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Recent evidence suggests that the assumed conflict-avoidant programming of
autonomous vehicles will incentivize pedestrians to bully them. However, this frequent
argument disregards the embedded nature of social interaction. Rule violations are socially
sanctioned by different forms of social control, which could moderate the rational incentive
to abuse risk-avoidant vehicles. Drawing on a gamified virtual reality (VR) experiment (n =
36) of urban traffic scenarios, we tested how vehicle type, different forms of social control,
and monetary benefit of rule violations affect pedestrians’ decision to jaywalk. In a second
step, we also tested whether differences in those effects exist when controlling for the risk
of crashes in conventional vehicles. We find that individuals do indeed jaywalk more
frequently when faced with an automated vehicle (AV), and this effect largely depends on
the associated risk and not their automated nature. We further show that social control,
especially in the form of formal traffic rules and norm enforcement, can reduce jaywalking
behavior for any vehicle. Our study sheds light on the interaction dynamics between
humans and AVs and how this is influenced by different forms of social control. It also
contributes to the small gamification literature in this human–computer interaction.
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1 INTRODUCTION

In the near future, we can expect mixed traffic mobility in which vehicles with no, partial, or full
automation (SAE, 2016) will coexist and cooperate with human traffic participants, including
vulnerable road users (VRUs) such as pedestrians and cyclists (Holländer et al., 2021) (see
Figure 1A). At first sight, road traffic appears to be a highly regulated system in which agents
act according to traffic code rather than their normative beliefs and values. Many interactions in
urban traffic, however, are not only weakly regulated and observed; they also rely on established
social norms and practices. Moreover, there might be many other factors in traffic that can shape the
behavior of individuals. There are many traffic situations in which cooperative behavior is exercised,
such as letting a pedestrian pass in slow-flowing traffic on an urban street even though there is no
traffic light or pedestrian crossing. In such situations, the car and its driver use little signs of vehicle
behavior such as “indicative” braking or hand gestures that help all parties in a decision-making
situation (Moore et al., 2019), for example, to cross the street in front of a car.With the disappearance
of a driver in a fully automated vehicle, signs by the driver no longer exist. At the same time, there is a
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clear understanding of the pedestrians that automated vehicles
are highly regulated and have safety measures in place in case a
pedestrian crosses their way (Millard-Ball, 2018; Holländer et al.,
2019). Therefore, the question is, in which situations pedestrians
would indeed exploit the latter when crossing a street by relying
on the safety features of automated vehicles (AVs) and by
enforcing the vehicle(s) to stop and to claim the right to cross
the street. Hence, understanding how individuals will interact
with AVs in urban traffic is still a key challenge on the path to
autonomous driving (Tabone et al., 2021) before AVs can
independently navigate our streets.

As an additional constraint, social challenges play a key part
before they can travel the streets without continuous interference.
Various news articles report incidents where vulnerable road
users disturb AVs, ranging from simple negative gestures to
pointing a gun (Condliffe, 2016; Randazzo, 2018; Brown, 2019;
Keck, 2019). Those instances even led some companies to
conduct their trials with unmarked AVs to prevent potential
bullying by other road users (Connor, 2016). As these instances
paint a rather grim picture of human-AV interaction, traffic
interaction is not a one-shot game and does not occur in a
social vacuum. Instead, it is embedded in a set of formal and
informal (social) norms (Björklund and Å berg, 2005). Exploiting
an AV, for example, by jaywalking in front of it, is, therefore, a
specific form of human behavior often referred to as deviant
behavior. Deviance refers to acts that break the social rules of
those kinds of behaviors that are deemed acceptable by society.
Deviant (rule-breaking) behavior is frequently sanctioned by
society through social control (Brauer and Chaurand, 2010), a

set of sanctioning and reward mechanisms that incentivize
individuals to conform to societal expectations. These range
from formal forms of sanctioning (e.g., laws and punishment)
to social feedback in the form of, for example, positive
reinforcement, shame, or ridicule. Social control could thus
potentially moderate the rational incentive to exploit AVs.
However, the moderating effect of social norms (via social
control) on deviant behavior has received limited attention in
the literature so far.

This study investigates how different forms of social control
moderate pedestrians’ decision to jaywalk in front of AVs and
human-driven vehicles (HDVs). Utilizing jaywalking behavior of
pedestrians to study deviant behavior in the context of AVs has
several benefits: 1) pedestrians benefit the most from a conflict-
avoidant AV, drastically reducing their vulnerability in accident-
prone situations, thereby increasing their utility to exploit them;
2) deviant behavior of pedestrians is commonplace in urban
traffic situations, making it the most probable cause of
interference for AVs; and 3) compared to other road users, the
behavioral movement of pedestrians is significantly less
predefined by the physical traffic environment, offering more
frequent opportunities to act in line with self-interest.

1.1 Background
Road traffic is highly regulated in unclear traffic situations;
drivers and VRUs use several forms of implicit and explicit
communication ranging from deceleration up to hand gestures
to let someone pass (Dey and Terken, 2017; Moore et al., 2019).
Implicit or vehicle-centric (Dey et al., 2020a) communication

FIGURE 1 | Human–AV interaction in everyday traffic and in pedestrian simulators. (A) In the future, pedestrians will interact with AVs with higher levels of
automation daily. (B) VR enabled us to utilize our meeting room with a long corridor for a safe testing environment for our pedestrian simulator.
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cues can be summarized by vehicle movement patterns such as
acceleration, deceleration, and vehicle distance (Varhelyi, 1998;
Te Velde et al., 2005; Schmidt and Faerber, 2009; Risto et al.,
2017). Explicit or driver-centric communication cues are
managed via eye contact (Guéguen et al., 2015; Ren et al.,
2016; Schneemann and Gohl, 2016; Nathanael et al., 2018)
and gestures (Guéguen et al., 2015; Färber, 2016; Sucha et al.,
2017) of the traffic participants.

With a disappearing driver in the automated vehicle, in
unclear communication situations, the pedestrian would only
have to rely on the vehicle-centric signals of the driverless vehicle
alone. Research on pedestrian–AV interaction largely addressed
this issue by exploring External Human–Machine Interfaces
(eHMIs), which could assist communication between drivers
and other traffic participants and could increase the
acceptance of AVs (Carlsson and Nilsson, 2016; Chang et al.,
2017; Dey et al., 2020b; Colley et al., 2022). Moreover, some other
studies explored trust and overtrust of VRUs in AVs (Holländer
et al., 2019; Jayaraman et al., 2019; Faas et al., 2020a; Holthausen
et al., 2020).

Alongside acceptance and trust, one of the favorable measures
for understanding interaction dynamics between AVs and
pedestrians is the crossing decisions of participants. Faas et al.
(2020b) emphasized the realistic walking behavior in related
crossing paradigms rather than using a button or a safety
slider for a better matching experience to realism. As a feasible
solution, virtual reality (VR) has been widely used in
pedestrian–AV interaction research because it allows for
reproducible and controllable environments in immersive
settings (De Clercq et al., 2019; Holländer et al., 2019;
Jayaraman et al., 2019; Löcken et al., 2019; Mahadevan et al.,
2019; Kalatian and Farooq, 2021). VR has also been effectively
used in experimental paradigms where time pressure was tested
in crossing tasks (Morrongiello et al., 2015; Schneider et al., 2019).
Moreover, Bhagavathula et al. (2018) reported that pedestrian
behavior was similar in VR compared to reality in terms of
perceived safety and risk.

In order to reveal pedestrian crossing decisions in detail,
Kalatian and Farooq (2021) conducted a large (N = 180) VR
study. Their deep learning model emphasized the effect of AVs
alongside street width, traffic density, and limited sight on
elongated waiting times of pedestrians before crossing. In the
VR cave study of Dommès et al. (2021), the authors tested the
crossing behavior of pedestrians in front of conflict-avoidant AVs
and conventional vehicles in a mixed traffic environment. They
reported that participants were more hesitant to cross in front of
AVs in some conditions. However, they also argued that
participants mainly relied on locomotion cues of vehicles
independent of their automation status. Jayaraman et al.
(2019) conducted a gamified virtual reality study to investigate
pedestrian trust in AVs in situations where AVs’ locomotion cues
signalized aggressive, normal, and defensive behavior. Moreover,
they controlled the traffic environment by testing pedestrian trust
in unsignalized and signalized crossings with a traffic light. Their
results indicated an increase in trust when AVs exhibited
defensive behavior and when pedestrians were on signalized
crossings. The work of Jayaraman et al. explored the aspects

that can establish more pedestrian trust in AVs to encourage
pedestrians to cross in front of AVs without hesitance. However,
the long-term effects of trustworthy and defensive AV behaviors
on individuals’ interaction with them are yet to be explored
(Dommès et al., 2021).

Undeniably, human trust and the safety of AVs are essential
before AVs are released on the streets. Nonetheless, some studies
highlight the possible drawback of the conflict-avoidant behavior
of AVs in their interaction with humans (Camara et al., 2018; Fox
et al., 2018; Camara et al., 2020; Dommès et al., 2021). For instance,
Moore et al. (2020) reported that human road users disturb
driverless cars in a Wizard-of-Oz study with obstructive
behavior types, ranging from playful curiosity to aggression to
purposely stepping in front of them, which was also observed by
Madigan et al. (2019). Similar behavioral patterns were also
observed toward service robots by Salvini et al. (2010). Drawing
on game theory, Fox et al. (2018) and Millard-Ball (2018) argued
that if AVs are programmed with a zero-probability for collision,
situations as these were to be expected: the shared argument is that
a collision-avoidant AVwill reduce other traffic participants’ risk of
a crash or injury when interacting with them, thereby increasing
the rational utility to exploit their passive stance for individual
benefit, hence leading to a “freezing robot problem” in the mixed
traffic of the future (Trautman and Krause, 2010). As a
countermeasure, Camara and Fox (2020) introduced a
pedestrian–AV interaction model where they suggested
replacing conflict-avoidant AVs with a milder space invading
AVs without introducing severe crash risks, inspired by findings
regarding social factors in traffic among individuals.

One overlooked factor in AV–VRU research is social norms
and social factors (Colley et al., 2019), alongside scalability
problems (Colley et al., 2020; Dey et al., 2021). Pedestrians
were more likely to cross the road if other pedestrians around
them had started crossing (Faria et al., 2010). In a very recent
study, Colley et al. (2022) tested the effects of pedestrian group
behavior and a single pedestrian behavior on their participants’
crossing decisions in front of AVs, and they found similar results
to Faria et al. (2010). However, there is still a large gap in
exploring the social norms in AV–pedestrian research and
carrying one-to-one interaction paradigms a step further.

1.2 Own Approach
In our study, we build on rational-choice theory, which assumes
that individuals use their self-interests to make choices and model
deviance as a function of an individuals’ cost-benefit calculation
(Becker, 1968). In this context, deviant behavior occurs if the
anticipated net gains from the specific action outweigh the
anticipated losses associated with that action. This means
exploiting the conflict-avoidant nature of AVs might only
serve the self-interest of individuals, as it outweighs the costs
of breaking social rules. Specifically, we focus on three different
types of social control: 1) the “broken-window thesis” of a
negative bystander effect, which should incentivize deviant
behavior, 2) social conformity, moderating deviant behavior by
conforming with societal expectations when in the presence of
others, and 3) formal norm enforcement and sanctioning by
authority.
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Methodologically, we designed a 2 × 2 × 4 full-factorial VR
experiment (vehicle type, task urgency, and social control), where
individuals were asked to deliver pizza in a simulated urban traffic
environment. We carried out the analysis in two parts: first, we
tested for the effect of the experimental treatments under
unknown probabilities that the human-driven car would stop,
and then, we gave participants the possibility to signal the driver
to stop, which succeeded 50% of the time. This way, we could
likewise test whether the treatment effects depend on the lower
crash risk when confronted with AV or whether potential effects
might be caused by the autonomous nature of AV. Conducting
this experiment in VR not only enabled us to obtain a closer
approximation of the natural behavior of participants in a virtual
environment (Deb et al., 2017a) but also offered time- and cost-
effective testing setups where traffic situations could be built
securely and flexibly. In our study, participants were faced with
the choice to cross a busy road by jaywalking through a gap in
traffic or wait until the traffic flow allowed for a safe and norm-
compliant crossing. The first vehicle at the end of this gap was
randomized to be either human-driven or an AV. Different social
control conditions varied randomly by the presence of different
road users with different characteristics and behaviors presented.
Moreover, we manipulated the task urgency for the individual
task as a third factor to test whether the moderating effect of
social norms depends on the individual payoff for deviant
behavior. Individuals were incentivized to cross the street by a
small monetary reward.

The experiment employed a within-subjects design (n = 36),
where every participant received all experimental treatment
conditions. As repetitive crossing scenarios might potentially
decrease motivation and increase task fatigue for participants
Schneider et al. (2019), we employed gamification, a technique
where participants are incentivized with various game elements
such as badges or scores (Sailer et al., 2017).

Our research questions are formulated as follows:

• Are there differences between the crossing behavior of
individuals when they encounter automated or
conventional vehicles right after a traffic gap?

• Do positive, negative, and legal representations of social
control cues affect the crossing behavior of individuals?

• Do different levels of task urgency-related time pressure
affect the crossing behavior of individuals?

1.3 Contribution to the Field
Our study is timely concerned with newly emerging
considerations in pedestrian–AV research. Firstly, we
introduced a mixed traffic environment where both AVs and
HDVs existed in the experimental scene. Secondly, we went out of
the widely studied one-to-one interaction paradigms between
AVs and pedestrians and contributed to limited scalability
research in this area. Third, we explored potential social
control mechanisms that can reduce or enhance the deviant
behavior of pedestrians from three different dimensions: legal,
positive, and negative norm cues. To our knowledge, such social
control mechanisms were not a major focus in existing research,
except for a negative example of a crossing pedestrian or idle

pedestrian groups. Moreover, we tested legal norm cues under a
study where the legal sanctioning was ambiguous, as opposed to
studies that utilized definitive traffic lights or traffic signs. Forth,
we further tested the effect of vehicle type and social control on
deviant behavior when controlling for the risk of accidents for
conventional vehicles. This allowed us to test whether significant
differences between human-driven and autonomous vehicles
existed, resulting from the autonomous nature of AVs and not
their conflict-avoidant stance. Last but not least, our research
contributes to the small sample of gamification literature in
pedestrian–AV interactions, which supports a better-blinded
method for repetitive within-subject designs.

2 THEORETICAL FRAMEWORK

2.1 Exploiting Automated Vehicles as a
Rational Decision
Recent studies on AV–pedestrian interaction draw on the game
theory to argue that AV’s inability to adapt their behavior from a
passive, conflict-avoiding stance would make incentive
pedestrians step in front of them (Fox et al., 2018; Rahmati
and Talebpour, 2018). Testing a sequential game of chicken, Fox
et al. (2018), for example, suggested that assuming a zero-
probability of collision between an AV and an HDV, based on
the assumed conflict-avoidant programming, the expected cost of
collision for the human driver likewise is nearly zero, which
would result in the rational incentive to abuse AV for human
drivers. Applying this model to the AV–pedestrian interaction
and assuming the payoff structure to consist of the trade-off
between time-savings and risk of personal injury while keeping
the probability of crash at 0, we would receive the same result,
even if the expected cost of a crash would be significantly higher
for the pedestrian. Formally, this can be expressed by the expected
utility theorem, which assumes that an individuals’ rational
decision, given a set of possible alternative choices, is a
function of the expected utility of the different choice options
based on the probability distribution of the decisions’ outcomes.
The decision to abuse an AV thus occurs if the expected utility of
this choice is larger than or equal to the expected utility of
alternative actions:

ExpectedUtilityhumanabuses � Utilityabuse p ProbabilityAVstops

>ExpectedUtilityalternativeactions.

To illustrate this, we use the following hypothetical payoff
matrix for the interaction between an AV and a pedestrian. We
assume that, for each player, the utility to yield possesses a utility
of −1 (lost time), whereas walking/driving possesses the utility of
1 (gained time). When both players choose to walk/drive, the

Pedestrian

Wait Walk

Autonomous Vehicle Yield (−1, −1) (−1, 1)
Drive (1, −1) (−100, −1,000)
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result is a crash, which is significantly more costly to both players
than the other choice outcomes.

We can then calculate the expected utility for a pedestrian to
either walk or wait:

EUWalk � UWalk/AVyield p pAVyield + UWalk/AVdrive p (1 − pAVdrive)

EUWait � UWait/AVyield p pAVyield + UWait/AVdrive p (1 − pAVdrive).
Because UWait/AVyield = UWait/AVdrive, which holds true for all

possible payoffs as the cost to wait is independent of the choice of
the vehicle:

EUWait � UWait/AVyield � UWait/AVdrive � − 1,

Given that UWait/AVyield = UWait/AVdrive, the decision to cross
then depends on the probability that the car will yield, which is a
function of the utilities for the car yielding or driving when the
pedestrian crosses. In this example,

EUWalk >EUWait if EUWalk >UWait/AVyield � UWait/AVdrive � − 1,

which is true if pAVyield > 99, 8%.
Given this minimalist payoff structure, the introduction of

conflict-avoidant AVs would create a rational incentive for
bullying AVs, as highlighted in previous studies (e.g., Fox
et al., 2018; Millard-Ball, 2018). However, the utilities of traffic
interaction in real life do not solely consist of the trade-off
between time savings and risk of personal injury, which makes
this model too narrow to reflect real-life behavior. For instance,
traffic interaction (in most instances) is regulated by formal and
informal rules.

2.2 The Cost of Norm Violation
Formally, traffic is regulated by traffic code, and to step in front of
an AV would, in many instances, be considered a traffic violation,
subject to fines and penalties. Similarly, even the AV/HDV
interaction at an unmarked intersection used in the previous
example would, in most jurisdictions, fall under the “priority to
the right” rule. Informally, traffic is further regulated by social
norms (including compliance with formal norms). Social norms
generate a sense of predictability under uncertainty. In other
words, social norms can be understood as equilibria of strategies
to solve repetitive games, reducing the cost of uncertainty by
believing that others will act in accordance with the norm.
Frequent norm violations thus carry the risk of norm erosion,
meaning that an established norm ceases to exist if individuals too
frequently deviate from the said norm. The resulting norm
erosion, in return, increases interaction costs by creating
uncertainty with regard to the behavioral choices of other
individuals in future interactions, which is not limited to the
individual committing the norm violation but to society. Drawing
on the previous example, if HDVs frequently violate the “priority
to the right-” rule in the context of AVs, future interactions at
unmarked intersections would be more time-consuming, as they
would require individual negotiation between traffic participants
because trust in norm compliance would be low, as the norm of
“priority to the right” eroded.

Abusing or bullying a self-driving car, here in the form of
jaywalking in front of it, is thus a form of human behavior
commonly referred to as deviant behavior. Deviance describes
actions or types of behavior that violate formal (i.e., laws and
traffic code) or informal (i.e., social norms) rules (Goode and
Ben-Yehuda, 2010). In other words, deviance refers to behavior
that goes against what is deemed acceptable by society. Building
on a rational-choice approach to deviance (Becker, 1968), we
understand the associated norm violation as a function of an
individual’s cost-benefit calculation and, following the expected
utility theorem, expect deviant behavior to occur if the anticipated
net gain from breaking the (formal or informal) rules outweighs
the anticipated net gain from alternative actions. To be more
specific, we build on the argument by Keuschnigg and Wolbring
(2015) that a rule is rationally anticipated to be broken if the
expected benefit of breaking this rule minus the cost of
punishment (multiplied by the probability the rule-breaking
will be sanctioned), is larger than the expected utility of
alternative actions. The cost of norm violation then results
from the incentive of other individuals to sanction norm
violations (to prevent norm-erosion) and the cost of
punishment, a mechanism often referred to as social control.
While from the other perspective, norm compliance might also
positively increase the utility of alternative actions (e.g., by
intrinsic rewards). Adding the effect of social control to the
utility function of jaywalking behavior, a person would then
jaywalk if EUJ > EU and, thus, if

UJSppS + UJDp(1 − pS)[ ]Upunishmentppsanctioning > [UWSppS

+ UWDp(1 − pS)] + Urewardppreward.

Note: J = jaywalking, S = vehicle stops,W = pedestrian waits, D =
vehicle drives.

The decision to jaywalk would thus be influenced by three
different components:

1) The individual gross utilities for the different choice options.
2) The probabilities for the individual choice outcomes to occur.
3) The cost of punishment and the probability of sanctioning.

Given that the moderating effect of norm compliance
influences the net gains of the behavioral choice, all else being
equal, its effect should be stronger in situations where the net
gains are lower; that is, the expected utilities between the different
choice options are more similar, compared to a more limited
effect when the utility trade-offs between the choice options are
higher. Hence, we would expect that an increase in utility for the
deviant choice of jaywalking would increase the expected utility to
jaywalk and therefore increase deviant behavior. We, therefore,
expect the following:

H1. All else being equal, a higher utility payoff for the deviant
behavioral choice will increase deviant behavior.

Because the expected utility of the deviant behavioral choice is
dependent on the probability of occurrence of the different choice
outcomes, we likewise expect that passively programmed AVs
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should increase deviant behavior, given that the probability the
car will yield is programmed to be 100%.

H2. All else being equal, individuals will jaywalk more frequently
when interacting with an AV.

The second hypothesis already implies that we do not expect
social control (the cost of norm violation) to fundamentally alter
the utility differences between interactions with AV and HDV,
that is, social control to formally interact with vehicle type. This
would be the case if the effect of social control would be
substantially different for the individual vehicle types or
specific social norms would exist that only apply to a specific
type of vehicle. However, we are not aware of empirical evidence
demonstrating that the cost of norm compliance significantly
differs between HDV and AV or specific social norms that only
apply to one type of vehicle. On the contrary, our main argument
in this study is that social control applies to both HDV and AV
and reduces the overall occurrence of deviant behavior,
disregarding the vehicle type. In order to understand the
extent of this moderating effect, it is important to differentiate
between different forms of social control.

2.3 Social Control as aModerator of Deviant
Behavior
The influence of others on deviant behavior was formalized by
Hirschi (1969) in the theory of social control. Hirschi viewed
social sanctioning, which he explicitly differentiated from formal
sanctioning, as an even higher deterrent of deviant behavior than
formal rules (Hirschi and Gottfredson, 1994). Norm compliance,
in return, results from individuals’ motivation to conform to
social norms. More generally, social control refers to the rewards
and sanctions that result from conforming to or deviating from
social norms (formal or informal) (Ross, 1896). In line with this
theory, research on red-light violations of pedestrians
(Rosenbloom, 2009; Fraboni et al., 2018; Raoniar and Maurya,
2022) revealed that individuals cross with a higher frequency if
they are alone, compared to situations where multiple individuals
are waiting for the green light. Recent evidence suggests that this
effect is further moderated by social proximity; it increases when
individuals are surrounded by people they feel closer to or who
belong to their social group.

H3a. (Norm conformity) The presence of other pedestrians will
decrease deviant behavior.

However, the presence of others can also have the opposite
effect on deviant behavior. The observation of deviant behavior
by other individuals incentivizes norm violations (Keizer et al.,
2008). Formally, other individuals violating norms might serve as
a cue that norms are not enforced in this area, or norm erosion
occurs, which decreases the marginal cost for non-compliance.
This effect exists even if the behavior of others has not been
observed directly. However, the inference of low levels of norm
compliance is made by social cues, such as littering, graffiti, or
broken windows (“broken-windows thesis”) (Wilson and Kelling,
1982).

H3b. (Negative bystander/broken windows) Cues signaling norm
violations by others will increase deviant behavior.

Hirschi argues that social sanctioning serves as a higher
deterrent to deviant behavior than formal norms, so evidence
on traffic violations suggests that cues signaling the enforcement
of formal norms have a strong negative effect on deviant
behavior. Given the moderating effect of social proximity on
norm-compliance, this might be explained by the larger social
distance between individuals on public roads, which limits the
effect of social sanctioning (e.g., a nasty look by a bystander is less
costly than reproach by family members). In contrast, cues of
formal norm enforcement and sanctioning make the cost of norm
violation more salient for individuals.

H3c. (Formal norm enforcement) Cues signaling sanctioning of
formal norms will have a negative effect on deviant behavior.

3 MATERIALS AND METHODS

3.1 Virtual Reality Environment
To conduct this experiment, we designed a virtual street
environment in Unity 3D (version 2020.3.0f1). VR served as a
flexible and safe test bed for running our study (see Figure 1B).
The environment was limited by tunnels on both sides of the road
and surrounded by hills. Urban buildings were placed on both
sides of the street. Because we used game elements in our
experiment, we did not focus on making the virtual
environment realistic and utilized low polygon mesh elements
(see Figures 2–4). The placement of traffic signs, pedestrian
crossings, and traffic lights intentionally abstained so that
participants could only use the information of vehicle
movements and communication cues on their crossing
decisions. The size of the street, including pavement, was
12 m. Participants emerged a few steps away from the
sidewalk while traffic was flowing on the road. The
unidirectional traffic coming from the left side of the
participant consisted of fully automated and conventional
vehicles. Vehicles had a 50 km/h start speed and exponential
deceleration behavior with starting value of 1.98 km/h. Vehicles
stopped at a sufficient distance to provide a traffic gap for
participants to cross. Virtual human characters emerged on
the left side of the participant when they accompanied the
scene. This allowed both oncoming vehicles and virtual road
users to be in the participants’ field of view (see Figure 2).

The task of the participants was to score points by delivering
pizza to a virtual character waiting on the opposite side of the
road (see Figure 4A). If participants failed to deliver pizza for
reasons such as getting caught by the police, they did not receive
any points. Otherwise, they either received 1 base point for
delivering the pizza or 2 points for delivering the pizza within
the bonus timer. The traffic pattern consisted of two waves of
vehicles passing the scene from left to right. Between the first and
second waves of vehicles, a gap of around 3 s opened up.
Participants were then faced with the choice to either jaywalk
in this situation or wait until the second wave of cars passed.
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3.2 Experimental Design
Our experiment consisted of three factors (vehicle type, task
urgency, and social control) with different factor levels, resulting
in a 2 × 2 × 4 full-factorial design, where all experimental

conditions varied randomly within subjects. This design
provided control for individual differences; it allowed us to
examine the effect of multiple independent variables and their
interactions at a time, and it was more efficient because smaller

FIGURE 2 | Virtual reality “street-crossing game” (participant perspective). Note: the participant is given the task of delivering pizza to a non-player character across
the road. On the left side of the participant, a non-player character attempts to cross the road. A yielding AV can be spotted with blue deceleration light cues. The timer in
the middle indicates 5 s left to earn the extra tip from pizza delivery.

FIGURE 3 | Vehicle type and task urgency factor levels in the experiment. (A) Decelerating AV casts blue light cues. (B) Urgent task indicator with a running man on
a red background. (C) Decelerating HDV flashes headlights. (D) Non-urgent task indicator with a resting man on a green background.
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sample sizes could be sufficient for statistical power. The
experimental treatments consisted of the combinations of the
different factorial levels that we operationalized by manipulating
specific elements of the individual scenes.

3.2.1 Vehicle Type
To understand the differences in crossing behavior between self-
driving and conventional vehicles, we manipulated the first
vehicle of the second wave of cars to be either an AV or an
HDV. To increase the realism of the situation and understand
whether the crossing decisions are dependent on a lack of
communication between the pedestrian and vehicle, we
operationalized the HDV condition in two ways: equal
amounts of conditions with a successful communication
between the driver and the pedestrian when participants tried
to negotiate for the right of way and conditions with conventional
vehicles that did not respond to negotiation request.

AVs always yielded to participants as soon as participants
stepped onto the road, so we could simulate their defensive design
principles. For sending feedback to participants, AVs switched on
a light-blue light when they started decelerating (Werner, 2018)
(see Figure 3A). Conventional vehicles stopped for the
participant if the participant performed a hand gesture
coupled with a button press and the vehicle was a part of the
successful communication subset. This gesture represented the
explicit communication between the vulnerable road users and
drivers. For sending deceleration feedback, HDVs flashed their
headlights to participants (see Figure 3C). In the failed-
communication subset, HDVs neither stopped nor indicated
other forms of cues to participants. Participants were unaware
of the types of conventional vehicles, and they were only
informed that human drivers may or may not respond to them.

3.2.2 Social Control
To understand the effect of different forms of social control on
crossing behavior, next to the baseline condition of no social
control, we tested for the effect of social conformity, cues
indicating formal norm enforcement, and the effect of a
negative bystander. To represent different social controls, we
placed virtual human characters on the left side of the participant
(see Figures 4B–D). For representing a positive norm of social

conformity, a mother and a child waited before crossing until all
vehicles passed. A mother and her child were chosen for this
condition, as the social norm of rule compliance should be
stronger when acting as a possible role model for the child.
The negative bystander/broken-windows condition was
operationalized by a walking person who stopped the
oncoming vehicle wave after the small traffic gap was used.
Formal norm enforcement and possible sanctioning were
operationalized by the presence of a police officer. Participants
were informed that police may or may not see them. If police saw
them attempting to cross by obstructing the traffic flow,
participants were stopped; hence, they received 0 points from
that trial. This game mechanism represented a subtle cost of legal
punishment. Because crossing the road in our scenario was not
illegal, we avoided any direct punishment implications. In order
to reduce the bias of police behavior, we sat up equal amounts of
catching and non-catching police conditions in the design.

3.2.3 Task Urgency
To understand the effect of different payoffs on jaywalking
behavior, we tested for the effect of different task urgency and
different payouts for jaywalking. This factor consisted of two
levels: urgent and non-urgent. Urgency levels were cued with
symbols before each trial started (see Figures 3B,D). In the
scenario, participants received 1 base point for successful pizza
delivery. However, they could double their earnings when
completing the task in the set time frame. Therefore, scenarios
were presented with a timer indicating the remaining time for
earning a bonus point (see Figure 2). In non-urgent trials, the
bonus timer started counting back from 23 s, which was enough
for waiting until all vehicles passed, and it was safe to cross. In this
condition, individuals received 2 points (base + bonus),
disregarding their crossing decision. In urgent trials, the bonus
timer started counting back from 13 s, meaning that participants
had to jaywalk in front of a vehicle to complete the task with 2
points.

3.3 Collected Measures
As dependent variables, we collected both the crossing decision of
individuals and the associated crossing onsets. Crossing onsets
captured the time passed from the moment a trial started until a

FIGURE 4 | Non-player characters. (A) Target customer waiting for pizza delivery. (B) A walking person who crosses the road represents negative social control.
(C) Police officer representing legal control. (D) Mother and child representing positive social control of abiding by the rules.
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participant stepped on the road (in seconds). The crossing
decision was observed by the researchers and was cross-
checked with the collected crossing onsets, which were filtered
by a series of criteria. First, participants crossed if the crossing
onsets were smaller than the time needed for the last car of the
second wave of cars to pass an invisible line. Second, if the last car
could not reach the invisible line before the participant, either the
participant successfully reached the other side or because a crash
occurred (See Supplementary Material).

Because we implemented a second choice task for HDVs, to
test for the effect of vehicle type and social control under equal
risk of collision between human-driven and automated vehicles,
we then split the dependent variable of crossing onsets into two.
For the general differences, we only used those observations
where the crossing decision was made within 1 s after the first
wave of cars passed (7.75 s), which equals around 1 s before the
second wave’s arrival. This point is likewise below the reaction
time of the risk-controlled, yielding signaling its intention to stop.
For those observations, we could logically assume that the
crossing decisions for scenarios with an HDV were made,
disregarding the behavior of the other vehicle and under
unknown probabilities of a collision. To compare the crossing
decision under equal risk for a crash, we used all observations
where the participant crossed later than the initial time frame,
crossed or did not cross when interacting with an AV, or elected
to not cross when faced with an HDV where successful
negotiation could have been possible (which was unknown to
the participant, but signalized that no attempt to stop the car was
made). As independent variables, we used the experimental
treatment conditions and coded them into three factors
(vehicle type, task urgency, and social control).

After finishing the VR experiment, participants filled out an
online survey in LimeSurvey (version 3.27.26) Schmitz (2012)
consisting of the IGroup Presence Questionnaire (IPQ) (Schubert
et al., 2001), a demographics form (Deb et al., 2017b), the
Pedestrian Receptivity Questionnaire for Fully Autonomous
Vehicles (PRQF) (Deb et al., 2017b), the Pedestrian Behavior
Questionnaire (PBQ—Short Version) (Deb et al., 2017b), and the
Social Value Orientation (SVO) (Murphy et al., 2011) scale.
Within the scope of this study, we have only used these
measures to draw a clearer participant profile, and we did not
evaluate them further in statistical analysis. Lastly, we presented
five open questions regarding the effects of manipulated factors in
the experiment (see Appendix).

3.4 Participants
Thirty-six participants (21 females, age:M = 25.22, ± SD = 5.15) were
recruited via the online notice board of the university and printed
“Pizza Delivery Game” advertisements on bus stops. Participants
were informed theywould be reimbursedwith 8–10 euros, depending
on the final game score. However, all participants eventually received
a compensation of 10 euros for their participation, which was
revealed at the end of the experiment. The Ethics Committee of
the University of Oldenburg gave ethical approval for the experiment
according to the Declaration of Helsinki.

Most participants reside in big cities with an overall
population density of at least 193 people per square km. Most

of them were high school graduates (n = 14) or graduate students
(n = 10). Thirty-two participants would fall in the prosocial
category on the Social Value Orientation angle (M = 32.69, ± SD =
8.77) (Murphy et al., 2011). Their (PRQF) (Deb et al., 2017b)
grand scores had a mean more on the positive side of the scale
(M = 66.63, ± SD = 10.88), indicative of greater receptivity for
AVs. The average PBQ-Short Version (Deb et al., 2017b) grand
score of the participants was 43.08, on the negative side of the
scale, indicating safer pedestrian behavior (±SD = 6.80).
Inspection of the IGroup Presence Questionnaire (IPQ)
(Schubert et al., 2001) revealed high general presence (M =
4.52, ± SD = 1.20), high spatial presence (M = 4.29, ±SD =
0.97) and above-average involvement M = 3.77, ±SD = 1.12) in
our VR experiment. However, experienced realism was rated on
the negative side of the scale (M = 2.60, ±SD = 0.74) (see
Figure 5).

3.5 Experimental Procedure
Participants were invited to a large meeting room. This provided
enough space for walking a street-long distance of 12 m (see
Figure 1B). First, participants gave their written consent and
received specific information about the study and the associated
task. Secondly, they were introduced to the Oculus Quest 2 VR
headset and controllers (Facebook Technologies, LLC.). Then,
they were instructed about the virtual guardian walls that indicate
safe zones in the real environment. The virtual environment was
re-positioned in a way that participants could walk straight to the
virtual customer within the safe zone.

Before the experiment started, each participant conducted five
test trials to familiarize themself with the environment, as in
Jayaraman et al. (2019) and Kalatian and Farooq (2021). In the
first trial, participants experienced crashing and dying, where
they received the information about dying with a text on black
background. They were also falsely informed that if they died in
the experiment, the experiment would be over without earning
the extra incentive. We gave this information to increase the cost
of dying in the game. In the second trial, participants tried to stop

FIGURE 5 | iGroup Presence Questionnaire Evaluation. Note: iGroup
Presence Questionnaire Evaluation with means of the subscales involvement,
experienced realism, spatial presence, and general presence.
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the conventional cars by communicating with a gesture combined
with a button press on the controller. The third trial showed them
that conventional vehicles do not always consider their requests,
and they keep on driving. In this trial, they also saw a very large
traffic gap where the road was free of vehicles. They were
reminded that this gap existed in each trial. The last two test
trials were dedicated to police conditions where a policeman is
either aware or unaware of the participant. In these last two trials,
participants also practiced crossing in front of an AV. After
making sure participants had no questions, 30 pseudo-
randomized experimental trials began. Lastly, participants
filled out online survey questions at the end. The virtual
reality experiment took, on average, 30 min, in line with
Kalatian and Farooq (2021) due to the increase in fatigue after
30 min, and the survey took 30–40 min to complete.

3.6 Analytical Approach
Before conducting the analysis, we ran a series of validity checks
and excluded observations that were either implausible or
instances where participants did not start crossing due to rare
bugs. These include instances where respondents were free-falling
from the environment or the trial time was elapsed. Unusual
crossing onsets smaller than 1 s and bigger than 20 s (4/864) were
ignored, resulting in a final sample size of N = 36 with 860
observations.

To understand the effect of the experimental treatments on the
crossing behavior, we calculated a generalized linear mixed-
effects model (GLMM) (Nelder and Wedderburn, 1972),
including the experimental factors as fixed effects and treating
within-subject variance as random effects. The crossing behavior
of individuals served as a binomial dependent variable in the
analysis, which we regressed on dummy variables for the
experimental factors. We tested for both the main effects of
the three experimental factors and interaction effects between
vehicle type and both social control and task urgency. The
statistical analysis was performed in RStudio (version 1.4.1106)
(R Studio Team, 2020), using the glmer function of the Lme4
package (version 1.1-27.1) (Bates et al., 2015). The distribution of
residuals in our models was cross-checked with the
check_distribution function of the R performance package
(version 0.8.0) (Lüdecke et al., 2021). Model fittings were
tested via the base ANOVA function of R with Chi-squared
tests and compare_performance function in the performance
package. We also report the predicted marginal effects of each
condition with crossing probabilities, which were calculated using
the ggeffects package (version 1.1.1.1) (Lüdecke, 2018). They are
reported in percentages after the multiplication of 100. Marginal
effects indicate the average treatment effect of our experimental
factors (or interaction of factors), holding the other factors
constant in their proportions.

4 RESULTS

In this part, we report the results of the experiment, both for the
baseline experiment under unknown risk of a crash with an HDV
(see Section 4.1) and a second analysis using a subset of risk-

controlled crossing decisions, where participants were able to stop
the HDV (see Section 4.2). Section 4.1 includes crossing
attempts in front of HDVs where participants did not try to
negotiate with the driver. Section 4.2 excludes these trials and
demonstrates the results of participants when they negotiated
with HDVs and when they tried to stop the vehicles by
communicating with the drivers with a gesture. We have made
this two-level analysis to observe the overall effect of vehicle types
on our study and the pure effect of vehicle automation on
crossing behavior when the risk of crashing is eliminated
for HDVs.

For reporting the main effects, we elected to present the
average marginal effect of the experimental factors, which is
the effect of the factor levels of interest in reference to the
baseline level, while holding the other factors constant at their
proportions and the marginal means, which is the average
crossing probability of participants when holding the other
factors constant at their proportions. As the average marginal
effect helps illustrate the causal effect in reference to the reference
level, the marginal means illustrate the overall descriptive means
for the different treatment conditions. We chose to report
marginal effects because they are more intuitively
understandable than odds ratios, reporting changes in or the
overall means of crossing decisions for the different treatment
conditions in percentages.

Overall, participants chose to cross deviantly in 62.1% of the
trials, whereas in 37.9% of the cases, they decided to wait. The
crossing decisions were most common when confronted with an
AV, where they chose to cross in 71.4% of the trials, whereas
when confronted with an HDV, only 57.4% elected to cross.
When faced with an HDV, the crossing decision was equally
distributed between observations where participants did not
know about the probability that the car would stop (27.7%)
and trials where participants successfully signaled the car to
stop (29.7%).

4.1 General Crossing Predictions
The results of the Generalized Linear Mixed Effects Model to
model individuals’ general crossing decisions are provided in
Table 1, and the predicted marginal effects and marginal means
for the different treatments are illustrated in Figure 6. We used
distinctive models to calculate the marginal effects. While models
1, 2, and 3 show the results for the main effects of vehicle type,
task urgency, and social control, respectively, models 4 and 5
indicate the interaction between vehicle type × task urgency and
vehicle type × social control.

With all else being equal and keeping the effect of the other
factors constant at their proportions, we find the presence of AV
to significantly increase the crossing probability by 43% in
comparison to HDV (β = 2.03, z (860) = 12.01, Pr (>|z|) <
0.001) (see Figure 6 top left). Overall, this meant for our
participants that the average probability of crossing increased
from 26% when interacting with an HDV to around 73% when
interacting with an AV (see Figure 6 top right). Similarly, in
reference to non-urgent scenarios, urgent scenarios significantly
increased average probability of crossing by 13% (β = 0.56, z (860)
= 3.95, Pr (>|z|) < 0.001) (see Figure 6middle left). The average
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probability of crossing in urgent scenarios was 49%, whereas it
was 35% in non-urgent scenarios (see Figure 6, middle right).
Lastly, when contrasted to the baseline social control condition of
being alone, the presence of a police significantly reduced the
crossing probability by 20% (β = −1.11, z (860) = -4.77, Pr (>|z|)
< 0.001); the presence of a walking person significantly increased
crossing probability by 33% (β = 1.52, z (860) = 7.06, Pr (>|z|) <
0.001); and the bystanders mother and child did not change the
probability of crossing (β = 0.03, z (860) = 0.17, Pr (>|z|) = 0.86)
(see Figure 6 bottom left). Our participants’ crossing probability

was predicted as 16% in the presence of police. Moreover, an
increase of 74% was observed when accompanied by a walking
person who attempted to cross the road. With mother and child
condition, the crossing probability was at 39%. Finally, when the
participants were alone in the scene, their crossing probability
was 38% (see Figure 6, bottom right).

4.2 Risk Controlled Crossing Predictions
Since participants were unaware of the probability that an HDV
would stop for the initial crossing decision, the strong effect of AV

TABLE 1 | General results for the effect of vehicle type, task urgency, and social control on crossing decisions.

Predictors M1 odds
ratios

M2 odds
ratios

M3 odds
ratios

M4 odds
ratios

M5 odds
ratios

(Intercept) 0.36*** 0.55*** 0.62* 0.25*** 0.23***
Autonomous vehicle 7.61*** 7.94*** 14.68***
Urgent 1.76*** 2.01***
Walking person 4.58*** 6.85***
Police presence 0.33*** 0.31**
Mother and child 1.04 1.06
Autonomous vehicle * urgent 1.04
Autonomous vehicle * walking person 2,233,228.92
Autonomous vehicle * police presence 0.56
Autonomous vehicle * mother and child 1.02
Random effects
σ2 3.29 3.29 3.29 3.29 3.29
τ00 0.57 0.35 0.54 0.61 1.08
ICC 0.15 0.10 0.14 0.16 0.25
N 36 36 36 36 36
Observations 860 860 860 860 860
Marginal r2/conditional r2 0.192/0.312 0.022/0.117 0.187/0.301 0.220/0.342 0.865/0.898

***p < 0.001, **p < 0.01, *p < 0.05.
Note: results of generalized mixed-effect regression models. Odds ratios and random effects are reported for models 1–5. M1: vehicle type, M2: task urgency, M3: social control, M4:
vehicle type × task urgency, M5: vehicle type × social control.

FIGURE 6 | Average marginal effects and marginal means for general crossing. Note: left plot shows the average marginal effects (AME) of our three experimental
factors in reference to their baseline factor levels. The vertical line represents the effect of the reference level. The right column reports the marginal means (MM) for the
different factor levels on crossing probabilities, holding the other factors constant at their proportions. Points indicate AME/MM, horizontal lines the 95% CIs. Effects
based on results of GLMM.
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on the crossing decision might be caused by their passive
programming and autonomous nature. To test whether the
decision to cross is influenced by their autonomous nature
and whether the effect of social control changes under equal
risk distributions between AV and HDV, we conducted a second
analysis, excluding those observations where the risk of a crash
with an HDV was unknown.

The results of the Generalized Linear Mixed Effects Model
to model individuals’ risk-controlled crossing decisions are
provided in Table 2, and the average marginal effects and
marginal means for the different treatments are illustrated in
Figure 7. Similar to Table 1, models 1, 2, and 3 show the
results for the main effects of vehicle type, task urgency, and
social control. Models 4 and 5 indicate the interaction

between vehicle type × task urgency and vehicle type ×
social control.

With all else being equal and holding the effect of other factors
constant at their proportions, we see no effect of AV compared to
HDV when we controlled for the risk (β = −0.03, z (524) = -0.15,
Pr (>|z|) = 0.87) (see Figure 7, top left). When the crossing
probability in front of AVs was 71%, the crossing probability in
front of HDVs was 72% (see Figure 7, top right). The effect of
urgency remained significant when crossings were controlled for
the risk. Compared to non-urgent scenarios, urgent scenarios
increased crossing probabilities by 10% (β = 0.55, z (524) = 2.78,
Pr (>|z|) < 0.01) (see Figure 7, middle left). Their own effect on
crossing probabilities was observed as 78% for urgent and 66% for
non-urgent scenarios; Figure 7; middle right). Compared to

TABLE 2 | Risk-controlled results for the effect of vehicle type, task urgency, and social control on crossing decisions.

Predictors M1 odds
ratios

M2 odds
ratios

M3 odds
ratios

M4 odds
ratios

M5 odds
ratios

(Intercept) 2.65*** 2.03*** 4.50*** 2.25*** 8.13***
Autonomous vehicle 0.97 0.82 0.38*
Urgent 1.75** 1.47
Walking person 79,112,259.30 44,516,415.95
Police presence 0.13*** 0.07***
Mother and child 0.62 0.28*
Autonomous vehicle * urgent 1.38
Autonomous vehicle * walking person 2.64
Autonomous vehicle * police presence 2.57
Autonomous vehicle * mother and child 3.81*
Random effects
σ2 3.29 3.29 3.29 3.29 3.29
τ00 0.28 0.29 0.79 0.30 0.83
ICC 0.08 0.08 0.19 0.08 0.20
N 36 36 36 36 36
Observations 524 524 524 524 524
Marginal r2/conditional r2 0.000/0.079 0.021/0.102 0.944/0.955 0.023/0.105 0.944/0.955

***p < 0.001, **p < 0.01, *p < 0.05.
Note: odds ratios and random effects are reported for models 1–5. M1: vehicle type, M2: task urgency, M3: social control, M4: vehicle type × task urgency, M5: vehicle type × social
control.

FIGURE 7 | Average marginal effects and marginal means for risk-controlled crossings. Note: left plot shows the average marginal effects (AME) of our three
experimental factors in reference to their baseline factor levels. The vertical line represents the effect of the reference level. The right column reports the marginal means
(MM) for the different factor levels on crossing probabilities, holding the other factors constant at their proportions. Points indicate AME/MM, horizontal lines the 95%CIs.
Effects based on results of GLMM.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 88531912

Şahin et al. Deviant Behavior of Pedestrians

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


baseline social control condition, as police presence significantly
decreased crossing probabilities by 42% (β = −2.05, z (524) =
−6.97, Pr (>|z|) < 0.001), the walking person increased it by 20%,
which was not significant (β = 18.18, z (524) = 0.020, Pr (>|z|) =
0.98). Mother and child lead to a decrease in 8%, which remained
insignificant (β = −0.47, z (524) = −1.56, Pr (>|z|) = 0.11) (see
Figure 7, bottom left). The effect of social control levels on
crossing probability, when kept constant at their proportions, was
observed to be 36% for police presence, 100% for the walking
person, 73% for mother and child, and, lastly, 81% when
participants were alone in the scene (see Figure 7, bottom right).

4.3 Exploring Interactions
Given the lack of empirical evidence on a potential interaction
effect between social control and vehicle type, that is, whether
social control might have a different effect on AV compared to
HDV, we further explored potential interactions with GLMM
models 4 and 5 for general crossings at Table 1 and risk-
controlled crossing at Table 2. The average marginal effects
for the interactions, AMEs of Social Control and Task
Urgency conditioned on vehicle type, are illustrated in
Figure 8.

When general crossings are considered, compared to being
alone, the presence of police decreased crossing in front of AVs by
36% and HDVs by 12%. This interaction was not significant (β =
−0.58, z (860) = −1.07, Pr (>|z|) = 0.28). Walking person
increased crossing probability in front of AVs by 26% and
HDVs by 37%. However, this interaction was also insignificant
(β = 14.61, z (860) = 0.03, Pr (>|z|) = 0.97). Mother and child had
an effect of increasing crossing probability in front of AVs by 0%
and HDVs by 1%, which was an insignificant result (β = 0.02, z
(860) = 0.04, Pr (>|z|) < 0.96) (see Figure 8, top left).

When we controlled for the risk and checked the interaction of
vehicle type × social control, compared to being alone, police
presence decreased the crossing probability in front of AVs by
36% and HDVs by 49%. However, this interaction was not
significant (β = 0.94, z (524) = 1.54, Pr (>|z|) = 0.12). The
walking person increased the crossing probability in front of
AVs by 26% and HDVs by 12%. The interaction was not
significant (β = 0.97, z (524) = 0.001, Pr (>|z|) = 0.99). The
mother and child condition increased crossing probability in
front of AVs by 1% and decreased the crossing probability in
front of HDVs by 19% and this interaction was significant (β =
1.33, z (524) = 2.09, Pr (>|z|) < 0.05) (see Figure 8, top right).

The interaction of vehicle type by task urgency did not yield
significant results in both general and risk-controlled results.
Considering general crossings and compared to non-urgent
situations, in urgent scenarios, participants’ crossing
probability in front of AVs increased by 12% and in front of
HDVs by 13% (β = 0.03, z (860) = 0.10, Pr (>|z|) = 0.91) (see
Figure 8, bottom left). When controlled for risk for the same
interactions, participants’ crossing probability in front of AVs
increased by 13% and HDVs by 7% (β = 0.32, z (524) = 0.79, Pr
(>|z|) = 0.42) (see Figure 8, bottom right).

5 DISCUSSION AND CONCLUSION

Will individuals bully or abuseAVs for individual gain?We had run a
two-step analysis in the results section where we tested crossing
decisions when the anticipated risk for AV was low and the
anticipated risk for HDV was higher in the first step. This step
mimicked the expected future mixed traffic environment with
imbalanced costs of exploiting an HDV and an AV. Our results

FIGURE 8 | Effect of social control and task urgency conditioned by vehicle type. Note: the figure illustrates the average marginal effects on crossing probabilities of
social control and task urgency, conditioned on vehicle type, both for the baseline crossing decision under uncertainty of HDV behavior (left side) and interactions where
participants were faced with the equal risk of collision between AV and HDV (right side). Purple points represent HDV, and orange triangles represent AV. Horizontal lines
show 95% CIs. Vertical lines represent the average crossing probability of the reference level.
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indicated a higher deviant behavior toward AVs when the risk
distribution was not balanced. These results support the findings
of Moore et al. (2020), in which they observed deviant behavior
toward self-driving vehicles in their field observation. Moreover, our
results are also corroborated by remarks from our respondents.
When we asked whether different vehicle types influenced their
crossing behavior, more than half of the answers indicated an existing
effect. Participants stated that they crossed the street “without
hesitation” in the presence of AVs, relying on the passive stance
of AVs, and they were more willing to cross in front of AVs. One
respondent explained in AV conditions that he crossed even without
waiting for the blue deceleration signal of AVs. These results are in the
direction of “Overtrust” toward AVs problem, as Holländer et al.
(2019) argued. However, in the second step of the analysis, when we
balanced the risk distribution by only including HDV trials where
HDVs could yield if participants negotiatedwith them, our data could
tell if there were remaining differences in crossing behavior stemming
from the sole effect of automation attributes of vehicles. As we ran the
analysis, we observed that the existing difference between crossing
predictions among HDVs and AVs simultaneously disappeared
when the crash risk of HDVs disappeared. These results
emphasize the importance of risk avoidance in participants’
crossing decisions more than the automation status of vehicles,
which is in line with the remarks of Dommès et al. (2021) that
pedestrians rely mainly on vehicle dynamics and locomotion cues
before taking a crossing decision. Therefore, we can only confirm H2
that when the collision risk is introduced in HDVs when AVs stay
risk-free, deviant behavior toward AVs increases, as Millard-Ball
(2018) anticipated with his game theory-derived remarks.

Kalatian and Farooq (2021) observed in their VR study derived
models that pedestrians’ waiting time before crossing was longer in
mixed traffic and only AV scenarios than in only HDV scenarios.
Their study did not report trials where vehicles did not stop; hence,
the risk distribution among vehicle type levels seemed equal. When
we compare their results with our risk-controlled crossings, we fail to
observe a similar effect in the crossing behavior of pedestrians in
terms of crossing predictions. This could be due to our strategy of
priming participants before the experiment by informing them about
the different characteristics of AVs andHDVs that AVswould always
yield to them to prevent a collision and HDVs may or may not yield
to them.We have done this to approximate pedestrian behavior once
they are accustomed to conflict-avoidant AVs after long-term
exposure in the future. Hence, the difference between our results
and those of Kalatian and Farooq (2021)might indicate differences in
the novel and primed mental models of pedestrians when they
encounter AVs. Furthermore, Kalatian and Farooq (2021)
reported that some teenage participants performed deviant
behavior against virtual vehicles once they realized that vehicles
react according to their crossing behavior. Participants then would
play with them by moving back and forth on the street. The authors
pointed out future implications of deviant behavior toward AVs in
their work, and their statements are in line with our general crossing
results and the study of Moore et al. (2020) in this regard.

Moreover, Colley et al. (2022) tested pedestrian behavior in the
presence of constant oncoming AVs, which would not yield for
participants. Their results showed that after a couple of passing
AVs, pedestrians relied on the prior information of an emergency

braking system of AVs and preferred crossing for saving time.
However, they have only tested this condition for AVs. In our
experiment, we utilized always yielding AVs and yielding and
non-yielding HDVs. To draw a clearer picture of whether
pedestrians treat AVs and HDVs differently, a follow-up study
including non-yielding HDVs and non-yielding AVs can support
our risk-controlled results from another perspective.

The gamification of our experiment further enabled us to
manipulate conditions that directly affect individual gains in the
form of earning points and earning extra reimbursement in euros.
Task urgency was directly linked to maximizing the incentive
participants would gain. Generally, we found urgent scenarios to
predict higher chances of crossing instead of waiting, confirming
that participants showed more deviant behavior under time
pressure, in line with Morrongiello et al. (2015), Schneider
et al. (2019), and our theoretical expectations formulated in H1.

Results of our analysis also indicate that different forms of social
control, indeed, influence individuals’ decisions to jaywalk. We find
themere presence of cues signaling formal norm enforcement (police
presence) to deter individuals from crossing, hence confirming H3c.
This finding is likewise corroborated by participants’ responses:
participants state that police played a role in the majority of their
decisions. In this condition, our approach and application of formal
traffic norm cues differ from the work of Jayaraman et al. (2019) in
essence. As Jayaraman et al. utilized signalized and non-signalized
pedestrian crossings as a factor for investigating the effect of formal
traffic rules on pedestrians’ crossing decisions, we have placed the
police officer character as a mere cue for the presence of legal
authority. Moreover, this character did not have a definite effect
on traffic rules as in the case of a traffic light that Jayaraman et al.
used. In our experiment, jaywalking was not illegal and police
presence did not directly signify a punishment if participants
jaywalked. Moreover, 50% of the time, the police were not
effective in the trials. Another difference in our approach from
Jayaraman et al. is that we tested for deviant behavior of
pedestrians in the presence of legal authority, whereas they tested
for pedestrian trust in automated vehicles in the presence or absence
of a formal traffic sign. Our results are also in line with Camara and
Fox (2020). They suggested that rare large penalties could be replaced
with milder and more frequent negative utilities, hence preventing
pedestrians from acting deviant. In our study, the mere cue of legal
norms without certainty of sanctioning seemed to deter our
participants from crossing.

Looking at the effect of negative social cues, that is, the effect of
cues signaling low levels of social conformity, we see a strong increase
in deviant behavior with a crossing probability up to 100%. These
results match with the results of Colley et al. (2022) and the reporting
of Faria et al. (2010), where they observed an increase in crossing
behavior probability when other pedestrians started to cross. As this
finding indicates the negative effect of cues signaling low levels of
norm compliance on deviant behavior of participants, this strong
effect might also result from our experimental design. Compared to a
mere cue, our implementation of the negative bystander effect
stopped the oncoming traffic, thereby transforming the individual
decision to jaywalk into a decision to free-ride.Moreover,Mahadevan
et al. (2019) reported an insignificant effect of crossing group
behavior on participants’ crossing decisions on their pedestrian
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simulator, which is opposite to our findings. Hence, we cautiously
confirm our hypothesis H3b, and overall, negative social cues are
worth deeper research.

In our experiment, positive social cues represented the social
sanctioning in the forms of a mother and a child character. We did
not observe a difference in crossing behavior predictions in this
condition when compared to being alone in the scene. As a result, we
failed to confirm H3a. However, when we explicitly asked
participants how their behavior would differ in real traffic
situations, the majority stated that they would generally abide by
the rules in the presence of children and police. Overall, this seems
indicative that even though participants were in a low-fidelity virtual
environment with a delivery task assigned to them, they were affected
by the social control of bystanders. However, social sanctioningmight
play a bigger role in real-life interactions than in the virtual
environment.

When we explored the potential interaction effects of vehicle type
by task urgency or social control on crossing predictions, we have
only found a significant difference between AVs and HDVs in the
mother and child condition compared to being alone. This effect
existed only in risk-controlled trials, meaning that when the risk of
collision is balanced, having the mother and child in the scene
decreased the crossing probability in front of HDVs, whereas it
did not change the crossing probability in front of AVs. A potential
explanation might be that when mother and child existed in the
scene, participants were more risk-avoidant and cautious about
crossing in front of HDV, whereas they still relied on the
defensive nature of AVs, and they did not alter their behavior in
the presence of the mother and the child. On the whole, to our
knowledge, no study regarding pedestrian–AV interaction
considered the effect of social norms by focusing on the effect of
bystanders as we utilized.

In conclusion, it seems that AVs of the future will be the inferior
counterpart of interaction with humans if they remain risk aversive
and if there is an imbalanced distribution of crash risk among
human-driven and automated vehicles. When the costs of deviant
behavior are balancedwhile crossing in front of these vehicles, the sole
effect of automation attributes does not influence the crossing
behavior, which supports the idea that, in essence, people would
treat the AVs the same as HDVs if they behave similarly. As the
defensive nature of AVs is essential for the safety of future mixed
traffic and for the acceptance of AVs, this might incentivize
individuals to exploit them in the long term. Lastly, our
exploration of social norm dynamics reveals that social control,
especially legal cues, carries the potential of being the regulator of
humans’ deviant behavior.

5.1 Limitations and Future Directions
We used the gamification approach to eliminate task fatigue in the
experiment and make the participants more involved with the task.
Most participants seemed to enjoy the idea of earning points.
Furthermore, the point system helped us establish costs and
benefits in a more realistic way than leaving these concepts to
participants’ imaginations in our VR study. We have observed
that gamification fitted well with repetitive tasks because it had
placed these tasks conceptually in a meaningful context. However,
because we used gamification, we took the liberty of keeping the

environment in low fidelity. The effect of this decisionwas reflected in
the experienced realism ratings of participants in IPQ results.
Benefiting from a more realistic environment in the next iteration
can improve experienced realism, hence an overall more immersive
experience, which might provide for more fine-grained results.

Because we primed our participants that AVs would always be
conflict-avoidant and yield to them, we did not include non-
yielding AVs in our design. A future study where we introduce
non-yielding AVs can help us to position our current results
regarding risk control in a more validated place.

We had a rather young sample with individuals from similar
educational backgrounds. Deb et al. (2017b) reported, in their PRQF
scale validation study, that younger people were more receptive
toward AVs. We could confirm this finding with our young
sample. However, a more diversified sample could draw a more
realistic picture of the existing traffic dynamics. Moreover, we
arranged the traffic flow unidirectional in our experiment to keep
the task less complicated and make sure that participants would not
miss the target vehicle. However, this can be enhanced with some
alterations in the study design. Furthermore, we have given
participants the repetitive task of crossing the same street. Even
though we have emphasized the pizza delivery task in our
instructions, and on our game concept, benefiting from different
virtual streets could have blinded our manipulations even better.
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APPENDIX A LIST OF OPEN QUESTIONS.

• What have you paid attention to when you were playing the
game?

• Did police or other pedestrians affect your crossing
decisions? How?

• Did timers or urgency symbols affect your crossing
decisions?

• Did vehicle types influence your crossing decisions?

• How would your street-crossing behavior differ in real-life
situations?
-When you see people who wait for the cars to

go first.
-When you see people who do not wait for the cars to

go first.
-When you see children around.
-When you see police around.
-When you are in a hurry.
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