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ABSTRACT
Since the rapid emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-
CRISPR-associated protein 9 (Cas9) system, developed as a genome engineering tool in 2012–2013,
most researchers in the life science field have had a fixated interest in this fascinating technology.
CRISPR-Cas9 is an RNA-guided DNA endonuclease system, which consists of Cas9 nuclease defining a
few targeting base via protospacer adjacent motif complexed with easily customizable single guide
RNA targeting around 20-bp genomic sequence. Although Streptococcus pyogenes Cas9 (SpCas9), one
of the Cas9 proteins that applications in genome engineering were first demonstrated, still has wide
usage because of its high nuclease activity and broad targeting range, there are several limitations
such as large molecular weight and potential off-target effect. In this commentary, we describe
various improvements and alternatives of CRISPR-Cas systems, including engineered Cas9 variants,
Cas9 homologs, and novel Cas proteins other than Cas9. These variations enable flexible genome
engineering with high efficiency and specificity, orthogonal genetic control at multiple gene loci,
gene knockdown, or fluorescence imaging of transcripts mediated by RNA targeting, and beyond.
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Introduction

Natural CRISPR-Cas systems act as adaptive immu-
nity in archaea and bacteria, which disrupt invad-
ing exogenous DNA such as plasmids and phages.
CRISPR-Cas mechanisms are currently classified
into 2 classes (classes 1 and 2) and 6 types (types I
to VI) according to their context.1 The inactivation
of exogenous DNA by CRISPR-Cas systems is
conducted by 3 steps; adaptation, expression, and
interference.1 At the adaptation stage, short frag-
ments of exogenous DNA are incorporated into the
CRISPR array in the bacterial genome, and act as
new spacer sequences. During the expression stage,
CRISPR array is transcribed into pre-CRISPR RNA
(pre-crRNA), and then processed to produce
mature crRNAs. Cas endonuclease(s) expressed
from neighboring genomic loci form complexes
with mature crRNA, which cleave the secondary
invaded exogenous DNA at the interference stage.
Especially, type-II CRISPR-Cas system, classified in
class 2, i.e. CRISPR-Cas9, requires trans-activating

crRNA (tracrRNA) for hybridization partner of
crRNA to form complexes with Cas9 nucleases.2

CRISPR-Cas9 as a genome engineering tool

After the elucidation of the mechanism of CRISPR-
Cas9 system, it was quickly applied for genome engi-
neering.,3,4 To introduce a site-specific DNA double-
strand break (DSB), it is only necessary to express
Cas9 nuclease and a chimeric single guide RNA
(sgRNA), which often be used instead of crRNA and
tracrRNA hybrids.5 The CRISPR-Cas9 system has
various advantages over the past engineered nucleases
such as zinc-finger nucleases and transcription activa-
tor-like effector nucleases.6 First, the vector construc-
tion becomes quite simple. Unlike the past nucleases,
Cas9 can be used as a generic nuclease together with a
gene-specific sgRNA. The sgRNA can be expressed
from the cassette driven by an RNA polymerase III
promoter or introduced as RNA molecules prepared
by in vitro transcription or chemical synthesis7. In
addition, co-introduction of multiple sgRNAs and
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Cas9 nuclease can easily induce simultaneous DSBs,
resulting in multiple mutagenesis and chromosomal
editing such as large deletions,8,9 inversions,9,10 dupli-
cations,10 and translocations.11,12 Despite these advan-
tageous properties of CRISPR-Cas9, there still are
some limitations such as restriction of target sequence,
large protein size and unintended off-target mutagen-
esis. Regarding the targeted DNA binding of CRISPR-
Cas components, not only the base-pairing of crRNA
and target strand of dsDNA but also the interaction
between Cas nuclease and a few bases of target DNA
sequence, defined as a protospacer adjacent motif
(PAM), are required.1 There is no obvious restriction
in crRNA target sequence, but some relations between
target base components and nuclease activity have
been reported,13 which might limit the range of target
DNA sequence. More importantly, particular PAM
sequence, whose base specificity differs among the
derived species, is absolutely required for the binding
of Cas nucleases to the target sites.14 Streptococcus
pyogenes Cas9 (SpCas9), the most commonly used
Cas nuclease to perform genome engineering, has 50-
NGG-30 PAM.2 This limitation is not so strict, but in
some cases, this motif is hard to find around the
intended genomic region, especially when the context
is highly AT-rich. The large protein size of SpCas9,
1,368 amino acids, is also problematic when delivering
with a size-limited viral vector such as the adeno-asso-
ciated virus (AAV) vector.15 The third problem with
CRISPR-Cas9 is off-target mutations,16 especially for
therapeutic applications. Several genome-wide detec-
tion methods of off-target DSB introduction such as
IDLV integration,17 GUIDE-seq,18 HTGTS,19

BLESS,20 and Digenome-seq21 have revealed that the
population of cells transfected with the wild-type
SpCas9 nuclease often contains various off-target sites,
which cannot be easily predicted by in silico homology
analysis. Therefore, CRISPR-Cas9 system still has
room for improvement in terms of flexibility of target
design, utility for viral delivery, and specificity of DSB
introduction.

Considering these limitations, improvement or
alternative options of CRISPR-Cas systems have
been eagerly desired. In this commentary, we sum-
marize the recent advances in improving Cas9
nucleases and in discovering several new CRISPR-
Cas nuclease systems, which can possibly overcome
the restrictions and limitations described above
(Table 1).

Improvement of Cas9 nucleases

Cas9 variants based on SpCas9

Amino acid substitution of functionally critical
domain is one of the most typical methods to alter
the protein function. Feng Zhang at Broad Institute
of MIT and Harvard and J. Keith Joung at Massa-
chusetts General Hospital independently developed
the highly specific SpCas9 variants, named eSp-
Cas922 and SpCas9-HF.23 These variants contain
several mutations to reduce the non-specific inter-
actions between Cas9 protein and target DNA. In
other words, these variants have the minimum
binding energy required for the introduction of
DSBs into the genome by decreasing the excess
energy from wild-type SpCas9. In fact, this strategy
was previously demonstrated with TALENs, which
enhanced the base recognition specificity by replac-
ing the basic amino acids with glutamines in the
C-terminal domain of TALE protein.24

PAM-altered SpCas9 variants have also been
created by amino acid substitutions. J. Keith Joung
and colleagues developed SpCas9 variants harbor-
ing alternative PAM specificities; VQR, EQR and
VRER variants.25 The VQR variant can recognize
50-NGAN-30 PAM sequence. More specifically, it
has the highest affinity with 50-NGAG-30 sequences,
followed by the others (NGAG > NGAT D NGAA
> NGAC). The EQR and VRER variants have
50-NGAG-30 and 50-NGCG-30 PAM sequences,
whose target range are relatively limited compared
with the VQR variant. The functionality of these 3
variants has already been proved by inducing indels
in mammalian cells and zebrafish embryos.26 In
addition, these variants have been broadened their
applications as represented by the CORRECT
method, which can modify the targeted single
nucleotide precisely with sophisticatedly designed
2-step genome engineering.27

Functional conversion of SpCas9 has also been
demonstrated. The SpCas9 nuclease can be converted
to nickase (Cas9n)5 or nuclease-deficient mutant
(dCas9).28 The Cas9n variant has been used in dou-
ble-nicking strategy.29,30 The dCas9 variant has broad
applications including FokI-dCas931,32 and specific
purposes other than conventional genome editing.33

Of these, single-base editing systems without inducing
DSBs, mediated by cytidine deaminase combined with
Cas9n or dCas9, as known as “Base Editors,” are
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recent distinguished achievement.34,35 Furthermore,
unique analyses using Base Editors such as in situ
direct evolution of endogenous genes have already
been reported,36,37 promising the future expanded
applications.

Another important functional conversion is RNA-
targeting Cas9 (RCas9) system, reported by Jennifer
Doudna’s group at University of California.38 RCas9
requires PAM-presenting oligonucleotide (PAMmer),
which can hybridize with a target single-strand RNA
molecule and act as the PAM motif, resulting in tar-
geted RNA cleavage, isolation of target RNA molecule,
and live cell tracking of target RNA.39

Cas9 homologs derived from other bacteria
Several Cas9 homologs derived from other bacterial
species have been identified and used. Each homo-
log has different PAM specificities and tracrRNA
structures. Some of these homologs form complexes
orthogonally with their own sgRNAs, which enable
to tether variable functions with respective Cas9s
targeting different genomic loci. Moreover, Cas9
homologs often have particular features different
from SpCas9.

Followings are useful examples of Cas9 homo-
logs. SaCas9, Staphylococcus aureus Cas9, has
50-NNGRRT-30 PAM (R D G or A).15,40 Although
the target restriction with the PAM sequence of the
wild-type SaCas9 is relatively strict, there is already
a variant with the relaxed PAM sequence, named
KKH SaCas9, developed by the Joung’s group,
which recognizes 50-NNNRRT-30 PAM.41 In addi-
tion, SaCas9 has a size advantage that enables
packaging into the AAV vector, because SaCas9 is
315 amino acids smaller than SpCas915. Virginijus

Siksnys and colleagues at Vilnius University found
another utility Cas9, Brevibacillus laterosporus Cas9
(BlatCas9), which recognizes 50-NNNNCNDD-30

PAM (D D A, G, or T).42 His team demonstrated
BlatCas9-induced indels in maize. Since BlatCas9s
PAM has one of the broadest targeting ranges
among those of various Cas9s reported, further
application examples in other organisms are
desired. Francisella novicida Cas9, FnCas9, consists
of 1,629 amino acids, which is the largest Cas9
protein reported ever.31 Although the PAM
sequence of wild-type FnCas9 is the same as that
of SpCas9 (50-NGG-30), Osamu Nureki and
colleagues developed the RHA FnCas9 variant,
which has 50-YG-30 PAM (Y D T or C). RHA
FnCas9 can reportedly introduce indels in mouse
zygotes, but it has not shown the cleavage activity
in human cells.43

New tools based on other CRISPR-Cas systems

CRISPR-Cpf1
As described earlier, Cas9 is originated from type-II
group in class-2 CRISPR systems. The class-2 CRISPR
contains a single multifunctional Cas protein, which
can bind guidance RNA and target DNA, and cleave
the DNA. Among class-2 CRISPR, types II, V and VI
systems have been identified. We describe the details
about new groups of class-2 CRISPR systems, types V
and VI, hereafter.

One kind of endonuclease from the type-V
CRISPR-Cas systems, called Cpf1, has been discov-
ered and characterized by Feng Zhang’s team.44

CRISPR-Cpf1 system can be programmed for
genome engineering similar with CRISPR-Cas9,

Table 1. Summary of various CRISPR-Cas nucleases.

Nuclease type Enzyme name WT/mutants PAM Protein size
Typical protospacer

length DNA end Pros/Cons

Cas9 SpCas9 WT5 50-NGG-30 1,368 a.a. 20 nt blunt end Most commonly used/Large
protein size

VQR25 50-NGAN-30 Different PAM specificities/Large
protein sizeEQR25 50-NGAG-30

VRER25 50-NGCG-30
SaCas9 WT15 50-NNGRRT-30 1,053 a.a. Small protein size/Relatively

strict PAMKKH41 50-NNNRRT-30
FnCas9 WT43 50-NGG-30 1,629 a.a. Less restrictive PAM/Large protein

size, less application examplesRHA43 50-YG-30
NmCas9 WT69 50-NNNNGATT-30 1,082 a.a. 24 nt Small protein size/Strict PAM
St1Cas9 WT70 50-NNAGAAW-30 1,121 a.a. 20 nt Small protein size/Strict PAM
BlatCas9 WT42 50-NNNNCNDD-30 1,092 a.a. 21 nt Less restrictive PAM, small protein

size/Less application examples
Cpf1 AsCpf1 WT44 50-TTTN-30 1,307 a.a. 23 nt sticky end Various unique characteristics

(see main text)/Strict PAMLbCpf1 WT44 50-TTTN-30 1,228 a.a.
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but it has several unique features. First, Cpf1
cleaves target DNA molecule with a single crRNA
alone, not coupled with a tracrRNA. Thus, Cpf1-
mediated genome editing with chemically synthe-
sized crRNA can be achieved at lower cost than
SpCas9, because the length of crRNA is much
shorter than sgRNA for SpCas9 (43 nt vs. »100
nt). Second, Cpf1 recognizes T-rich PAM sequence
at the 50 side of the protospacer region. Zhang and
colleagues have proved that Acidaminococcus sp.
BV3L6 Cpf1 (AsCpf1) and Lachnospiraceae bacte-
rium Cpf1 (LbCpf1) can be applied for genome
engineering in human cells. These nucleases
require 50-TTTN-30 (or 50-TTTV-30; V D A, C, or
G, in some literature45) PAM sequences, which are
friendly with AT-rich sequences that can hardly be
targeted with Cas9s. Third, Cpf1 nucleases produce
cohesive ends with 4- or 5-nt overhangs, while
SpCas9 produces blunt ends. In this regard, NHEJ-
mediated knock-in mediated by the annealing of
cohesive ends might be facilitated using Cpf1 pro-
teins. Fourth, Cpf1 protein contains not only the
DSB-inducing activity but also an RNase III activ-
ity, involving in pre-crRNA processing.46 This
activity can be used for the efficient multiplex
genome engineering via tandemly arrayed pre-
crRNA-expressing construct, producing multiple
mature crRNAs mediated by Cpf1.

Within a half year after the first publication of
Cas9 from Zhang’s group, advantageous property
of Cpf1 over Cas9 has been reported in terms of
targeting specificity. Jin-Soo Kim’s group at Seoul
National University and J Keith Joung’s group
reported that CRISPR-Cpf1 has worked effectively
in human cells and off-target mutagenesis rarely
happened.47,48 AsCpf1 and LbCpf1 nucleases
induced indels with comparable or a little lower
efficiencies compared with SpCas9, which is a prac-
tically acceptable level of nuclease activity.47

Regarding the comparison between AsCpf1 and
LbCpf1, both Cpf1 nucleases induced indels with
the equal efficiency in most cases when the same
genomic loci were targeted in U2OS cells.47 The
frequency of off-target mutagenesis with Cpf1
nucleases was also analyzed using the Digenome-
seq and GUIDE-seq methods. In the Digenome-seq
analysis, following numbers of off-target digestion
sites were detected in vitro; 6 § 3 for LbCpf1 and
12 § 5 for AsCpf147. These results suggested that

Cpf1 nucleases are highly specific in human cells
rather than SpCas9, because SpCas9 caused 90 §
30 digestion events in the previous Digenome-seq
analysis. In the GUIDE-seq analysis, Cpf1 nucle-
ases caused undetectable off-target mutagenesis in
human cells, which suggests considerably high
specificity of Cpf1, consistent with the results of
the Digenome-seq analysis.48

Knockout mice can also be generated using
CRISPR-Cpf1, as Young Hoon Sung’s group at Asan
Medical Center and Jin-Soo Kim’s group recently dem-
onstrated.49,50 Kim’s group conducted electroporation
of AsCpf1 ribonucleoproteins (RNPs) consisting of
recombinant AsCpf1 protein and synthesized crRNA.50

They introduced AsCpf1 or SpCas9 RNPs targeting the
Foxn1 locus into mouse one-cell embryos, resulting in
100% mutants for SpCas9 and 64% mutants for
AsCpf1. No off-target mutation was detected at the
potential sites containing up to 4-bp mismatches
against on-target sites. The results indicated that the
electroporation of Cpf1 RNPs would become a strong
technique to systematically produce knockout mice. In
the Sung’s report, knockout mice were generated using
AsCpf1 and LbCpf1 via a conventional microinjection
technique.49 They microinjected AsCpf1 or LbCpf1
mRNAs with corresponding crRNA molecules target-
ing Trp53 and Prkdc loci into mouse embryos.
70¡80% of newborns from AsCpf1 or LbCpf1 mRNA-
injected embryos harbored mutations in the target
genes except for AsCpf1 targeting Prkdc locus (18.2%).
Similar to the Kim’s report, off-target mutations were
not detected at the 2- to 4-bp-mismatched sites but
were detected at only 1-bp mismatched site with the
frequency of 18.6% for AsCpf1 and 16.3% for LbCpf1.
Taken together, CRISPR-Cpf1 enables genome engi-
neering with high accuracy in human cells and mouse
zygotes, although its targeting range is limited because
of its stringent PAM sequence.

More recently, homologous recombination-medi-
ated gene knock-in with AsCpf1 and LbCpf1 in mouse
N2a cells were reported.51 Further demonstrations
should confirm further advantages and disadvantages
of Cpf1 in various genome engineering applications.

New class-2 CRISPR-Cas systems other than
CRISPR-Cpf1
Although there is no doubt about the usefulness of
Cpf1, the pioneer of novel CRISPR-Cas systems,
Zhang’s group, has found more options other than
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Cpf1. They discovered 53 class-2 CRISPR-Cas candi-
dates and categorized them into 3 groups by the con-
text characteristics; C2c1, C2c2 and C2c352. C2c1 and
C2c3 were later grouped in type V, and C2c2 was
grouped in the new type VI. Among them, C2c2
nucleases have an especially unique feature that its tar-
get molecule is not the double-strand DNA but the
single-strand RNA; thus possibly contributing gene
knockdown applications.53 The authors discussed that
this RNA-targeting nuclease has several advantages
over conventional knockdown methods; i.e., the appli-
cability for a large-scale screening or construction of
synthetic regulatory circuits via degradation of tran-
scripts or translational inhibition, transcript tracking
using a nuclease-deactivated C2c2 (dC2c2) fused to a
fluorescent protein, and delocalization of transcripts
by blocking the localization elements.

Furthermore, Doudna’s group discovered that C2c2
contains another RNase activity generating mature
crRNAs from CRISPR array transcripts, depending on
a distinct functional domain from the domain con-
taining RNA-guided RNase activity.54 This feature of
dual nuclease activity is similar to Cpf1, but interest-
ingly, Cpf1 and C2c2 are evolutionarily unrelated.
Therefore, C2c2 can process multiple crRNAs from a
single transcript and act as an RNase or a guiding mol-
ecule for other RNA-detecting applications without
requiring any other molecules such as PAMmer used
in RCas9 system.

Novel nucleases other than CRISPR systems

Novel candidates for alternative programmable nucle-
ases are not limited to the CRISPR-Cas systems. Chu-
nyu Han at Hebei University of Science and
Technology reported that Argonaute protein from
Natronobacterium gregoryi (NgAgo) could be used for
DNA-guided genome editing.55 NgAgo-guide DNA
system is quite fascinating, because it requires neither
PAM sequence nor RNA molecules, which means
genome editing can be performed simply by the
expression of generic NgAgo protein and introduction
of synthetic oligonucleotides on any genomic
sequence. However, the reproducibility of NgAgo-
mediated genome editing is currently controver-
sial.56,57 Another newly developed system is the struc-
ture-guided nuclease (SGN), consisting of FEN1
protein fused to the nuclease domain of FokI.58 The
SGN coupled with 2 single-strand DNAs producing

the flap ends when they bound to the target DNA
sequences can reportedly introduce a DSB, resulting
in relatively long deletions (650¡2,600 bp). This
mutation signature is unique identity for the SGN and
might be of benefit particularly for reliable gene
knockout. Nevertheless, further characterization is
required similar with Argonautes.

On the other hand, nucleic acid-based, protein-
free genome editing reagents are also the attractive
alternatives. Two independent studies suggest
potential applicability of peptide nucleic acid
(PNA) for targeted DNA modification. Makoto
Komiyama and colleagues have developed an artifi-
cial restriction DNA cutter (ARCUT), which is a
chemically synthesizable DSB-inducing system
based on pseudo-complementary PNA (pcPNA)
and Ce(IV)/EDTA complex.59 Another report by
Peter M. Glazer and colleagues demonstrated
genome engineering in cultured cells and mice
using g-substituted tail-clamp PNA (gtcPNA)
delivered via nanoparticles.60 In addition, 50-tailed
duplex DNA, developed by Hiroyuki Kamiya’s lab-
oratory, could promote sequence conversion in
human cells.61 Although these alternative technolo-
gies have not been fully characterized compared
with the standard genome editing tools such as
CRISPR-Cas9, they might enable synthetic mass
production of custom-made reagents with low cost
and tissue/cell type-specific targeted delivery for
gene therapy applications in the future.

Conclusions

Application of genome editing is now broadly
expanded using CRISPR-Cas9, such as genome-wide
functional screening based on gene knockout,62,63

transcriptional repression or transcriptional activa-
tion,64 analysis of chromatin dynamics using dCas9
fused with fluorescent proteins,65 epigenome editing
with dCas9-epigenetic modifier,66 and the tracking of
cell lineage with DNA barcoding techniques.67,68

Behind such application development is the fact that
the history of technological improvements of basic
genome editing tools. The evolving nucleases,
expounded in this commentary, must contribute
future epoch-making applications.
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