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Activity-dependent neuroprotective protein (ADNP) is deregulated in Alzheimer’s disease

(AD) and in schizophrenia and mutated in autism. In mice, ADNP is essential for

brain formation and ADNP haploinsufficiency is associated with cognitive and social

deficits and tauopathy. Tauopathy, a major pathology in AD, is also found in ∼45% of

frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes

alternative splicing. Tau splicing seems to be altered in FTD brain. In transgenic mice

overexpressing a mutated tau in the cerebral cortex, significant increases in ADNP

transcript expression were observed in the cerebral cortex of young transgenic mice

(∼disease onset) and a marked decrease with aging as compared to control littermates.

ADNP is a member of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin

remodeling complex also associated with alternative splicing, including tau transcript

splicing. Further cellular interactions of ADNP include association with microtubules,

with tau being a microtubule—associated protein. NAP (davundetide), a novel drug

candidate derived from ADNP, increases ADNP-microtubule association and protects

against tauopathy and cognitive deficiencies in mice. Although, NAP did not provide

protection in progressive supranuclear palsy (PSP), a pure tauopathy, it increased

cognitive scores in amnestic mild cognitively impaired patients and protected functional

activity in schizophrenia patients. This mini-review focuses on ADNP in the context of

FTD and tau/microtubules and proposes NAP as a novel drug target for future clinical

evaluations.

Keywords: acitivity-dependent neuroprotective protein (ADNP), NAP (davunetide), microtubules, Alzheimer’s
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ACTIVITY-DEPENDENT NEUROPROTECTIVE PROTEIN (ADNP)
DEREGULATION IS LINKED TO BRAIN DISEASES

Activity-dependent neuroprotective protein (ADNP) that has been discovered in our laboratory
(Bassan et al., 1999; Zamostiano et al., 2001) has been associated with various diseases such
as Alzheimer’s disease (AD)—with ADNP protein levels suggested to be decreased in patient
serum samples compared to controls (Yang et al., 2012), schizophrenia—with ADNP mRNA levels
increased in lymphocytes of patients compared to controls (Merenlender-Wagner et al., 2015),
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multiple sclerosis—with ADNP mRNA levels decreased in
nucleated blood cells of patients (Braitch et al., 2009), mutated
in autism and associated with cognitive deficits (O’Roak et al.,
2012a,b; Helsmoortel et al., 2014; Gozes et al., 2015a), and
mutated in cancer (Zamostiano et al., 2001). Additional studies
identified ADNP single nucleotide polymorphism in the second
intron, upstream the protein coding region, as a risk factor to
prostate cancer (Al Olama et al., 2014). Our recent bioinformatics
showed that ADNP is unique to chordata, a gene shaping the
brain of higher organisms (Gozes et al., 2015b). In mice, ADNP is
essential for brain formation (Pinhasov et al., 2003; Mandel et al.,
2007) and ADNP haploinsufficiency is associated with cognitive
and social deficits and tauopathy (Vulih-Shultzman et al., 2007).
Here we posit an association of ADNP with frontotemportal
degeneration/dementia (FTD).

PATHOPHYSIOLOGY OF FTD

FTD is a spectrum of neurodegenerative diseases with
pathological involvement of the frontal and temporal
lobes, which refers to a variety of clinical manifestations of
frontotemporal lobar degeneration (FTLD). FTD, the most
common subtype of FTLD, is also divided into two main
syndromes (Hopkins and Chan, 2015): a behavioral variant
(bvFTD), characterized by changes in social and personal
conduct with loss of volition and abstract thought, as well
as decreased speech output; and primary progressive aphasia
(PPA), characterized by a speech and language impairment
resulting in mutism and an inability to communicate. PPA is
further divided into two syndromes, the agrammatic variant and
semantic dementia (Benussi et al., 2015). In certain forms of
FTD, parkinsonian symptoms and amyotrophic lateral sclerosis
(ALS)-like motor abnormalities may be present. In addition
to FTLD subtypes, there are different clinical syndromes
[corticobasal degeneration (CBD), progressive supranuclear
palsy (PSP), and motor neuron diseases] with overlapping
clinical/pathological features, leading to confusion in the
terminology and to difficulties in diagnosis (Mendez et al.,
2007; Rascovsky et al., 2011). Another classification of FTLD
subtypes uses neuropathological findings. Mackenzie et al.
(2009, 2010), classified two main neuropathological subtypes
of FTLD: FTLD with tau-positive inclusions (FTLD-tau),
caused by tau mutations or tau deregulation (Gozes, 2010),
and FLTD with ubiquitinated inclusions (FTLDU), caused
by mutations/deregulation in the TARDBP, GRN, VCP, and
CHMP2B genes. A recent review extends these definitions and
describes, in depth, the network of RNA and protein interactions
in FTD (Fontana et al., 2015), encompassing C9ORF72, a gene
mutated in FTD and ALS (DeJesus-Hernandez et al., 2011;
Renton et al., 2011) and associated with RNA splicing factors
(Cooper-Knock et al., 2015), which in turn may regulate tau.
Thus, potential links between C9ORF72 to tau deserve future
studies. Interestingly, recent findings identified C9ORF72 repeat
expansions in 4 of 334 subjects [1.2% (or 1.8% of 217 tested
families)]. All the tested subjects had behavioral phenotypes
and also harbored well-known pathogenic mutations in either
progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or

tau (MAPT: p.P301L), contributing to the pleiotropy of the
disease (van Blitterswijk et al., 2013).

ADNP EXPRESSION IS CORRELATED
WITH THE MICROTUBULE ASSOCIATED
PROTEIN TAU THAT IS IN TURN LINKED
TO FTD

The neurodegeneration underlying FTD results from cortical
and subcortical neuronal loss in the frontal and temporal lobes,
whereas tau-positive inclusions may be found in ∼45% of
FTLDs (Boxer et al., 2013). Tau transcript, a product of a single
gene, undergoes alternative splicing. Tau splicing seems to be
altered in FTD brain. Alternative splicing around exon 10 of the
tau transcript yields tau protein variants including tau protein
containing either 3 or 4 microtubule binding repeat domains
(tau 3R or 4R), associated with dynamic and stable microtubules,
respectively (Goedert et al., 1988, 1989a,b; Goedert and Jakes,
1990). The healthy human brain exhibits a 1/1 ratio of tau 3R/4R
and deviation from this ratio are pathological features of FTD
taupathies (Goedert et al., 1988, 1989a,b; Hutton et al., 1998;
Spillantini et al., 1998; Goedert and Spillantini, 2011).

In FTD mouse model overexpressing a mutated tau (4R) in
the cerebral cortex [rTg(tauP301L)4510], significant transient
increase in ADNP transcript expression (∼three-fold) was
observed in young transgenic mice at the disease onset compared
to control littermates. This effect has not been seen in the
cerebellum that is lacking an expression of a mutated tau.
The increase in ADNP paralleled an increase in tau 3R and
blocking the mutated tau 4R transgene expression resulted in
normalization of ADNP and tau 3R mRNA levels. Furthermore,
an aging-augmented decrease in ADNP expression was observed
in the in the cerebral cortex of the mutated mice, compared to
control littermates (Gozes et al., 2014a; Schirer et al., 2014). These
findings suggest an ADNP/tau/FTD interaction.

Mechanistically, we have shown that ADNP is a member
of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin
remodeling complex (Mandel and Gozes, 2007). As such,
ADNP binds to heterochromatin protein 1 (Mandel et al.,
2007; Mosch et al., 2011). Brahma (Brm), a component of
the SWI/SNF complex regulating alternative splicing, showed
a similar developmental expression pattern to ADNP in the
rTg4510 mice. Immunoprecipitations further suggested a Brm-
ADNP interaction. Further protein-protein association was
found between ADNP and the polypyrimidine tract-binding
protein (PTB)-associated splicing factor (PSF), with PSF being a
direct regulator of tau transcript splicing (Schirer et al., 2014).
These ADNP protein-protein interactions implicate a potential
influence of ADNP expression on tau mRNA splicing. Notably,
PSF interacts with peroxisome proliferator-activated receptor
gamma (PPARc), a nuclear receptor that plays an essential role
in cell proliferation, apoptosis, and inflammation (Esteves et al.,
2014), serving as a therapeutic target in AD (Roses et al., 2013).
PSF regulation and the regulation of tau splice variant expression
have both been associated with learning and memory (Antunes-
Martins et al., 2007). Furthermore, PSF (also known as SFPQ,
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splicing factor, proline, and glutamine-rich) is depleted from
the nucleus and accumulates in the cytoplasm in AD and in
FTLD, in brain areas affected by tau pathology. This cellular
localization is mediated by tau protein over-expression (Ke et al.,
2012). In this respect, ADNP haploinsufficiency was associated
with cognitive and social deficits and aging-associated tau
hyperphosphorylation, neurofibrillary tangle-like accumulation,
and neurodegeneration, in mice (Vulih-Shultzman et al., 2007).

ADNP IS LINKED TO MICROTUBULES AND
AUTOPHAGY

Further cellular interactions of ADNP include association with
microtubules (Furman et al., 2004; Oz et al., 2014). Specifically,
we showed interaction of ADNP with microtubule end binding
proteins (EBs) (Oz et al., 2014). Recent findings identified tau
as a regulator of the localization and function of EB1 and
EB3 in developing neuronal cells (Sayas et al., 2015). Tau is
associated with microtubule dynamics and axonal transport,
while EB1 is important for axons (Alves-Silva et al., 2012)
and EB3 for dendritic spines (Jaworski et al., 2009) and both
EB1 and EB3 are important for ADNP-associated neuronal
survival (Oz et al., 2014). In this respect, small hairpin RNA
ADNP downregulation (∼80% robust reduction) paralleled a
significant reduction (∼50%) in neurite numbers in neuronal-
like teratocarcinoma P19 cells (as measured by microtubule
associated protein 2 immunoreactivity) (Mandel et al., 2008).

We also could show a direct association of ADNP with
microtubule associated protein 1, light chain 3 (in short, LC3),
a major component of the autophagosome and a key regulator
of autophagy (Merenlender-Wagner et al., 2015). In this respect,
autophagy was shown to be reduced in cases of tauopathy
(Schaeffer and Goedert, 2012) andmicrotubule integrity is tightly
associated with functional autophagy (Esteves et al., 2014).

Microtubules are also associated with the cellular protein
translation process (Ben-Ze’ev et al., 1979), and in this respect, we
showed direct ADNP interaction with the eukaryotic translation
initiation factor 4E (eIF4E). As this factor is a regulator of autistic
phenotype (Gkogkas et al., 2013; Malishkevich et al., 2015),
association between ADNP and eIF4E may be underlying some
of the behavioral phenotypes observed in FTD.

ZINC ACCUMULATION IS ASSOCIATED
WITH TAU PATHOLOGY

There is current evidence for a relative increase in intracellular
zinc in vulnerable regions of the AD brain (Frederickson
et al., 2005a; Berti et al., 2015). Zinc is involved in signal
transmission/transduction across synapses and therefore
modulates synaptic transmission and plasticity (Frederickson
et al., 2005b). Besides its physiological functions, zinc
dyshomeostasis can contribute to neuronal and astrocytic
cell death (Koh et al., 1996; Bossy-Wetzel et al., 2004).
Phosphorylation of tau regulates its binding to microtubules
and is also associated with tau aggregation in disease. Aberrant
phosphorylation is a key feature of tau isolated from the brains

of individuals with AD and many other diseases exhibiting tau
pathology (Lee et al., 2001). One likely tau kinase is glycogen
synthase kinase 3β (GSK3β) (Medina and Avila, 2014). It
has been shown that abnormal high concentration (up to
250µM) of zinc induces GSK-3β activation and tau release
from microtubules (Boom et al., 2009). In terms of FTD, for
example, a truncating copper/zinc superoxide dismutase (SOD1)
mutation, p.Gly141X, is associated with clinical and pathologic
heterogeneity, including FTLD (Nakamura et al., 2015).

Taking into account that increased cellular levels of zink
can induce release of tau from microtubules and thereby
impair microtubule stability, ADNP replacement therapy that
we propose here may be of benefit to prevent microtubule
disruption and pathological aggregation of tau (Divinski et al.,
2004, 2006; Oz et al., 2012, 2014). This statement leads us
to clinical relevance of ADNP and the active ADNP fragment
peptide, NAP (NAPVSIPQ, davuentide) (Bassan et al., 1999).

CLINICAL PROSPECTS FOCUSING ON
THE ADNP-DERIVED DRUG CANDIDATE
NAP IN THE CONTEXT OF OTHER FTD
DRUG DEVELOPMENTS

To date, there is no disease-modifying treatment for FTD,
affecting the underlying disease process. As for symptomatic
treatments, FTD patients exhibit serotonin (Franceschi et al.,
2005) and dopamine (Rinne et al., 2002) deficits, therefore the
main pharmacological treatments used for FTD are based on
the neurotransmitter replacement and on medications used to
improve the behavioral symptoms (Litvan, 2001).

There are several preclinical studies in search for potential
drug candidates for combating FTD. As mentioned above,
the repeat expansion in C9ORF72 causes FTD and ALS
(c9FTD/ALS). RNA of the expanded repeat [r(GGGGCC)exp]
forms nuclear foci or undergoes repeat-associated non- ATG
(RAN) translation, producing “c9RAN proteins” (Ash et al.,
2013; Mori et al., 2013; Zu et al., 2013). Bioactive small
molecules targeting r(GGGGCC)exp were designed and found
to significantly inhibit RAN translation and foci formation
in cultured cells expressing r(GGGGCC)66 and neurons
transdifferentiated from fibroblasts of repeat expansion carriers,
presenting a possible–targeted c9FTD/ALS therapeutic (Su et al.,
2014).

Searching clinicaltrials.gov and touching on a few selected
examples for clinical intervention, reveals that oxytocin
affecting emotion is being tested (ClinicalTrials.gov Identifier:
NCT01937013). Studies evaluating FRM-0334, a small molecule
inhibiting histodeacetylase (HDAC), (NCT02149160) are being
carried out for FTD patients with granulin gene mutations.
In PSP patients, young plasma transfusion is being tested
(NCT02460731). Similarly, recombinant humanized anti-tau
antibody, C2N-8E12 (ABBV-8E12), is tested (NCT02494024).
Salsalate, a medication that belongs to the salicylate and non-
steroidal anti-inflammatory drug (NSAID) classes, is being
evaluated as potential drug target as well (NCT02422485).
Finally, TPI 287, an abeo-taxane —a synthetic derivative of
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the taxane diterpenoid drugs used in cancer therapy (which
shows blood brain barrier permeability) is being tested
for microtubule stabilization (NCT02133846). Together,
these potential therapeutics target behavior as well as tau
pathology/microtubule stability and inflammation, with
potential of symptomatic/disease modifying effects. It is early
to estimate potential success of any of the above listed drug
candidates, but the broad range of the different approaches
should pave the path to future therapeutic interventions. Given
the complexity of FTD, it is possible that combination therapies
will be required and given the progressive degenerative nature of
the disease (s), early detection and early intervention is required.

Here, we focus on ADNP and its potential involvement in
FTD. The drug candidate NAP (Bassan et al., 1999) contains
the EB1, EB3, ADNP interaction site (SIP), and increases
ADNP-microtubule association, i.e., EB3-ADNP association (Oz
et al., 2014). NAP enhances dendritic spine formation in an
EB3-depedent manner and the NAP protection against zinc
intoxication requires EB1 and EB3 (Oz et al., 2014). We have
further shown that NAP enhances ADNP-LC3 interaction (with
LC3 being a part of the microtubule associated protein 1,
and a key component of the autophagy process; Merenlender-
Wagner et al., 2015). This finding is complemented by the
observations that NAP protects microtubule integrity in parallel
with protection of autophagy (Esteves et al., 2014).

In cell cultures, NAP protects neurons and astrocytes
against ADNP deficiency (Pascual and Guerri, 2007; Vulih-
Shultzman et al., 2007), decreased autophagy (Esteves et al.,
2014) microtubule disruption, mitochondrial impairment, and

apoptosis [e.g., in the presence of excess zinc (Divinski et al.,
2004, 2006) or other toxicities (Zemlyak et al., 2009a,b; Idan-
Feldman et al., 2012; Esteves et al., 2014)]. Mechanistically, NAP
protects against tauopathy in vitro (Gozes and Divinski, 2004;
Shiryaev et al., 2011; Idan-Feldman et al., 2012) and in vivo
(Matsuoka et al., 2007, 2008; Vulih-Shultzman et al., 2007;
Shiryaev et al., 2009; Jouroukhin et al., 2013; Magen et al., 2014),
in part, by enlisting tau back to the microtubules (Shiryaev et al.,
2011; Sudo and Baas, 2011; Oz et al., 2012; Quraishe et al., 2013)
increasing microtubule dynamics (Oz et al., 2012) and fortifying
axonal transport (Jouroukhin et al., 2013; Quraishe et al., 2013).
A current working hypothesis for the mechanism by which NAP
provides protection is illustrated in Figure 1.

In mice, NAP protects against tauopathy and cognitive
deficiencies in a model of ADNP haploinsufficiency (Vulih-
Shultzman et al., 2007) and provides protection in transgenic
models of FTD (Shiryaev et al., 2009) and AD (Matsuoka et al.,
2007, 2008). However, NAP may also be explored further for
pathological conditions other than FTD or AD. As NAP provides
protection in the SOD1-G93A transgenic mouse model of ALS
(Jouroukhin et al., 2013), this therapeutic approach may be
considered in the context of ALS. Furthermore, NAP provides
protection in the microtubule associated protein 6 (Map6)
deficient mouse model of schizophrenia, protecting autophagy
and cognitive functions (Merenlender-Wagner et al., 2014).

We have also derived NAP analogs, which provided
cognitive as well as protection against tauopathy in mouse
models, e.g., NATLSIHQ (NAT; Gozes et al., 2014a), NAP
alpha-aminoisobutyric acid (IsoNAP; Gozes et al., 2014b), and

FIGURE 1 | NAP/ADNP protection of microtubules results in protection against tau pathology (NFT, neurofibrillary tangles). Please refer to the text for in

depth description.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 October 2015 | Volume 7 | Article 205

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Gozes and Ivashko-Pachima ADNP: neurodegeneration and neuroprotection

all D-amino acids analog, SALLRSIPA (D-SAL; Shiryaev et al.,
2011). SAL/D-SAL may fortify NAP protection (Brenneman
et al., 2004) and this is a subject of future investigation.

In men, NAP (davunetide) has a safe clinical profile in
relatively large cohorts, altogether exposed to >700 subjects.
While, NAP (davunetide) did not provide protection in PSP
(Boxer et al., 2014), it increased cognitive scores in amnestic
mild cognitively impaired patients (Gozes et al., 2009; Morimoto
et al., 2013) and protected functional activity in schizophrenia
patients (Javitt et al., 2012; Jarskog et al., 2013).We posit that early
intervention with NAP will lead to clinical efficacy.

In conclusion, NAP presents an advantage in being a simple
small molecule (a short 8 amino acid peptide, derived from
a natural essential protein, ADNP) with brain bioavailability
through a non-invasive route. However, in this respect, it is
similar to oxytocin. Differing from oxytocin, NAP (davunetide)
presents a different, unique mechanism of action (interaction
with microtubule end binding proteins and increasing ADNP-
associated neuroprotection). Thus, the NAP protection of the

microtubule structure relies on the fortification of an endogenous
process, unlike taxanes or tau immunotherapy. Together these
finding envision NAP as an innovative therapeutic approach in
FTD.
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