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Abstract: Background and Purpose: Diabetic peripheral neuropathy (DPN) leads to ulceration,
noninvasive amputation, and long-term disability. This study aimed to develop and validate a
nomogram for forecasting the probability of DPN in type 2 diabetes mellitus patients. Methods: From
February 2017 to May 2021, 778 patients with type 2 diabetes mellitus were included in this study. We
confirmed the diagnosis of DPN according to the Toronto Expert Consensus. Patients were randomly
divided into a training cohort (n = 519) and a validation cohort (n = 259). In the training cohort,
univariate and multivariate logistic regression analyses were performed, and a simple nomogram
was built using the stepwise method. The receiver operating characteristic (ROC), calibration curve,
and decision curve analysis were computed in order to validate the discrimination and clinical value
of the nomogram model. Results: About 65.7% and 72.2% of patients were diagnosed with DPN in the
training and validation cohorts. We developed a novel nomogram to predict the probability of DPN
based on the parameters of age, gender, duration of diabetes, body mass index, uric acid, hemoglobin
A1c, and free triiodothyronine. The areas under the curves (AUCs) of the nomogram model were
0.763 in the training cohort and 0.755 in the validation cohort. The calibration plots revealed well-
fitted accuracy between the predicted and actual probability in the training and validation cohorts.
Decision curve analysis confirmed the clinical value of the nomogram. In subgroup analysis, the
predictive ability of the nomogram model was strong. Conclusions: The nomogram of age, gender,
duration of diabetes, body mass index, uric acid, hemoglobin A1c, and free triiodothyronine may
assist clinicians with the early identification of DPN in patients with type 2 diabetes mellitus.
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1. Introduction

Diabetic peripheral neuropathy (DPN), a common microvascular complication of type
2 diabetes [1,2], increases the risk of diabetic foot ulceration and non-traumatic lower ex-
tremity amputation [3,4]. The primary symptoms of DPN are paresthesia and neuropathic
pain in the lower limbs [5,6]. However, almost half of patients present asymptomatically
in the early phases of DPN [7], which may result in delayed diagnosis and a high rehospi-
talization rate. Therefore, timely diagnosis and treatment are essential for preventing the
progression and complications of DPN.

An effective diabetic retinopathy prediction model can provide cost-effective and
readily accessible risk predictions for patients with type 2 diabetes mellitus [8]. A recent
study established different models for predicting DPN in a community healthcare center,
and their diagnosis of DPN was not based on nerve conduction studies (NCSs) [9]. Standard
diagnostic procedures for DPN incorporate clinical symptoms, physical examination, and
NCSs [6,10]. NCSs have been the gold standard for diagnosing DPN, particularly in
asymptomatic individuals [11]. Nevertheless, NCSs are expensive and the examination
process is unpleasant. In addition, NCSs are not generally available in the majority of
Chinese hospitals and are only performed in extreme situations. Therefore, it is vital to
design a method that is both straightforward and novel for the early detection of DPN.
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Thus, the goal of this study was to develop and verify a nomogram for the prediction of
DPN in type 2 diabetes patients using cost-effective and readily available characteristics.

2. Materials and Methods
2.1. Study Population

This cross-sectional study was conducted in the inpatient department of the First
Affiliated Hospital of Wenzhou Medical University from February 2017 to May 2021. Par-
ticipants diagnosed with type 2 diabetes mellitus were continuously enrolled in the study.
The diagnosis of type 2 diabetes mellitus was based on the 2017 criteria of the American
Diabetes Association (ADA) [12]. All patients underwent neurological assessment and
NCSs. We confirmed the diagnosis of DPN by the presence of clinical signs or symptoms
associated with neuropathy and abnormal electromyography tests, according to the Toronto
Expert Consensus [10]. The participants were divided into DPN and non-DPN groups.
The inclusion criteria were: (1) age ≥18 years, (2) patients with type 2 diabetes mellitus.
Exclusion criteria included other causes of peripheral neuropathy, malignant tumor, acute
infectious disease, severe liver or renal disease, heart failure, metabolic disease (thyroid
disease or vitamin B12 deficiency), other severe life-shortening illness, and any medication
that could affect serum uric acid. The study was approved by the ethics committee of
the First Affiliated Hospital of Wenzhou Medical University (NO.KY2021-R141). Written
informed consent was obtained from patients and their relatives.

2.2. Peripheral Neuropathy Assessment

All subjects accepted neurological assessment using the neuropathy symptom score (NSS)
and neuropathy disability score (NDS) [13–15]. The NSS included burning pain, tingling,
numbness, fatigue, cramping, or aching in the legs. The NDS included temperature percep-
tion, vibration, pinprick sensation, and Achilles reflex. The clinical criteria for peripheral
neuropathy are NDS scores of ≥6 or NDS scores of 3–5, with NSS scores of ≥5 [16].

Electrophysiological examinations were carried out by experienced technicians with
the electromyography instrument (Kipoint-4 type, Vidi; NDI-200P + type; Poseidon). Pa-
tients kept limb skin temperature between 32 to 35 °C during testing. The compound
muscle action potential (CMAP) amplitude, distal latency, and conduction velocity (CV)
of bilateral ulnar, median, tibial, and common peroneal nerves were measured for motor
nerves. The sensory nerve action potential (SNAP) amplitude and CV of bilateral ulnar,
median and superficial peroneal nerves were measured for the sensory nerve. Bilateral
measurements of the F-wave latency of the tibial nerve were also calculated. The data of
healthy individuals in the neurophysiology laboratory of Peking Union Medical College
Hospital were used as reference values. Electrophysiological experts judged abnormal
NCSs based on the abnormality of one or more attributes in two or more nerves [17]. In
addition, the NCSs parameters of the more severe side were collected. The mean motor
nerve amplitude (MNAmp) was calculated as (ulnar nerve motor amplitude + median
nerve motor amplitude + tibial nerve motor amplitude + common peroneal nerve motor
amplitude)/4. A similar formula was employed to calculate the mean motor nerve conduc-
tion velocity (MNCV), mean sensory nerve amplitude (SNAmp), and mean sensory nerve
conduction velocity (SNCV) [18].

2.3. Clinical and Laboratory Data Collection

Information about medical history, physical examination, and clinical data, including
age, gender, duration of diabetes (duration), body mass index (BMI), history of smoking,
hypertension, and dyslipidemia, were collected from electronic medical records.

After 8–10 hours of overnight fasting, blood samples were obtained in the morning.
Routine blood tests, including neutrophils, lymphocytes, and platelet (PLT), were deter-
mined by an autoanalyzer (Mindray BC6800, Shenzhen, China). NLR was defined as
the ratio of neutrophil count to lymphocyte count. Hemoglobin A1c (HbA1c) was mea-
sured by high-performance liquid chromatography. Uric acid (UA), fasting plasma glucose
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(FPG), total cholesterol (TC), triglyceride, high-density lipoprotein cholesterol (HDL-C),
and low-density lipoprotein cholesterol (LDL-C) were determined by an automated chem-
istry analyzer (Beckman AU5800, Indianapolis, IN, USA). Free triiodothyronine (FT3), free
thyronine (FT4), and thyroid stimulating hormone (TSH) were measured by an automatic
chemiluminescence analyzer (Beckman DXI800, Indianapolis, IN, USA). Fibrinogen (FIB)
was determined by an automated coagulation analyzer (Stago STA-R Max, Paris, France).

2.4. Training and Validation of the Nomogram

Finally, 778 patients with type 2 diabetes were included in this study. The patients
were randomly divided into two groups (two patients in the training cohort and one in the
validation cohort).

2.5. Statistical Analysis

We performed the Shapiro–Wilk test to determine whether the variable conformed to
the normal distribution. Continuous variables with normal distributions were represented
as mean ± standard deviation (SD), and continuous variables with skewed distribution
were described as median ± interquartile ranges. Student’s t-tests or the Kruskal–Wallis
test were used to compare the difference between two groups in continuous variables.
Categorical variables were represented as frequencies (percentages) and compared using
Chi-square tests between the two groups.

The comparison of baseline characteristics of the training cohort stratified by the
presence of DPN were presented. First, all variables were assessed using univariate analysis
between the DPN group and the non-DPN group, and univariate logistic regression was
used to identify the risk factors of DPN in the training cohort. Secondly, the stepwise
multivariate logistic regression analyses were performed with p < 0.05 variables from
the univariate logistic regression. According to previous studies, the clinical variables
recognized as critical factors were also entered into the multivariate logistic regression
analyses. Variables with p < 0.05 in the multivariable analysis were retained to establish a
nomogram in the training group. The score for each variable was calculated based on the
regression coefficient values.

The validation of the nomogram model consisted of two parts. Initially, the areas
under the curve (AUC) of the receiver operating characteristic (ROC) were used to evaluate
the nomogram's discrimination capacity in the training cohort. We also conducted the AUC
with a 95% CI using 500 bootstrap resamplings for internal validation. The calibration
curve was assessed graphically by smoothing a scatter plot of the predicted and actual
probabilities. Decision curve analysis (DCA) was performed in order to determine the
clinical net benefit of the model. Second, the ROC, calibration curve, and DCA were also
performed in the validation cohort. Correlations between variables in the nomogram and
NCSs parameters were assessed using Pearson's or Spearman's test in all of the patients.
Then, multiple linear regression analysis was executed in order to identify the relationship
between variables in the nomogram and NCS parameters. Two-sided p < 0.05 was consid-
ered statistically significant. All of the statistical analyses were performed with statistical
packages R version 3.5.1(https://www.R-project.org, access date on 20 August 2022) and
SPSS Version 24.0 (IBM, Chicago, IL, USA).

3. Results

Seven hundred and seventy-eight eligible patients with type 2 diabetes were randomly
divided into a training cohort (n = 519) and a validation cohort (n = 259). About 65.7% and
72.2% of patients were diagnosed with DPN in the training and validation cohorts. The
differences in baseline characteristics between these two were insignificant (Table 1).

https://www.R-project.org
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Table 1. The comparison of baseline characteristics of the patients in training and validation cohorts.

Variables Training Cohort (n = 519) Validation Cohort (n = 259) p Value

DPN, no. (%) 341 (65.7%) 187 (72.2%) 0.081
Age (years) 57.76 ± 12.95 58.97 ± 12.49 0.265

Male, no. (%) 334 (64.4%) 159 (61.4%) 0.465
Smoking, no. (%) 180 (34.7%) 77 (29.7%) 0.193

Hypertension, no. (%) 266 (51.3%) 143 (55.4%) 0.307
Dyslipidemia, no. (%) 168 (32.4%) 78 (30.1%) 0.579

Duration (years) 10 (4–12) 10 (5–15) 0.061
BMI (kg/m2) 24.21 ± 3.49 24.23 ± 3.60 0.803

FPG (mmol/L) 7.95 ± 2.90 8.10 ± 3.69 0.813
UA (umol/L) 329.04 ± 101.10 326.47 ± 98.71 0.748
TC (mmol/L) 4.79 ± 1.35 4.81 ± 1.48 0.835
TG (mmol/L) 1.91 ± 1.74 1.89 ± 1.47 0.481

HDL-C (mmol/L) 1.02 ± 0.29 1.05 ± 0.43 0.753
LDL-C (mmol/L) 2.61 ± 0.98 2.58 ± 1.03 0.629

FIB (g/L) 3.79 ± 1.24 3.71 ± 1.05 0.950
NLR 2.36 ± 1.41 2.45 ± 1.62 0.438

PLT (×109/L) 221.10 ± 64.93 222.26 ± 61.99 0.809
HbA1c (%) 9.32 ± 2.38 9.42 ± 2.82 0.940

TSH (mIU/L) 1.34 (0.91–2.03) 1.31 (0.86–1.92) 0.124
FT4 (pmol/L) 11.24 ± 2.33 11.34 ± 2.11 0.423
FT3 (pmol/L) 4.64 ± 0.79 4.67 ± 0.84 0.568

DPN, Diabetic peripheral neuropathy; BMI, body mass index; FPG, fasting plasma glucose; UA, uric acid; TC,
total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; FIB, fibrinogen; NLR, the ratio of neutrophil count to lymphocyte count; PLT, platelet; HbA1c,
hemoglobin A1c; TSH, thyroid stimulating hormone; FT4, free thyronine; FT3, free triiodothyronine.

3.1. Univariate and Multivariate Analyses

In order to identify the risk factors of DPN, a univariate analysis was performed
between the DPN group and non-DPN group in the training cohort (Table 2). Significant
differences in the following variables were obtained: gender, age, duration, smoking,
hypertension, UA, FIB, HbA1c, and FT3.

Table 2. The comparison of baseline characteristics according to the presence of DPN and the
univariate logistic regression analysis for DPN in the training cohort.

Variables

Training Cohort Univariate Logistic
Regression Analysis

DPN Group (n =341) Non-DPN Groups
(n =178) p Value OR (95% CI) p Value

Male, no. (%) 235 (68.9%) 99 (55.6%) 0.004 1.769 (1.217–2.572) 0.003
Age (years) 59.57 ± 12.36 54.31 ± 13.40 <0.001 1.032 (1.017–1.047) <0.001

Duration (years) 10.00 (5.00–15.00) 6.50 (2.00–10.00) <0.001 1.089 (1.056–1.124) <0.001
Smoking, no. (%) 130 (38.1%) 50 (28.1%) 0.029 1.577 (1.064–2.337) 0.023

BMI (kg/m2) 24.03 ± 3.22 24.56 ± 3.93 0.128 0.958 (0.909–1.009) 0.105
Hypertension, no. (%) 189 (55.4%) 77 (43.3%) 0.011 1.631 (1.132–2.350) 0.009
Dyslipidemia, no. (%) 114 (33.4%) 54 (30.3%) 0.538 1.153 (0.783–1.712) 0.475

FPG (mmol/L) 8.08 ± 3.01 7.68 ± 2.67 0.123 1.050 (0.984–1.121) 0.137
UA (umol/L) 337.95 ± 106.03 311.97 ± 88.71 0.003 1.003 (1.001–1.005) 0.006
TC (mmol/L) 4.74 ± 1.37 4.88 ± 1.30 0.266 0.928 (0.812–1.061) 0.274
TG (mmol/L) 1.87 ± 1.33 1.99 ± 1.43 0.523 0.962 (0.869–1.065) 0.461

HDL-C (mmol/L) 1.03 ± 0.29 1.01 ± 0.29 0.491 1.253 (0.660–2.378) 0.490
LDL-C (mmol/L) 2.58 ± 1.03 2.67 ± 0.88 0.280 0.904 (0.753–1.086) 0.280

FIB (g/L) 3.90 ± 1.32 3.58 ± 1.06 0.003 1.260 (1.068–1.487) 0.006
NLR 2.41 ± 1.41 2.27 ± 1.40 0.259 1.082 (0.942–1.243) 0.262
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Table 2. Cont.

Variables

Training Cohort Univariate Logistic
Regression Analysis

DPN Group (n =341) Non-DPN Groups
(n =178) p Value OR (95% CI) p Value

PLT (×109/L) 220.54 ± 65.16 222.17 ± 64.64 0.786 1.000 (0.997–1.002) 0.786
HbA1c (%) 9.53 ± 2.36 8.91 ± 2.36 0.004 1.122 (1.036–1.215) 0.005

TSH (mIU/L) 1.35 (0.91–2.02) 1.33 (0.94–2.22) 0.941 1.048 (0.927–1.185) 0.457
FT4 (pmol/L) 11.36 ± 2.41 11.03 ± 2.16 0.112 1.069 (0.981–1.165) 0.127
FT3 (pmol/L) 4.55 ± 0.82 4.81 ± 0.69 <0.001 0.642 (0.495–0.834) 0.001

BMI, body mass index; FPG, fasting plasma glucose; UA, uric acid; TC, total cholesterol; TG, triglyceride; HDL-C,
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; FIB, fibrinogen; NLR, the ratio of
neutrophil count to lymphocyte count; PLT, platelet; HbA1c, hemoglobin A1c; TSH, thyroid stimulating hormone;
FT4, free thyronine; FT3, free triiodothyronine.

According to previous studies, BMI was also recognized as an essential risk factor
for DPN. Therefore, we included BMI in the multivariable logistic regression analysis. As
shown in Table 3, gender, age, duration, BMI, UA, HbA1c, and FT3 were independently
associated with the presence of DPN.

Table 3. Multivariate logistic regression analysis for risk factors associated with DPN in the train-
ing cohort.

Variables
Multivariable Analysis p Value

OR (95% CI)

Gender 2.607 1.658–4.138 <0.001
Age (year) 1.040 1.022–1.060 <0.001

Duration (year) 1.091 1.053–1.132 <0.001
BMI (kg/m2) 0.939 0.884–0.996 0.037
UA (umol/L) 1.003 1.001–1.005 0.012

HbA1c (%) 1.267 1.151–1.402 <0.001
FT3 (pmol/L) 0.674 0.505–0.876 0.005

BMI, body mass index; UA, uric acid; HbA1c, hemoglobin A1c; FT3, free triiodothyronine.

3.2. Nomogram Development and Validation

Based on the multivariable logistic regression analysis, the nomogram was developed
for predicting DPN risk based on gender, age, duration, BMI, UA, HbA1c, and FT3 in
the training cohort (Figure 1). Data were collected in patients with type 2 diabetes, and
the position of each variable on the corresponding axis was confirmed. A vertical line
was drawn from each variable’s position to the top “points” axis to collect the variable’s
score. Then, the users added up the score of each variable to acquire the total score on
“total points”. They then drew a vertical line from the total points axis to the bottom
scale to assess the DPN risk. “For example, a 70-year-old (60 points) male (20 points)
patient sufferers from a 5-year history of type 2 diabetes (10 points), has 30 kg/m2 of BMI
(10 points), 500 umol/L of UA (30 points), 7 of HbA1c (10 points), and 8 pmol/L of FT3
(50 points). He receives a total score of 190 points by adding all the points. The estimated
probability of DPN for this patient is less than 50%.

The AUC of the nomogram was 0.763 for the training cohort (Figure 2), and the internal
validation by 500 bootstrap resamplings was 0.759. The AUC of the nomogram was 0.755 for
the validation cohorts (Figure 2), presenting good predictions. Furthermore, the predictive
performance of the nomogram model for different subgroups in the validation cohorts was
also quantified (Table 4), indicating that the nomogram model was an effective classifier
in different subgroups. The nomogram calibration plots revealed moderate prediction
accuracy in the training and validation cohorts (Figure 3). Figure 4 shows the DCA for
the training and validation cohorts to predict the possibility of DPN. A line with greater
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distance between the model curve and the black and gray denotes a better clinical value for
the nomogram.
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3.3. Relationship between Variables and NCSs Parameters

In Tables S1 and S2, except for F-wave, the improvement of other NCSs parameters
represented better nerve conduction function. In correlation and multivariate linear re-
gression analyses, age, duration, UA, and HbA1c were inversely correlated with NCSs
parameters (except F-wave). Otherwise, BMI and FT3 were positively correlated with NCSs
parameters (except F-wave).
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Table 4. ROC analysis of the nomogram model in different subgroups of the validation cohorts.

Subgroups AUC

Gender
Male 0.769

Female 0.715
Age (year)
≥65 (years) 0.762
<65 (years) 0.736

Duration (year)
>10 years 0.802
≤10 years 0.681

BMI
≥24 (kg/m2) 0.763
<24 (kg/m2) 0.723

Hypertension
Hypertension 0.788

No hypertension 0.694
ROC, receiver-operating characteristic; BMI, body mass index.
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Figure 3. Calibration plot. The x-axis represents the nomogram-predicted probability, and the y-axis
represents the actual probability of diabetic peripheral neuropathy. (A) A nomogram calibration
plot in the training cohort. A perfect prediction would fall along the 45-degree line (“ideal” line).
The “apparent” line represents the training cohort, and the solid black line represents bias corrected
by bootstrapping (500 repetitions), indicating observed nomogram performance. (B) A nomogram
calibration plot in the validation cohort. A perfect prediction would fall along the 45-degree line
(“ideal” line). The “apparent” line represents the validation cohort, and the solid black line represents
bias corrected by bootstrapping (500 repetitions), indicating observed nomogram performance.
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Figure 4. The decision curve analysis of the nomogram predicts the possibility of DPN in training
(A) and validation (B) groups. The horizontal solid black line represents the net benefit when no
patient was considered to have DPN. The gray line represents the net benefit when all patients
were identified as suffering from DPN. The area along the red line (nomogram model line), the
black line, and the gray line representing the net benefit of the nomogram was significantly higher
than that of the "no patient" and " all patients" schemes, suggesting that the nomogram has good
clinical applicability.

4. Discussion

In the present study, we established a practical and simple nomogram to predict the
probability of DPN tailored to individual patients. The predictive nomogram showed good
discriminatory strength and moderate clinical value in training and validation cohorts.
Our nomogram is based on gender, age, duration, BMI, UA, HbA1c, and FT3 to provide a
user-friendly and convenient tool for clinical practice. In addition, the performance of the
nomogram was beneficial and stable in various subgroups. Furthermore, the independent
factors in the nomogram were also independently associated with NCS parameters.

The diagnostic criteria of DPN varied in different studies [9,19–21]. Our study con-
firmed the diagnosis of DPN with nerve conduction. NCS is proposed as a gold standard
for early subclinical DPN diagnosis [10]. However, NCS is uncomfortable, expensive, and
not widely used in most Chinese hospitals. We developed a user-friendly nomogram to
predict DPN, which alleviated both the mental burden and financial costs. Another study
focused solely on the community population and established a different nomogram based
on the perspective of statistical research [9]. In addition, their diagnostic criteria of DPN
were based on the Toronto clinical scoring system score, which might bring about false
positives [9]. The risk factors in our study were different from previous studies, especially
since few studies have identified the correlation between FT3 and DPN [9]. To the best
of our knowledge, our nomogram is the first prediction model for DPN based on routine
biochemical indexes and lifestyle factors for inpatients in the Chinese tertiary hospital.

The risk factors included in this nomogram are similar to the results of other prediction
models. Advancing age is a nonmodifiable independent predictor for DPN [16]. Many
studies indicated that peripheral neurodegeneration was related to aging [22,23]. Our
analysis also demonstrated that increasing age was positively associated with DPN. Male
patients were more likely to suffer from type 2 diabetes over the course of a 3-year follow-
up [24]. In this current report, male patients were observed to have a higher possibility of
developing DPN. A higher cumulative incidence of DPN was observed in male than female
patients in young adults [25]. However, another study with Iranian participants came to an
opposite conclusion [26]. Numerous studies, including our research, indicated that T2DM
patients with longer disease duration were more likely to develop DPN [9,27,28].

The present study also investigated the associations between DPN and other important
risk factors. The relationship between BMI and DPN is still controversial. Previous studies
have suggested that BMI was positively linked to DPN [9,25]. Nevertheless, one study
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indicated that lower BMI was a high independent risk factor for DPN [29]. Another study
demonstrated that the relationship between BMI and DPN was U-shaped [30]. Our findings
confirmed that a low BMI was associated with a higher DPN risk. Hyperuricemia was
reported to be related to endothelial dysfunction and oxidative stress [31,32]. Our study
showed that hyperuricemia was connected to an increased DPN risk, consistent with
other studies [26,33]. Nevertheless, another cross-sectional study described a contrary
relationship between large-nerve fiber dysfunction and UA levels in diabetic patients [34].

Poor glycemic control, such as increased HbA1c, was related to a higher DPN risk in
the TODAY cohort [25]. We observed that a 1-unit increase in HbA1c led to an increase
of 27% in the possibility of developing DPN. The active form of T3 bonded to the thyroid
receptors to initiate the expression of the myelination-associated genes [35]. Abnormal
serum thyroid hormone levels have been observed for decades in patients with T2DM [36].
Only one study has identified a positive correlation between FT3 and NCSs [37]. The
present study demonstrated that a higher FT3 level was related to a lower DPN risk.

The present study has some remarkable strengths. Our study demonstrated good
discrimination and predictability of the nomogram for DPN with factors that can be readily
obtained in general healthcare settings. The predictive power of the nomogram model was
suitable and stable in various clinical subgroups, suggesting that it could be widely used in
clinical practice. NCSs were considered a gold standard for the diagnosis of DPN. Moreover,
the risk factors of the nomogram were independently associated with NCS parameters,
indicating a close connection between the nomogram model and nerve conduction function.

First, this was a single-center study that was only applicable to patients with type
2 diabetes and could not be applied to communities of type 1 diabetes patients. Second, we
did not collect information on other complications of T2DM and genetic markers. These
tests may, however, increase the cost of DPN screening and other clinical indicators.

5. Conclusions

In conclusion, the nomogram model is composed of age, gender, duration of diabetes,
BMI, UA, HbA1c, and FT3, has a good predictive ability of DPN in patients with type
2 diabetes mellitus. Since NCSs are uncomfortable and expensive, developing a tool for
limited healthcare resource providers in rural areas is beneficial. Due to its simplicity
and applicability, this nomogram might be generalized for clinical practice and identifies
patients with high DPN risk at the early stage.
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Word List Abbreviation
Diabetic peripheral neuropathy DPN
Receiver operating characteristic ROC
Areas under the curve AUC
Nerve conduction studies NCSs
American Diabetes Association ADA
Neuropathy symptom score NSS
Neuropathy disability score NDS
Compound muscle action potential CMAP
Conduction velocity CV
Sensory nerve action potential SNAP
Mean motor nerve amplitude MNAmp
Mean motor nerve conduction velocity MNCV
Mean sensory nerve amplitude SNAmp
Mean sensory nerve conduction velocity SNCV
Body mass index BMI
Platelet PLT
Hemoglobin A1c HbA1c
Uric acid UA
Fasting plasma glucose FPG
Total cholesterol TC
High-density lipoprotein cholesterol HDL-C
Low-density lipoprotein cholesterol LDL-C
Free triiodothyronine FT3
Free thyronine FT4
Thyroid stimulating hormone TSH
Fibrinogen FIB
Decision curve analysis DCA
The ratio of neutrophil count to lymphocyte count NLR
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