttranslationally modified peptides; SCM, set covering
machine; SVM, support vector machines.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8644121

REVIEW
published: 03 May 2022

doi: 10.3389/fphar.2022.864412

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.864412&domain=pdf&date_stamp=2022-05-03
https://www.frontiersin.org/articles/10.3389/fphar.2022.864412/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.864412/full
http://creativecommons.org/licenses/by/4.0/
mailto:marko.jukic@um.si
mailto:urban.bren@um.si
https://doi.org/10.3389/fphar.2022.864412
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.864412


increase the accuracy of high-throughput virtual screening
using ligand-based, structure-based, or consensus-based
approaches (Serafim et al., 2020). It should be noted that
modern software implementations of machine learning
algorithms efficiently utilize computer hardware and are
ideal for the bioinformatics or chemoinformatics scenario;
however, extreme care should be taken with input data

(Bzdok et al., 2017). Most importantly, the increasing
availability of data makes machine learning methods even
more important, either as a stand-alone method or in a
consensus scenario where they can boost traditional
medicinal chemistry approaches (He et al., 2021). In this
review, we focus on machine learning approaches in CADD
that have been reported in recent years and have been used in

FIGURE 1 |Commonmachine learningmethodology in novel antibacterial drug design and a typical modeling workflow. ANN, artificial neural network; DT, decision
tree; FSC, feedback system control; HTVS, high-throughput virtual screening; kNN, k-nearest neighbors; LBVS, ligand-based virtual screening; LOR, logistic regression;
(M)LR, (multiple) linear regression; NB, naïve Bayes; QSAR, quantitative structure–activity relationship; RF, random forest; SBVS, structure-based virtual screening;
SCM, set covering machine; SVM, support vector machines.

TABLE 1 | Currently available antibacterial compound and peptide databases suitable for in silico drug design.

Database name Type Location References

ChEMBL Comprehensive bioactivity database and
bioinformatics platform

https://www.ebi.ac.uk/chembl/ Mendez et al. (2019)

Shared Platform for Antibiotic Research and
Knowledge (SPARK) or CO-ADD

Community for open antimicrobial drug
discovery

https://co-add.org/ Thomas et al. (2018),
Cooper (2015)

Antimicrobial Index Microorganisms and antimicrobial agents http://antibiotics.toku-e.com/ Amirka and Qiubao,
(2011)

MEGAres Antibacterials and resistance determinants https://megares.meglab.org/ Doster et al. (2020)
Antimicrobial Combination Networks Antibacterial combinations http://www.sing-group.org/

antimicrobialCombination/
Jorge et al. (2016)

AntibioticDB Antibacterial compounds https://www.antibioticdb.com/ Farrell et al. (2018)
The Drug Repurposing Hub Compounds, targets, and indications https://clue.io/repurposing/ Corsello et al. (2017)
APD3 Antibacterial peptides https://aps.unmc.edu/ Wang et al. (2016)
CAMP3 Antibacterial peptides http://www.camp3.bicnirrh.res.in/ Waghu et al. (2016)
BAGEL4 Bacteriocins and RiPPs http://bagel4.molgenrug.nl/ van Heel et al. (2018)
DBAASP v3 Antibacterial peptides https://dbaasp.org/ Pirtskhalava et al. (2016)
Defensins knowledgebase Defensins http://defensins.bii.a-star.edu.sg/ Seebah et al. (2007)
DRAMP Antibacterial peptides https://ngdc.cncb.ac.cn/ Kang et al. (2019)
BaAMPs Biofilm-active peptides http://www.baamps.it/ Di Luca et al. (2015)
dbAMP 2.0 Antibacterial peptides https://awi.cuhk.edu.cn/dbAMP/ Jhong et al. (2022)
AECD Antimicrobial enzyme combinations https://www.ceb.uminho.pt/aecd/ Jorge et al. (2019)

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8644122

Jukič and Bren ML in Antibacterial Drug Design

https://www.ebi.ac.uk/chembl/
https://co-add.org/
http://antibiotics.toku-e.com/
https://megares.meglab.org/
http://www.sing-group.org/antimicrobialCombination/
http://www.sing-group.org/antimicrobialCombination/
https://www.antibioticdb.com/
https://clue.io/repurposing/
https://aps.unmc.edu/
http://www.camp3.bicnirrh.res.in/
http://bagel4.molgenrug.nl/
https://dbaasp.org/
http://defensins.bii.a-star.edu.sg/
https://ngdc.cncb.ac.cn/
http://www.baamps.it/
https://awi.cuhk.edu.cn/dbAMP/
https://www.ceb.uminho.pt/aecd/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


the development of novel antibacterials. We summarize the
relevant databases and consolidate the general workflow along
with the methods used in Figure 1.

RELEVANT DATABASES FOR
ANTIBACTERIAL DRUG DESIGN

The currently accessible libraries of antibacterial compounds are
enlisted that include small molecules or peptides that can be used
for the design of new antibacterial agents and model development
(Table 1). The reader should also be aware of tailored or focused
libraries and antibacterial libraries offered by commercial
compound suppliers and complete online antibacterial drug
discovery communities (CO-ADD; of special mention is that
the industry also contributes to the CO-ADD community, or
previously SPARK-database). The ChEMBL bioinformatics
platform is by far the most comprehensive resource (especially
considering small molecules), followed by CO-ADD (SPARK)
and antimicrobial index. Databases supporting antibacterial
peptides are far more common and offer quality data.

SMALL MOLECULES

To utilize machine learning approaches in the design of
antibacterial small molecules and test different machine
learning approaches, Yang et al. computed a simple set of
molecular descriptors for small molecules with and without
antibacterial properties and evaluated the decision tree,
k-nearest neighbor, and support vector machine (SVM)
classification models. The authors noted the good accuracy of
the SVM approach and the applicability of the methodology for
antibacterial drug design. Developed models produced the best
prediction accuracies of 96.66 and 98.15% for antibacterial
compounds and 99.50 and 98.02% for non-antibacterial
compounds (Yang et al., 2009). Ivanenkov et al. (2019)
compiled a database of 145,000 small molecules, most of
which came from a proprietary high-throughput screening
campaign with Escherichia coli (E. coli; 1,786 active and
130,855 inactive compounds; all data points were obtained
under the same experimental conditions). 1243 molecular
descriptors were calculated using Dragon, ChemoSoft, MOE,
and SmartMining software tools. Subsequently, self-organizing

FIGURE 2 | Antibacterial compounds identified by machine learning boosted in silico methods in CADD.
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maps (Kohonenmaps) were used for classification and prediction
of antibacterial activity with SmartMining software, and good
results were obtained (predictive power of 75.5% on average). The
developed models were deployed to identify new agents against
E. coli (compound 9, Figure 2). Maltarollo (2019) focused on
Staphylococcus aureus (S. aureus), specifically FabI inhibitors. 166
literature compounds were collected and molecular descriptors
and fingerprints were calculated using PaDEL software. Decision
trees (DTs), random forests (RF), multilayer perceptron (MLP),
k-nearest neighbors (kNN), Naive Bayes (NB), and support
vector machine (SVM) models were trained for classification.
RF models performed best in classifying known connections.

Shi et al. collected a database of New Delhi metallo beta-
lactamase (NDM-1) inhibitors (511 compounds) from the
literature (Shi et al., 2020). This was followed by the
calculation of molecular descriptors (34 descriptors, MOE
software) and the representation of SMILES strings padded
with zeros up to a length of 550. Different methods were
tested, such as RF, SVM, and linear discriminant analysis.
Finally, it was decided to use the RF model, which performed
much better than the classical virtual screening model (90.5 and
69.14%, respectively). The model was used to predict potential
NDM-1 inhibitors from a natural product library that contained
2,172 compounds (compound 1, Figure 2). The authors noted
that the deep-learning method was not very powerful because of
low data availability. Li et al. approached in a more general
manner using more data points from the ChEMBL database (Li
et al., 2021). The group collected a library of 2708 active
antibacterial compounds (IC50 cut-off of 10 μM) and 78,620
inactive compounds and proceeded to calculate fingerprints
(FP2, FP3, FP4, DLFP, MACCS, ECFP2, ECFP4, ECFP6,
FCFP2, FCFP4, and FCFP6) and vector representations
(mol2vec, SMILES2Vec, FP2VEC software; Jaeger et al., 2018;
Öztürk et al., 2018; Jeon and Kim, 2019). Several machine
learning methods were reviewed, and the FP2 database along
with RF, SVM, and MLP methods was selected for screening
(scikit-learn library; average accuracy of 0.85). The team then
constructed a predictor for antibacterial agents based on all three
models and applied it to the FDA-approved small-molecule
database (DrugBank, Wishart et al., 2018). Of interest is the
observed low FP2 similarity (<0.2) between the predicted and
FDA-approved antibacterial agents. The group focused on the
nine most different predicted compounds from the FDA
antibacterials with the highest screening scores in all three
models; however, it did not follow up with biological
evaluation. The identified compounds belonged to the classes
of anticancer drugs, ocular antihypertensives, and general
anesthetics, with enflurane scoring the highest. Enflurane was
previously demonstrated to possess antibacterial properties
in vitro (enflurane, Figure 2).

The superiority of machine learning–assisted molecular
docking was reported by de Avila et al. (2018). The group
collected a database of 22 structurally supported 3-
dehydroquinate dehydratase (DHQD) inhibitors with
measured inhibition constants. They developed a new
polynomial scoring function with selected energy terms from
classical scoring functions. Using Sandres software (Lasso and

Ridge Regression), the newly developed scoring functions
performed significantly better in the DHQD system test set
supplemented by decoy compounds (the group did not further
deploy the model).

Mansbach et al. focused on the permeation of Gram-negative
bacteria and developed a fragment-based approach. They
collected a database of compounds with MIC values in
Pseudomonas aeruginosa (P. aeruginosa) and calculated
fragment-based molecular representations for sparse regression
and hierarchical clustering to identify the most relevant
fragments thought to influence antibacterial activity
(Mansbach et al., 2020). The method was used to predict new
compounds with antibacterial properties and design “hybrid”
molecules from multiple fragments (OU-457, Figure 2).
Predicted molecules were experimentally evaluated.

Interestingly, an approach combining both antibacterial small
molecules and antimicrobial peptides in a heterogenous library
was reported by Nava Lara et al. (2019). To identify compounds
with antimicrobial activity in the intestinal flora, 1444 descriptors
were calculated (Padel Descriptor software) and 52 different
machine learning algorithms were tested (WEKA, AutoWEKA
software) to finally select a random committee algorithm
classifier with receiver operating characteristic (ROC) area
under the curve (AUC) performance of 0.83 for the
classification. The model was applied to the FDA-approved
antimicrobial agents and found that almost half of them had
potential broad-spectrum activity against intestinal bacteria;
however, the predictions were not experimentally
substantiated. Since antibacterial peptides make up a large
proportion of antibacterial chemical substances, they are
discussed in more detail in the section Antibacterial Peptides.

Mycobacteria infections are a significant public health
problem worldwide. The development of novel
antimycobacterial agents remains a challenge, especially in
light of the increasing emergence of multidrug-resistant strains
of mycobacteria. Several reviews have been published collecting
the main therapeutic targets in this field and highlighting the
importance of in silico methods, particularly promoted by
machine learning approaches and focusing on cell-wall
permeability studies (Aleksandrov and Myllykallio, 2019;
Pushkaran et al., 2019; Ejalonibu et al., 2021). In this way,
classical approaches of virtual screening against the
mycobacterial target PrpR (Vina, Glide software), MMGBSA,
and molecular dynamics (MD) studies on hit compounds were
complemented by the MycoCSM method to identify novel
benzimidazole derivatives as potential PrpR inhibitors
(compound 1p, Figure 2; Rajasekhar et al., 2021). MycoCSM
is a graph-based DT model (scikit-learn library) based on 15,000
unique compounds (featurized with RDkit descriptors) with
activity against bacteria of the genus Mycobacterium (MIC
cut-off of 1 μM), achieving correlation coefficients of up to
0.89 in predicting bioactivity in terms of minimum inhibitory
concentration (Pires and Ascher, 2020).

Korbee et al. used predictive clustering trees (PCTs) to explore
host-directed pathways toward antimycobacterial drug design
(Clus software; https://sourceforge.net/projects/clus/). The
group deployed their models on a library of pharmacologically
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active compounds in a (LOPAC)-based drug-repurposing screen
to identify experimentally validated compounds which target
receptor tyrosine kinases (RTKs) and inhibit intracellular
mycobacteria (SU-6656, Figure 2) and salmonellae
(haloperidol, Figure 2; Korbee et al., 2018).

NATURAL COMPOUNDS

Prediction of antibacterial activity while considering molecular
structure and metabolic reaction networks was also attempted by
Nocedo-Mena et al. (2019) (dataset: Jeong et al., 2000). The
metabolic reaction network data were merged with compounds
with MIC properties in ChEMBL, and machine learning
modeling with multi-output perturbations was used to build
predictive models. The models were deployed to identify
natural antibacterial compounds from C. incisa (phytol,
Figure 2).

The natural compounds were further explored by Masalha
et al., (2018). The group assembled a library of 628 antibacterial
compounds (Comprehensive Medicinal Chemistry Database)
along with an inactive set of 2892 natural compounds
(AnalytiCon Discovery GmbH database) and proceeded to
calculate molecular descriptors (MOE software). An iterative
indexing model based on stochastic elimination was created
for discriminative filtering and antibacterial identification via
the calculated molecular bioactivity index (Rayan et al., 2010).
The model ROC AUC for antibacterial classification was 0.96,
and the model was deployed for screening of the natural product
database to identify 10 potential antibacterial hits, two of which
were experimentally confirmed as active and others are still under
research (glucosinalbin, Figure 2). It is interesting to note that the
authors found that comparable performance could not be
achieved with either structure-based or ligand-based
approaches due to non-efficient scoring or the number of
false-positives.

Another report focused on marine natural sources to identify
new compounds with activity against MRSA (Dias et al., 2019).
Construction of a database of 6645 small molecules (ChEMBL,
PubChem, ZINC; active molecules with MIC <5 μM and inactive
molecules with MIC ≥5 μM) was followed by a calculation of a
comprehensive list of molecular descriptors and fingerprints
(PaDEL and CDK Descriptor Software) to finally build a
regression model using RF, SVM, Gaussian processes (GPs),
and consensus approaches for pMIC determination against
MRSA. The best consensus model (R2 of 0.68) was deployed
on the StreptomeDB database and resulted in 150 hits with 12
prioritized compounds, all with confirmed anti-MRSA
experimental activity (AGN-PC-07NPF8H, Figure 2). The
same group also reported a nuclear magnetic resonance (1H
and 13C NMR)–based approach where compounds were
featurized using experimental NMR-spectra assignation data.
The compound library was a dataset of 155 samples that
included 50 crude extracts, 55 fractions, and 50 pure
compounds obtained from microbial actinobacteria isolated
from marine sediments off the Madeira archipelago. RF, SVN,
and convolutional neural network (CNN) models were generated

with an accuracy of 0.77 for the test set and were ready for further
research and application.

Drug similarity identification was also attempted using
molecular descriptors and fingerprints calculated using a
database from the Current Medicinal Chemistry Database,
MDL Drug Data Repot, World Drug Index (drug-like
molecules), and Available Chemicals Directory for
non–drug-like molecules (180,000 compounds in total).
Naive Bayesian classifiers and recursive partitioning models
were developed and used for drug similarity prediction in the
Traditional Chinese Medicine Compound Database (TCMD)
(Tian et al., 2012). The research found that the classifiers can
successfully provide valuable information in the early stages
of drug design (drug-like compound identification accuracy of
0.86) and identify important drug-like scaffolds and even
classify them by pharmacological activity, for example,
label scaffolds of antibacterial compounds (BE-52211D,
Figure 2).

Indeed, natural compounds represent an invaluable source of
chemical diversity, and their drawbacks (availability, complexity,
synergistic pharmacodynamics) in drug development could be
mitigated by modern machine learning methods (Rodrigues et al.,
2016). To this end, Zhang et al. have collected several machine
learning protocols for activity prediction of natural products
(Zhang et al., 2021).

ANTIBACTERIAL PEPTIDES

An important subfield of the discovery of new antibacterials is
also the discovery of antibacterial peptides. The latter can serve as
active agents, starting points for the design of peptidomimetics, or
probes for further studies. The field and in silico tools have been
reviewed previously (Lee et al., 2017; Cardoso et al., 2020; Wang
et al., 2021), with the emphasis on machine learning–enabled
antimicrobial peptide discovery and SVM for the discovery of
membrane-active peptides (Lee et al., 2018). However, Frecer
reported a successful design of cationic antibacterial peptides
derived from protegrin-1 as early as 2006 (Frecer, 2006), and
machine learning methodology contributed significantly to the
design and discovery of novel peptides, as demonstrated by Fjell
et al. To single out just one report, they reinforced the traditional
QSAR approach with an artificial neural network model (ANN)
that inferred a set of peptides with known antibacterial properties
from computed descriptors (MOE software). After deploying the
model in a screening scenario (in silico library with random
peptides), short cationic peptides with MICs in the range of
0.3–10 μM were identified (Fjell et al., 2009). The extended
research group later reported an interesting approach for
relational learning algorithms (RelF and WEKA software for
regression) to explore patterns from the relational structures of
the antibacterial peptides or an approximate attribute-value
representation of the peptides (Szaboova et al., 2012). Feature
vectors for peptide representation were also usedusing Chou’s
pseudo-amino acid composition (PseAAC), and the SVM was
successfully used to classify antibacterial peptides (Khosravian
et al., 2013).
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The later approaches were also extended beyond antibacterial
peptide identification to peptide target selectivity or prediction of
Gram-positive or Gram-negative activities (Veltri et al., 2015).
The group used an evolutionary feature construction and a fast
correlation-based filter selection algorithm with logistic
regression (WEKA) to successfully identify antibacterial
peptides of up to 11 amino acids in length. The same group
used APD3 database, converted peptide sequences into zero-
padded numerical vectors of length 200, and trained a deep neural
network (DNN; Keras, TensorFlow software) model to classify
antimicrobial peptides (accuracy of 0.98 on APD3 data).
Embedding vector visualization was also performed, and a
reduced alphabet learnt from the DNN model was developed.
Reduced sequence space retained good classification performance
(Veltri et al., 2018). Mu€ller et al. trained a recurrent neural
network (RNN) with helical antimicrobial peptides (1554
peptides, APD). The sequences were padded according to the
length of the longest sequence, N-terminal token added, and One-
hot encoding employed (Mu€ller et al., 2018). The resulting model
was developed for de novo sequence generation, where 82% were
predicted to be active antimicrobial peptides compared to 65% of
randomly sampled sequences with the same amino acid
distribution as the training set (CAMP AMP prediction tool;
Waghu et al., 2014). Wu et al. used previous amino acid
substitution data for antibacterial peptides and developed an
amino acid activity contribution matrix (Wu et al., 2014).
Using this methodology, the group developed a 12-mer DP7
peptide with antibacterial properties against multiple strains
(Zhang et al., 2019). Similarly, Yoshida et al. used a natural
antibacterial peptide Temporin-Ali (FFPIVGKLLSGLL-NH2)
and PSI BLAST to create a library of distantly related and
functionally similar sequences, prepared the peptides, and
evaluated their antibacterial activities in vitro on E. coli to
construct a fitness matrix. The data were then used to train a
model and deploy it to optimize peptide sequences. The group
produced a peptide with 163-fold lower activity on E. coli bacteria
(Yoshida et al., 2018). Another approach using rough set theory
constructed quantitative structure–activity relationship rules for
existing antibacterial peptides. New sequence development via a
genetic algorithm and further in vitro testing resulted in a peptide
being active against Staphylococcus epidermidis (S. epidermidis)
(Boone et al., 2021).

Approaches were again extended by considering toxicity data in
the development of novel antibacterial peptides intended for human
drug development campaigns. Capecchi et al. used the Database of
Antimicrobial Activity and Structure of Peptides (DBAASP; 4774
active peptides with an MIC threshold of 32mg/ml) to train a
recurrent neural network (RNN) generative model to develop
nonhemolytic antibacterial peptides with activity against P.
aeruginosa, Acinetobacter baumannii (A. baumannii), MRSA, and
a broader range of MDR strains. To test the performance of machine
learning models for antibacterial peptide design, Wani et al. trained
models on a database of antibacterials (2638) and inactive peptides
(3700) using RF, kNN, SVM, DT, NB, quadratic discriminant
analysis (QDA), and ensemble learning. RF models were found to
perform best in validation experiments. The group also highlighted
three important peptide descriptors as essential for antibacterial

activity, namely, charge, polarity, and pseudo-amino acid
composition (Wani et al., 2021). The field of in silico tools for
designing antibacterial peptides using machine learning is also
gaining traction, and targeted tools such as AMPGAN v2 are
being developed (Van Oort et al., 2021). AMPGAN v2 is a
bidirectional conditional generative adversarial network (BiCGAN)
that targets de novo generation of antibacterial peptides. The group
used training data by compiling the Database of Antimicrobial
Activity and Structure of Peptides (DBAASP), Antiviral Peptide
database (AVPdb), and UniProt databases (Apweiler et al., 2004;
Gogoladze et al., 2014; Qureshi et al., 2014).

ANTIBACTERIAL DRUG RESISTANCE

Machine learning approaches are also being used to combat
antibiotic resistance. Back in 2017, Macesic et al. published a
review of antibacterial susceptibility testing using
genotype–phenotype prediction, machine learning approaches to
identify resistant strains, and the use of machine learning to improve
treatment and optimize clinical approaches to MDR infections
(Macesic et al., 2017). Interestingly, the authors lamented data
abstraction and quality but pointed out that the methodology
gains strength with the availability of quality data. A recent
review article discusses several bioinformatics approaches
involving machine learning that are useful for studying bacterial
resistance, such as the use of modern bioinformatics approaches for
the interpretation of data from increasing sequencing libraries; study
of protein structures; in silico analysis of serovar, serogroup, and
antigen markers; the development of in silico plasmid detection
methods; in silico identification of resistance genes; antibacterial
surveillance; and in turn, the prediction of the evolution of
antibacterial drug resistance (Ndagi et al., 2020). In addition,
machine learning approaches have been used beyond resistance
prediction using genomic data to elucidate resistance mechanisms
and for antibacterial stewardship applications. The latter are mainly
concerned with patient data analysis, diagnosis, treatment, and
prevention of resistance development in a clinical scenario
(Anahtar et al., 2021). With the increasing use of antibiotics and
the accompanying bacterial resistance, we cannot overemphasize the
importance of these new approaches in translational research.
Furthermore, the power of reported methods is increasing with
the growth of quality data and availability of curated and resistance-
focused libraries such as Plasmid ATLAS by Jesus et al., (2019),
Ensembl Genomes (Bacteria) by Yates et al., (2022), BacDive by
Reimer et al., (2019), Virulence Factor Database VFDB by Chen
et al., (2005), Beta-Lactamase Database (BLDB) by Naas et al.,
(2017), Antibiotic Resistance Genes Database (ARDB, Liu and
Pop, 2009), BacMed (Pal et al., 2014), and Comprehensive
Antibiotic Resistance Database (CARD, McArthur et al., 2013
and Alcock et al., 2020).

MODERN APPROACHES

As reviewed already by Durrant and Amaro in 2014 (Durrant and
Amaro, 2015) up to now, the medicinal chemistry community
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and pharmaceutical industry are adopting machine learning
techniques in medicinal chemistry and drug design in general
(Ekins et al., 2019) and antibacterial drug development (Patel
et al., 2020; Serafim et al., 2020). Of special mention would be the
acknowledgment of enormous data availability, its application
toward drug design (Burki, 2020), and utilization of modern
artificial intelligence approaches (David et al., 2021). Specifically,
the applications of modern deep learning methods in
antibacterial drug design are evident from a multitude of
published reports in scientific literature, tailored offerings by
commercial drug design software developers, and emergence
of deep-learning in drug design–focused CROs and start-ups
(Schroedl, 2019; Chang et al., 2019; Gupta et al., 2021; da Silva
et al., 2021).

Deep-Learning and Artificial Neural
Networks
An excellent example of the development and use of deep learning
supervised, semi-supervised, or unsupervised models in the area of
novel antibacterial drug development and discovery was recently
reported (Stokes et al., 2020). The group initially generated the
dataset by computing graph representations, Morgan fingerprints,
and molecular features computed using RDKit (internal training set
of 2560 compounds, 120 positive controls; with a test set: Broad’s
Drug Repurposing Hub of 6111 compounds) and used a Directed
Message Passing Neural Network (D-MPNN; Chemprop
implementation available on Github), a type of graph
convolutional neural network for model development. After
prioritization by toxicity prediction, the authors identified one
promising new antibiotic, halicin (SU -3327, Figure 2), and eight
(ZINC000098210492, ZINC000001735150, ZINC000225434673,
ZINC000019771150, ZINC000004481415, ZINC000004623615,
ZINC000238901709, and ZINC000100032716) other potential
antibiotic candidates and experimentally validated the obtained
hits to have an antibiotic activity on E. coli.

K-Nearest Neighbor
kNN is a supervised learning method that can be applied for
classification and regression tasks and is effectively utilized in
medicinal chemistry for novel antibacterial drug design. A
classification application of kNN was reported by Karakoc
et al. for classification of small molecules based on selecting
the most relevant set of chemical descriptors used for ultimate
discrimination between active and inactive compounds on
various biological systems (Karakoc et al., 2007). A
comprehensive list of kNN applications in classification and
regression tasks all applied toward drug delivery for infectious
disease treatment, treatment regimen optimization, drug delivery
system and administration route design, and drug delivery
outcome prediction was reported by He et al. (2021).

Support Vector Machines
SVM supervised learning models are also widely applied for
classification, regression, and ranking/virtual screening tasks in
medicinal chemistry in a range of fields such as novel anticancer
research, design of antivirals, protein–protein interaction

research etc. (Romero-Molina et al., 2019). Focusing on
antibacterial drug design, Li et al. reported SVM model
development from the fingerprint-featurized ChEMBL
database in order to identify novel antibacterial compounds
(Li et al., 2021). SVM model applications in antibacterial
design and antibacterial drug resistance research were
reviewed by Serafim et al. (2020). In a broader scope, recent
advances in SVMs and their numerous drug discovery
applications are summarized by Maltarollo et al. (2019).

Random Forest and Decision Trees
RF is a supervised ensemble learning method that consists of a
multitude of decision trees, constructed at a training phase. Upon
reviewing literature on novel antibacterial design supported by
machine learning, RF models were found to be one of the most
commonly applied for classification, regression, and other tasks
and represent a performance and computationally lean approach.
In this review, a number of RF applications are presented, for
small molecules, peptides (Bhadra et al., 2018), natural
product–based antibacterial design, and studying antibacterial
drug resistance (Dias et al., 2019; Maltarollo et al., 2019; Shi et al.,
2020; Li et al., 2021; Wani et al., 2021). A good example of
underlying supervised learning DT method was reported by
Suay-Garcia et al. (2020). The authors created a QSAR model
to predict antibacterial activity against E. coli. The compounds
were classified using a tree-based method and linear discriminant
analysis. A comprehensive review on other DT applications is
also provided by Serafim et al., (2020).

Coupling to Big Data
Needless to say, we must emphasize the coupling of modern
machine learning approaches to valuable data sources. Sripriya
Akondi et al., (2022) emphasize the use of compound and protein
conformational data which in its abundance classifies as big data
in all respects. However, common problems with big data sources
such as data quality, over-fitting, and difficult or lengthy
protocols should be taken in consideration (Motamedi et al.,
2022). Taken together, the big data era will walk hand-in-hand
with future drug design and will have a significant impact on how
to approach a drug discovery campaign (Zhu, 2020; Bhattarai,
et al., 2022; Lee et al., 2022). Zhao et al. point out in a wonderful
report “10 Vs.” or characteristics that are intrinsic in drug
discovery big data that we should be aware of and utilize,
namely: volume (size of data), velocity (data growth), variety
(lots of data sources), veracity (variable data quality), validity
(authenticity of data), vocabulary (aware of the terminology),
venue (numerous data platforms), visualization (presentation and
patterns in data), volatility (time domain of the data and
usefulness time window), and value (associated economic and
added value, Zhao et al., 2020).

CONCLUSION

In conjunctionwith antibacterial compound databases (Table 1) and
general (big) data sources such as ChEMBL andCO-ADD (SPARK),
efficient research in the area of new antibacterial drug design and
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target identification is possible (Gaulton et al., 2017; Wishart et al.,
2018). Incorporating novel machine learning methods can
successfully boost the traditional medicinal chemistry approaches,
and this review highlights a host of applications and machine
learning model deployments. The examples include synthetic and
natural small molecules, as well as peptides, ranging from a narrow
spectrum of Gram-positive or Gram-negative bacteria to a broad
spectrum of compounds acting onmycobacteria and eventually even
MDRbacteria. However, in reviewing the literature, it is immediately
apparent that medicinal chemistry is currently still in the
introductory phase of exploring modern (and also established)
machine learning methods and adapting them to the field. Most
of the reports are proof-of-concept works where the models are only
deployed to test the data and no experimental biological evaluation is
performed. However, the analysis of the best performing
featurization approaches and the methods themselves may be
even more important takeaways.

Input data is of critical importance, and the available tailored
or focused antibacterial data libraries, especially public resources,
leave much to be desired. The good availability of antimicrobial
peptide data and general relational databases, such as the ones

mentioned above, improves the situation. In conclusion, the
immense value of modern machine learning methods is
obvious—coupled with classical and experimental approaches
in medicinal chemistry— and new advances in antibacterial drug
design and mode of action research are possible.
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