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Loss of bacterial diversity 
in the sinuses is associated 
with lower smell discrimination 
scores
Kristi Biswas1*, Brett Wagner Mackenzie1, Charlotte Ballauf2, Julia Draf2, 
Richard G. Douglas1 & Thomas Hummel2

Olfactory impairment affects ~ 20% of the population and has been linked to various serious disorders. 
Microbes in the nasal cavity play a key role in priming the physiology of the olfactory epithelium and 
maintaining a normal sense of smell by the host. The aim of this study was to explore the link between 
olfactory dysfunction and nasal bacterial communities. A total of 162 subjects were recruited for this 
study from a specialized olfactory dysfunction clinic and placed into one of three groups: anosmia, 
hyposmia or normosmia. Swabs from the nasal middle meatus were collected from each subject then 
processed for bacterial 16S rRNA gene sequencing. No overall differences in bacterial diversity or 
composition were observed between the three cohorts in this study. However, the relative abundances 
of Corynebacterium spp. and Streptococcus spp. were significantly (p < 0.05) different in subjects with 
olfactory loss. Furthermore, subjects with deficiencies in discriminating between smells (based on 
discrimination scores) had a lower bacterial diversity (Simpson’s evenness p < 0.05). While these results 
are preliminary in nature, potential bacterial biomarkers for olfactory loss were identified. These 
findings need to be further validated and biologically tested in animal models.

The sense of smell is an important part of daily life. It helps guide behaviour, eating habits, detection of danger 
and taste1. Olfactory dysfunction generally increases with age, but can also be caused by head trauma, sinona-
sal disease, infection to the upper respiratory tract (URT) or neurodegenerative disorders2. One recent study 
reported that a loss of smell can be an early predictor for 5-year mortality in individuals without dementia aged 
40–903. Changes in body weight have also been shown to be linked to olfactory dysfunction, but the exact effect 
is still not clear4,5.

A complete loss of smell (anosmia) or partial loss (hyposmia) affects approximately 20% of the global 
population6. After an URT infection about 2/3 of the affected population spontaneously recovers, while those 
with chronic inflammatory diseases like chronic rhinosinusitis can often be treated successfully with corticoster-
oids or sinus surgery. During periods of chronic inflammation, olfactory stem cells forgo their normal function 
and help with pathogen removal and immune defense leading to loss of smell7. While recovery of smell can 
be a slow process, ‘smell training’ was introduced in the last 10 years for certain types of olfactory disorders to 
expedite the process8,9.

Although recent studies suggest that the microbiota in the sinonasal cavity of mice can modulate the physi-
ology of olfactory epithelium10, few studies linking the sinonasal microbiota and olfaction in humans have 
been published. One recent study compared the sinonasal bacterial composition between healthy subjects with 
hyposmia (n = 10), normosmia (n = 28), and slightly higher olfactory function (n = 29). The results showed that 
individuals with slight olfactory impairment had elevated relative abundances of the bacterial families Coma-
monadaceae and Enterobacteriaceae, while the genera Corynebacterium and Faecalibacterium were reduced11. 
However, this study could have benefited with the inclusion of an anosmia cohort.

Evidence for the potential link between oral and nasal microorganisms, the olfactory bulb (as an entry zone 
from the nasal cavity to the brain) and neurological diseases is increasing12,13. These studies, along with others 
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demonstrating a microbial dysbiosis in the sinuses of respiratory diseases14,15, signify that the microbial com-
munity has the potential to reflect the sensory function and health status of an individual.

Identifying potential early predictors of respiratory diseases has gained momentum because it allows for 
earlier treatment intervention which can result in less severe disease16. The identification of early microbial 
predictors for olfactory dysfunction may help with earlier medical interventions and better patient outcomes17. 
In this study, we aim to investigate the association of the sinus bacterial community composition with loss of 
smell using molecular methods.

Results
In the final dataset, samples from 120 patients across 418 amplicon sequence variants (ASV)s were analysed. 
During the rarefaction process, the DNA extraction control samples and PCR negative samples were filtered 
out of the dataset due to low read counts or poor quality sequences. Unless otherwise stated, the quality filtered, 
rarefied ASV table was used for all downstream processing.

Subjects were divided into 3 cohorts based on their threshold, discrimination and identification (TDI) scores: 
anosmia (n = 32), hyposmia (n = 57), and normal (n = 31). There was significantly greater number of hyposmia 
subjects in this study compared to the other two cohorts (chi-square p = 0.004). Of all the clinical parameters 
and patient data collected, age, etiology, and duration of disease were significantly different between the cohorts 
(Table 1). The cohort with a normal sense of smell was significantly younger than the other two cohorts. If 
patients had any underlying conditions such as acute sinusitis or tonsillitis symptoms this was recorded; sub-
jects in the hyposmia cohort had a significantly greater incidence of these underlying conditions. Accordingly, 
adjustments of false-discovery rates were made during statistical analysis of relative abundance of microbial 
ASVs between the three cohorts.

Overall bacterial community analyses.  Across all subjects, the bacterial communities were dominated 
by phyla Actinobacteria and Firmicutes. At the genus level, the majority of the sequences belonged to Corynebac-
terium and to lesser extent Staphylococcus, Dolosigranulum, and Moraxella (Fig. 1A,B). The effects of all meas-
ured clinical factors on the bacterial communities were tested through ‘adonis’ analysis. Only gender (R2 = 1.7%) 
and smoking status (R2 = 2.3%) significantly (p < 0.05) contributed to the variation observed in the bacterial 
community composition.

There were no significant differences in any of the alpha diversity measures between TDI groups (Fig. 1)C–E), 
or when subjects were grouped based on BMI, etiology, gender, smoking status, and duration of symptoms.

Specific bacterial ASV analyses.  Pairwise comparisons of individual ASVs revealed that the relative 
abundances of Streptococcus, Blastomonas, Anaerococcus, Lawsonella, Nocardioides, Corynebacterium, Fusobac-
terium, and Staphylococcus were significantly different between the TDI grouped cohorts (Table 2). Interestingly, 
Streptococcus ASV111 and Anaerococcus ASV43 were significantly more abundant in the anosmia group com-

Table 1.   Patient demographics and results from statistical analyses. Continuous variables were tested for 
normality using Shapiro–Wilk normality test followed by analysis of variance then Tukey multiple comparisons 
of means for pairwise comparisons. Means ± standard deviation are shown. Categorical variables were tested 
using a chi square test. p < 0.05 is considered statistically significant and significant results are shown in bold 
typeface. Patients are categorised based on TDI scores; whereby a total TDI score > 30.5 indicates normal sense 
of smell, 16.5–30.5 indicates hyposmia, and < 16.5 indicates anosmia. NS = not significant, p > 0.05.

Variables Normal (n = 31) Hyposmia (n = 57) Anosmia (n = 32) Unadjusted test p-value

Female 16/31 34/57 17/32 NS

Never smoked 28/31 54/57 31/32 NS

Age at sampling 48.6 ± 17.1 61.3 ± 11.7 65.0 ± 11.2 p < 0.05

Parkinson’s in the family (Yes) 4/31 1/57 3/32 NS

Alzheimer’s in the family (Yes) 4/31 4/57 3/32 NS

Etiology

 Healthy control 24 0 0

p < 0.05 Idiopathic 1 21 17

 Post viral 6 36 15

Duration of symptoms (months)

 0 -6 28 28 18
p < 0.05

  > 6 3 29 14

Hypertension (yes) 8 23 15 NS

Tonsil disease (yes) 3 10 4 NS

Sinus disease (yes) 2 3 3 NS

Disease prevalence (yes) 12 40 25 p < 0.01
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Figure 1.   Bacterial community data at the (A) phylum and (B) genus levels for each subject. Subjects are 
grouped based on TDI scores (anosmia, hyposmia and normal). Box and whisker plots to visualise the 
relative abundance changes were generated using ‘ggplot2’36, and represent grouped summaries for alpha 
diversity metrics: (C) Observed amplicon sequence variants, (D) Simpson’s evenness, and (E) Shannon diversity.
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pared to the other two cohorts. Whereas Streptococcus ASV65 and Corynebacterium ASV46 were significantly 
more abundant in the normal cohort compared to the hyposmia group. The relative abundances of other sig-
nificantly different ASVs listed in Table 2 were substantially lower (< 0.2% of the overall sequence abundance).

Individual TDI category analyses.  Scores used to categorise patients as anosmic, hyposmic or normal 
were based on independent threshold, discrimination and identification (TDI) criteria. We observed significant 
differences in the three independent TDI scores between the cohorts (anosmia, hyposmia and normal) (Fig. 2).

Furthermore, when we analysed the bacterial communities based on the independent TDI scores, we observed 
a significant difference in the Simpson’s evenness alpha diversity metric. This difference was only observed when 
subjects were categorized based on discrimination scores (Fig. 3). Specifically, the anosmia cohort had signifi-
cantly reduced diversity when compared to the other two cohorts. The pairwise analysis of individual ASVs based 
on the discrimination scores are shown in Table 3. Comparisons of taxa between groups based on discrimination 
scores revealed that hyposmic and normosmic groups had the highest number of ASVs that were significantly 
different in terms of relative abundances. Streptococcus ASV111 was again found to be significantly greater in 
the anosmia group and Corynebacterium ASV265 was found to be significantly greater in the normal cohort. 

Despite the lack of significant differences in overall alpha diversity across the three cohorts for independent 
threshold or identification scores, each category had a different set of microbial variants that differed significantly 
(Supplementary Tables 1 and 2).

Table 2.   Dunn’s test pairwise comparisons of individual amplicon sequence variants (ASVs) (overall 
abundance > 0.01%) between SDI categories. Only values that were significant (p < 0.05).

ASV Phylum Genus Anosmia–Hyposmia Anosmia–Normal Hyposmia–Normal

ASV111 Firmicutes Streptococcus 0.009 0.001 –

ASV456 Proteobacteria Blastomonas 0.005 0.005 –

ASV65 Firmicutes Streptococcus – – 0.007

ASV200 Actinobacteria Lawsonella – 0.013 0.013

ASV46 Actinobacteria Corynebacterium_1 – – 0.008

ASV544 Fusobacteria Fusobacterium 0.012 0.020 –

ASV360 Firmicutes Anaerococcus 0.013 0.030 –

ASV827 Actinobacteria Nocardioides – – 0.013

ASV43 Firmicutes Anaerococcus 0.018 – –

ASV160 Firmicutes Staphylococcus – – 0.025

ASV202 Firmicutes Staphylococcus – 0.023 –

Figure 2.   Results of the smell test (TDI) for the subjects of this study are shown in this graph. Box and 
whisker plots used visualise the relative abundance changes were generated using ‘ggplot2’36 show threshold, 
discrimination and identification scores for each cohort separately (A) and as a combined total TDI score (B). 
Significant differences (p < 0.05 indicated with *) were observed between each cohort.
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Discussion
The human microbiome is an integral part of maintaining homeostasis in a healthy individual. Microorganisms 
associated with the human body can also play an important role in many diseases and disorders across various 
body sites. There is a spectrum of microbe-host related interactions; these range from a single pathogen infec-
tion such as S. aureus causing skin infections to overall community structure imbalances in the gut like those 
observed in obese individuals18,19. The link between olfactory loss and the sinonasal microbiome has been little 

Figure 3.   Simpson’s evenness alpha diversity results for the three cohorts of this study (anosmia, hyposmia and 
normal) based on discrimination scores only are shown. Grouped summaries for each cohort are represented 
in the box and whisker plots generated using ‘ggplot2’36. Significant differences were observed between anosmia 
subjects and the other two cohorts.

Table 3.   Dunn’s test pairwise comparisons of individual amplicon sequence variants (ASVs) (overall 
abundance > 0.01%) between discrimination scores only. Only values that were significant (p < 0.05) are shown.

ASV Phylum Genus Anosmia–Hyposmia Anosmia–Normosmia Hyposmia–Normosmia

ASV360 Firmicutes Anaerococcus 0.000 0.003 –

ASV111 Firmicutes Strepotococcus 0.039 0.001 0.037

ASV36 Proteobacteria Campylobacter 0.019 – 0.006

ASV200 Actinobacteria Lawsonella – 0.012 0.005

ASV78 Firmicutes Veillonella 0.029 – 0.010

ASV203 Proteobacteria Brevundimonas 0.008 0.013 –

ASV137 Proteobacteria Tepidimonas – – 0.005

ASV126 Firmicutes Lactobacillus 0.015 – 0.018

ASV544 Fusobacteria Fusobacterium 0.011 0.012 –

ASV265 Actinobacteria Corynebacterium_1 – 0.018 0.012

ASV487 Proteobacteria Haemophilus 0.014 0.016 –

ASV87 Bacteroidetes Prevotella_7 – – 0.019

ASV922 Firmicutes Streptococcus 0.026 – 0.039

ASV149 Firmicutes Gemella – – 0.023

ASV52 Firmicutes Streptococcus – 0.038 0.022

ASV202 Firmicutes Staphylococcus – 0.023 0.035
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studied. In this cross-sectional observational study we investigated the overall bacterial community composition 
and diversity, along with shifts in sequence abundances of individual bacterial taxa across patients with normal 
sense of smell to complete loss of smell. This study adds new knowledge to the current literature as it is the largest 
study to date examining the bacterial composition in olfactory loss, and importantly, we included an anosmia 
group which was lacking in earlier studies.

A loss of smell is a natural process in the older population (> 60 years)20 and this is evident in our study cohort. 
However, this confounding factor was accounted for when comparing the microbial communities between 
the three groups of this study. The sinonasal bacterial profiles detected from the samples in this study are con-
sistent with those previously detected in the sinuses using 16S rRNA amplicon sequencing14,21,22. Specifically, 
a dominance of members from the genera Corynebacterium, Staphylococcus, Moraxella and Dolosigranulum 
were observed. Our study found no significant differences in the overall bacterial community composition and 
diversity between anosmic, hyposmic and normal subjects. In contrast to our findings, a recent study reported 
an increase in bacterial diversity and function in subjects with hyposmia compared to subjects with a normal 
sense of smell11. However, all participants recruited for that study were healthy, and only a small proportion had 
a slight decrease in olfactory function when tested. In our present study, hyposmic and anosmic patients expe-
rienced olfactory loss for a sustained period of time and sought specific clinical counseling for their condition.

While no overall differences in bacterial diversity or richness were observed between the three cohorts, the 
relative sequence abundances of two particular ASVs (associated with Streptococcus and Corynebacterium genera) 
were associated with loss of smell. A recent study comparing the nasal microbiome of Parkinson’s disease patients 
with olfactory loss reported similar results, with no overall differences in bacterial diversity12. Additionally, the 
relative abundances of taxa such as Moraxella and Staphylococcus were significantly associated with a loss of 
olfactory function. These subtle differences in the bacterial community could initiate or exacerbate changes in 
olfactory function. Further research to test the biological mechanisms of these two identified microbes of interest 
and olfactory dysfunction will need to be carried out.

Sub-setting the individual components of smell categories which combine multiple facets offers increased 
insight into the nuances associated within those categories. In our study, we divided the individual TDI scores 
(threshold, discrimination and identification), and then independently analysed the bacterial data in relation to 
these scores. Threshold was previously identified as the category which contributes the most to the differences 
in bacterial communities between TDI scores11. However, in this study we found that the discrimination score 
was the only TDI category to have a significant impact on diversity measures. Subjects with a complete or partial 
loss of smell had significantly lower bacterial diversity than subjects with a normal sense of smell. This finding 
is consistent with other disorders and diseases in human microbiome research, but is in contrast to the previous 
study which reported increased diversity in subjects with partial smell impediments compared to normosmic 
participants. Interestingly, the abundances of Corynebacterium spp. were significantly reduced in subjects with 
olfactory loss in both our study and previous studies11. We propose that some species from the Corynebacterium 
genus may be potential biomarkers for loss of olfactory function. Further studies which quantify and identify 
Corynebacterium species or strains should explore this possibility. Ultimately, identifying microbial biomarkers 
for olfactory loss could help identify those patients who may be at risk for losing their sense of smell and facilitate 
an earlier intervention. Earlier treatments often result in better prognosis for patients23,24.

In light of the results from this study, different bacterial biomarkers may exist for each of the different smell 
categories. Furthermore, we speculate that due to this reason a global difference in overall TDI score was not 
observed. The lack of any significant correlation of bacterial communities for the three cohorts and measures such 
as BMI, etiology, and history of other illness was surprising as these correlations have been reported previously11. 
We speculate that if samples were collected from the olfactory cleft instead of the middle meatus then differences 
in the microbial communities would become more apparent. Sampling from the sinuses is one of the limitations 
of this study. We recommend that a study examining variation in bacterial community composition between 
sinonasal and olfactory cleft sample sites should be conducted. Many such studies have been done previously 
(including one from our own group), but these studies did not include olfactory cleft samples25,26.

Conclusions
In this study, we explored the link between olfactory function and sinonasal bacterial community composi-
tion. Although few differences in bacterial community composition between the three cohorts in this study 
were found, important observations were made through our analyses. We found that the relative abundances of 
amplicon variants associated with Streptococcus and Anaerococcus genera were significantly more abundant in 
the anosmia group compared to the other two cohorts. Analyses focusing on changes in the relative abundances 
of specific ASVs revealed different smell categories have different bacterial biomarkers. Additionally, when we 
examined cohorts based on the individual components of the TDI scoring system, we found that the loss of dis-
criminating smells was correlated with decreased bacterial diversity in the sinuses. Future work should focus on 
establishing a biological link between olfactory dysfunction and species of Streptococcus and Corynebacterium.

Methods
Subject clinical information.  In total, 162 individuals were recruited that visited the specialized olfac-
tory dysfunction clinic in Dresden, Germany. A schematic of the study design is shown in Fig. 4. Patients were 
categorised based on TDI scores: a total TDI score ≥ 30.5 indicated a normal sense of smell, 16.5–30.5 indi-
cated hyposmia, and < 16.5 indicated functional anosmia (further termed “anosmia”). Subjects’ body mass index 
(BMI), age at sampling, gender, smoking status, duration of disease, etiology, current medication, family history 
of neurodegenerative disorders, head trauma, and other co-morbidities were recorded based on a standard-
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ized, structured medical history27. Subjects that were < 18 years of age, pregnant, or had taken antibiotics in the 
4 weeks prior to sample collection were excluded from the study.

This study had approval from the ethics committee at the Medical Faculty of the TU Dresden (ethics # 
EK21012018). Written informed consent was collected from all participating subjects. All experiments were 
performed in accordance with relevant guidelines and regulations.

TDI test details.  In an established clinical test of olfactory acuity different odors were administered with 
pen-like odor dispensers ("Sniffin’ Sticks")28. For olfactory presentation, the pen’s cap is removed for about 3 s, 
its tip is placed in front of the subject’s nose and carefully moved from the left to the right nostril and back. 
The olfactory threshold value for phenylethyl alcohol (PEA; dissolved in propylene glycol) was determined in 
a three-alternative forced choice (3-AFC) paradigm, during which participants repeatedly received triplets of 
pens. They had to distinguish the pen containing a certain concentration of PEA from two blanks filled with 
the solvent. The highest concentration was a 4% odor solution. Sixteen concentrations (dilution ratio 1:2) were 
presented starting from the lowest odor concentration using a staircase paradigm. Two consecutive correct iden-
tifications of the odor or one incorrect answer marked a so-called turning point and led to a decrease or increase 
in odor concentration. The triplets were presented at intervals of 20 s. The threshold value was the mean value 
of the last four turning points in the staircase, with the final score ranging between 1 and 16 points. The same 
3-AFC logic was used for the odor discrimination task. Two pens of any triplet contained the same odor while 
the third pen smelled different. The subjects were asked to indicate the pen with a different smell. The odor 
presentation interval within a triplet was about 3 s. The intervals between the triplets were 20 s. The score was 
the sum of the correctly identified odors. Therefore, the score in this task ranged from 0 to 16 points. Subjects 
were blindfolded during the threshold and discrimination tasks to avoid visual identification of the target pens. 
Odor identification included common and familiar smells (recognized by at least 75% of the population). Using 
a 4-AFC task the subjects were asked to identify the smells from lists of four verbal descriptors. The interval 
between presentation of pens was about 20 s. The total score was the sum of the correctly identified pens, so that 
the test subjects scored between 0 and 16 points. The final "TDI score" was the sum of the scores for the subtests 
"threshold", "discrimination" and "identification".

Sample collection and DNA extraction.  During clinic, pairs of sterile rayon-tipped swabs (Copan, 
#170KS01) were collected from the left middle meatus of each subject by a trained clinician. If the clinician 
suspected a possibility of contamination by touching other nasal sites then swabs were discarded and samples 
recollected from the middle meatus. Using sterile techniques, the tip of each swab was placed in a sterile 2 mL 
screw-capped tube containing RNALater® nucleic acids preservative. Tubes were stored at room temperature for 
24 h before being transferred to − 20 °C for storage. Once all samples had been collected for this study, they were 
sent to the laboratory at the University of Auckland, New Zealand for further analyses.

As previously described14,25 pairs of swabs from each subject were thawed on ice and placed together into a 
sterile Lysing Matrix E tube (MP Biomedicals, Australia). Cells were ruptured using a Bead Beater at 2.9 m/s for 
2 × 30 s. Genomic DNA was extracted from the samples using the AllPrep DNA/RNA Mini Kit (Qiagen) following 
the manufacturer’s instructions and eluted in 30 μL of DNase-free water. The quality and quantity of genomic 
DNA were measured on a Nanodrop 3300 fluorospectrometer. A negative DNA extraction control containing 
200 µL of sterile PCR-grade water was carried out simultaneously to assess the kit for contamination.

PCR amplification and sequencing.  The bacterial communities for each sample was processed as 
described previously22. In brief, the V3-V4 region of the bacterial 16S rRNA gene was amplified using the S-D-
Bact-0341-b-S-17/S-D-Bact-0785-a-A-2129 primer pair containing Nextera library prep kit adapters. Approxi-
mately 100 ng of genomic template DNA was used in duplicate PCRs, each consisting of 35 cycles. Negative PCR 
controls were included in all PCR reactions as well as elute from the negative extraction control, which yielded 
no detectable products. Duplicate PCR products were pooled to a final volume of 50  µL and purified using 
Agencourt AMPure magnetic beads (Beckman Coulter Inc., USA) according to the manufacturer’s instructions. 
Purified PCR products were quantitatively assessed with Qubit dsDNA high-sensitivity kits (Life Technologies, 
New Zealand) and standardised to ~ 5 ng per sample. The purified products were submitted to the Auckland 
Genomics Centre for library preparation and sequencing on the Illumina MiSeq 2 × 300 base pair platform with 
pair end reads. Raw sequence reads are stored on a publicly available database (NCBI) under BioProject number 
PRJNA638970.

Bacterial 16S rRNA gene sequence data processing.  Of the original 162 samples processed for 
sequencing, data were analysed for 139 patients after reviewing symptoms and etiology. Specifically, those 
patients whose diagnosis and TDI scores did not match or had a history of CRS were removed as these data 

Figure 4.   A schematic of the study design.
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could confound conclusions. Data were processed according to version 1.12 DADA2 pipeline in R30. Most 
parameters were kept as default, except ‘truncLen’ was set to 280 and 240 for forward and reverse reads, respec-
tively, and primers were removed. Quality filtered sequences that were < 300 bp or > 430 bp were considered 
non-target and removed from the dataset, then chimeras were identified and removed. Taxonomy was assigned 
to amplicon sequence variants (ASVs) using the SILVA nonredundant v128 database31. Non-target Eukaryote 
taxa were removed prior to the removal of ASVs with a prevalence less than 3 times in at least 5% of the samples. 
The resulting data were then rarefied to 1600 counts per sample. Rarefaction excluded sinus samples from 19 
patients. The final dataset for downstream processing included 418 taxon-assigned ASVs across 120 samples.

Data analysis and statistics.  All data analyses and statistics were carried out in R version 3.6.032. Con-
tinuous variables for the patient data were tested for normality using Shapiro–Wilk normality test followed by 
analysis of variance then Tukey multiple comparisons of means for pairwise comparisons. The bacterial com-
munities and assessment scores for each independent category (threshold, discrimination, identification) that 
comprises the total TDI scores were evaluated independently with pairwise comparisons for each of the three 
cohorts (anosmia, hyposmia and normal). Categorical variables for the patient data were tested using a chi- 
square test. Values of p < 0.05 were considered statistically significant and significant results are shown in bold 
typeface in Table 1.

Alpha diversity (diversity within samples) metrics were calculated in the R package ‘microbiome’33. Beta-
diversity (diversity between samples) was calculated in R using the ‘vegan’ package34. The Bray–Curtis dissimilar-
ity index was chosen for its ability to detect underlying ecological gradients35. Permutational multivariate analyses 
of variance based on Bray–Curtis distance matrices were conducted using the ‘adonis’ command in the ‘vegan’ 
package. Finally, statistical tests were conducted to evaluate ASVs which exhibited a significant change in relative 
abundance between groups and subsets of data after the adjustment for false discovery rate. ASVs with < 0.01% 
total relative abundance were removed before comparisons. For categorical variables with > 3 groups, Dunn’s test 
was conducted with Benjamini–Hochberg multiple pairwise corrections in the R package ‘dunn.test’ to provide 
adjusted p values. The student’s t-test was applied for categorical variables with two groups. Box plots to visualise 
the relative abundance changes in Figs. 1, 2 and 3 were generated using ‘ggplot2’36.
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