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Abstract

Objectives

To evaluate CT-derived radiomics for machine learning-based classification of thymic epi-

thelial tumor (TET) stage (TNM classification), histology (WHO classification) and the pres-

ence of myasthenia gravis (MG).

Methods

Patients with histologically confirmed TET in the years 2000–2018 were retrospectively

included, excluding patients with incompatible imaging or other tumors. CT scans were

reformatted uniformly, gray values were normalized and discretized. Tumors were seg-

mented manually; 15 scans were re-segmented after 2 weeks by two readers. 1316 radio-

mic features were calculated (pyRadiomics). Features with low intra-/inter-reader

agreement (ICC<0.75) were excluded. Repeated nested cross-validation was used for fea-

ture selection (Boruta algorithm), model training, and evaluation (out-of-fold predictions).

Shapley additive explanation (SHAP) values were calculated to assess feature importance.

Results

105 patients undergoing surgery for TET were identified. After applying exclusion criteria,

62 patients (28 female; mean age, 57±14 years; range, 22–82 years) with 34 low-risk TET

(LRT; WHO types A/AB/B1), 28 high-risk TET (HRT; WHO B2/B3/C) in early stage (49,

TNM stage I-II) or advanced stage (13, TNM III-IV) were included. 14(23%) of the patients

had MG. 334(25%) features were excluded after intra-/inter-reader analysis. Discriminatory

performance of the random forest classifiers was good for histology(AUC, 87.6%; 95% con-

fidence interval, 76.3–94.3) and TNM stage(AUC, 83.8%; 95%CI, 66.9–93.4) but poor for

the prediction of MG (AUC, 63.9%; 95%CI, 44.8–79.5).
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Conclusions

CT-derived radiomic features may be a useful imaging biomarker for TET histology and

TNM stage.

Introduction

Thymic epithelial tumors (TET) are the most common primary tumor of the anterior medias-

tinum in adults and include thymomas, thymic carcinomas (TC) and thymic neuroendocrine

tumors. While the metastatic tendency is low, all TET can show infiltrative growth, most com-

monly affecting the mediastinal pleura and the pericardium [1].

Resection status and tumor stage are the most important prognostic factors in thymomas

and TCs [2]. In early stages (TNM stages I-II), thymomas are primarily resected, and achieve

long, recurrence-free survival without adjuvant therapy, while advanced-stage TETs (TNM

stages III-IV) require an interdisciplinary, multimodality approach comprised of an individual

selection of induction chemotherapy, radical resection, adjuvant chemotherapy and some-

times radiotherapy [2]. Computed tomography (CT) and magnetic resonance imaging (MRI)

are pivotal in the diagnostic workup of TETs, and preoperative biopsy may be avoided in

resectable tumors. However, the available imaging modalities are often not able to reliably

detect early stages of infiltration into adjacent structures [3].

The histologic classification of the composition of cell types in thymomas proposed by the

World Health Organization (WHO) is another independent prognostic factor [4]. Qualitative

imaging features such as smooth tumor margins or a round shape have been shown to corre-

late with WHO type A or B tumors, as opposed to irregular margins or TETs with necrotic

components, which are more frequently encountered in WHO type C tumors [5]. However,

due to a considerable overlap of imaging features, a confident visual classification is difficult

and prone to subjectivity [5,6].

TET are strongly associated with the paraneoplastic disease myasthenia gravis (MG).

Patients with MG suffer from various degrees of symptoms related to muscle weakness, and

are at risk of developing severe complications, including myasthenic crisis, a possibly life-

threatening postoperative condition after thymomectomy. This implies specialized periopera-

tive care [7], and it is important to screen patients with TET for the presence of MG prior to

surgical resection [8], however, the diagnostic workup of MG is complex [9].

A possible remedy to these problems could be the extraction of additional quantitative

information from imaging data. For this field of study, the term “radiomics” was coined, as an

addition to the related areas of genomics, proteomics, and metabolomics. Radiomics is based

on deriving mathematically defined features from images, with the aim to detect and quantify

information at levels surpassing the human visual system [10].

Machine learning classifiers trained on CT-based radiomic features as input have previ-

ously shown promising performance in characterizing lesions from various tissues [11]. In the

case of TETs, studies have evaluated the use of logistic regression models for the classification

of histologic type [12–18] and stage [13,17,19]. Only one study was identified that evaluated

machine learning classifiers trained on CT-based radiomic features to predict the histologic

type [15]. Additionally, most previous studies used the well-established Masaoka-Koga system

[20], while the more recent 8th edition TNM staging system for TET, might be able to improve

stratification [8]. Predicting the TNM stage from CT-based radiomics has been researched by

two groups employing logistic regression models [17,18], however, for the use of machine
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learning classifiers (e.g., Random Forest) in the setting of TET, published literature is currently

limited to MRI-based radiomics [21].

This work strived to test the classification performance of a random forest classifier trained

on radiomic features derived from three-dimensional volumes of interest (VOI) of contrast-

enhanced CT scans for three categories: 1) histologic type, 2) TNM tumor stage and 3) the

presence of preoperative myasthenia gravis (MG).

Materials and methods

This retrospective study was approved by the local ethics committee (KEK Zürich, cantonal

ethics committee Zurich, Switzerland), and the need for informed consent was waived.

Patients undergoing surgery for TET in the years 2000–2018 were identified and included

according to the following criteria: 1) patient age of 18 or older 2) no history of prior resection

for TET or other neoplasms 3) no previous radio-/chemotherapy. From the acquired list,

patients were excluded according to the following criteria: 1) incompatible or lacking CT scan,

2) unenhanced CT scan only or 3) anterior mediastinal tumors other than thymomas or thy-

mic carcinoma.

TETs were divided into low-risk TETs (LRT, WHO types A, AB, B1) and high-risk TETs

(HRT, WHO types B2-3,C) as previously proposed [10], as well as in early stage lesions (TNM

I-II) and advanced stage lesions (TNM III-IV), following the implications for therapy, progno-

sis and survival [2,14]. The standard of reference was the surgical report and the report of the

histopathologic workup of the resected TETs.

Image acquisition and preprocessing

Due to the long inclusion range, CT scans were acquired using a variety of scanners: Siemens

(Siemens Healthineers, Forchheim, Germany; SOMATOM Definition series (n = 36), SOMA-

TOM Force (n = 6), SOMATOM Sensation series (n = 2), SOMATOM Biograph Series

(n = 2), SOMATOM Edge Plus (n = 1)), GE (GE Healthcare Systems, Chicago, IL, USA; Light-

speed Series (n = 5), Discovery Series (n = 3), BrightSpeed (n = 1), Optima CT660 (n = 1)),

Philips (Philips Healthcare, Amsterdam, NL; model iCT series (n = 2), Mx8000 IDT 16 (n = 1),

Brilliance 40 (n = 1)) and Canon (Canon Medical Systems, Volketswil, CH; model Aquilion

(n = 1)). The scanning parameters were: median reference tube voltage, 120 kVp (range 90–

140 kVp), median exposure 195 mAs (IQR 122–265 mAs), matrix size 512 × 512, median slice

thickness 2 mm (IQR 2–2.5 mm), reconstructed with available soft tissue convolutional ker-

nels. All included CT studies were contrast-enhanced, using a routine chest CT protocol with

arterio-venous phase (delay: 25–30 s).

Contrast-enhanced computed tomography (CT) scans were de-identified using the built-in

full anonymization functionality of the PACS viewer (Syngo.via, Siemens Healthineers, For-

chheim, Germany). Because some texture features require identical spatial resolution to be

comparable, the image slices were reformatted to a uniform in-plane resolution of 1x1 mm2

and slice thickness of 2 mm, using a custom MATLAB script (MathWorks, Inc., Natick, MA,

USA).

Radiologic assessment

All tumors were evaluated by two radiologists (with 5 and 7 years of experience, respectively)

blinded to the results of the histopathologic and surgical workup. The tumor stage was assessed

as “early” or “advanced” according to the abovementioned criteria based on the 8th edition

TNM classification. Contact of the tumor to structures without a visible separating layer of

mediastinal fat was counted as possible infiltration. Radiologists were also asked to categorize
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tumors as appearing “high risk” or “low risk” based on morphological features described in the

literature: Round, smoothly contoured, homogenously enhancing lesions were counted as

“low risk”, whereas irregular or lobulated, heterogenous lesions with possible necroses were

counted as “high risk” [5,6].

Segmentation

3D volumes of interest (VOI) including the whole tumor were segmented manually (axial

view, slice by slice), using the software 3D-Slicer (http://slicer.org/, version 4.10.2). The seg-

mentation time for a single tumor varied by tumor size and was in the range between five and

ten minutes. As differences in segmentation may influence calculated features, segmentation

was repeated by the original reader for a random subset of 15 CT scans after two weeks, to

assess intra-observer variability. The same subset was also segmented by a second radiologist

to assess inter-observer variability.

Feature extraction

To account for technical differences, gray values were normalized to mean and standard devia-

tion, removing outliers greater than 3 standard deviations [22]. Default values were used for all

extraction settings, including a fixed bin width of 25 for gray value discretization. A total of

1316 radiomic features (i.e., filter-feature combinations) were extracted from original and fil-

tered images (Laplace of Gaussian filter with parameter σ set to 1–5 (a higher value emphasiz-

ing on coarser textures), wavelet filter with all combinations of high-pass (H) and low-pass (L)

filters), using the library pyRadiomics (version 2.1.2) [23]. The computation of all features took

less than ten seconds per case. Features were based on first-order statistics, shape, gray level

co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level size zone

matrix (GLSZM), neighboring gray tone difference matrix (NGTDM) and gray level depen-

dence matrix (GLDM) as described at http://pyradiomics.readthedocs.io (accessed

05.01.2021); the mathematical feature definitions are consistent with the Image Biomarker

Standardization Initiative [24].

Feature selection and model evaluation

Due to a high number of features and the susceptibility of ML models to overfit, feature selec-

tion was necessary. First, the intraclass correlation coefficient (ICC) of each feature was calcu-

lated in a two-way mixed, single measure approach for consistency (ICC(3,1)), and features

with less than good inter- or intrareader agreement (ICC(3,1)<0.75) were excluded.

Subsequently, repeated nested k-fold stratified cross-validation (CV) was performed [25],

employing an outer CV loop for model evaluation and an inner CV loop for feature and

model selection (Fig 1). In each step of the outer CV loop (k = 5, value chosen for practicabil-

ity), the values of each feature vector in the training set were standardized and passed on to the

inner CV loop (k = 4, chosen for practicability). To account for class imbalance, artificial

instances of the minority class were created by using the synthetic minority over-sampling

technique (SMOTE) on the training data [26]. During each step of the inner CV, Boruta fea-

ture selection was performed [27,28]. Feature selection frequencies were recorded as a measure

of selection stability [29]. Following a voting strategy [30], features selected in more than one

fold of the inner CV were used as the final feature set. Hyperparameters were chosen to maxi-

mize the area under the ROC curve (AUC). A random forest classifier was trained on the

whole outer training set with the hyperparameter and feature set found during the inner CV,

and evaluated on the outer test set. Additionally, a logistic regression classifier and a support
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vector machine classifier (both following the implementation of the Python package sklearn)

were tested.

Feature importance was assessed by calculating Shapley additive explanations (SHAP) val-

ues from the fitted random forest classifier [31]. To account for the influence of differences in

CV splits, the process was repeated 50 times with different pseudorandom number generator

initiation seeds.

Statistical analysis

Continuous variables are expressed as mean ± standard deviation and 95% confidence interval

(CI), categorical variables as count or percentage. Inter- and intrareader agreement on radio-

mic features was assessed by calculating the intraclass correlation coefficient for consistency in

a two-way mixed approach (ICC(3,1)). Selected features were plotted for visual analysis, tested

for normality using the Shapiro-Wilk test and compared using two-tailed t-tests or Mann-

Whitney-U tests as appropriate. Pearson’s correlation coefficient r was calculated for each fea-

ture pair and the results were visually analyzed. Proportions of categorical variables were tested

using a chi-squared test for independence. A p-value below 0.05 was regarded as indicative of

statistical significance. Inter-rater agreement for radiologic evaluation of tumor stage and risk

Fig 1. Repeated nested cross-validation process for feature selection, hyperparameter selection, and model

evaluation. In each repetition, data is split into 5 folds (1–5). In each fold, 80% are used in an internal CV process for

feature selection, hyperparameter optimization, and model training (green squares). The resulting model is tested on

the remaining 20% (red square), recording the probability scores and the SHAP values of the random forest model.

CV: Cross-validation. SMOTE: Synthetic minority oversampling technique. SHAP: Shapley additive explanations.

https://doi.org/10.1371/journal.pone.0261401.g001
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group was assessed by calculating Cohen’s kappa. Kappa values were interpreted as indicating

(almost) perfect (>0.9), strong (<0.9–0.8), moderate (<0.8–0.6), weak (<0.6–0.4), minimal

(<0.4–0.2) or no agreement (<0.2). Radiologists’ performance is expressed as sensitivity and

specificity. Model performance was calculated from the out-of-fold predictions, averaged

across repetitions and is expressed as area under the ROC curve (AUC), and accuracy, sensitiv-

ity, specificity and F1 score (using the threshold determined by Youden’s index). 95% confi-

dence intervals (CI) for each statistic were computed by bias-corrected bootstrapping. AUC

values were interpreted as excellent (AUC 1.0–0.9), good (<0.9–0.8), fair (<0.8–0.7), poor

(<0.7–0.6), not discriminating (<0.6). Statistical analysis was performed using Python (ver-

sion 3.7.0) with libraries scipy (version 1.3.1) [32], scikit-learn (version 0.22.2) [33], imbal-
anced-learn (version 0.6.2) [34] and shap (version 0.37.0) [35].

Results

Patient characteristics

Of 105 identified patients undergoing surgery for TETs between the years 2000 and 2018, 43

patients had to be excluded for lack of compatible imaging (n = 33), for lack of a contrast-

enhanced CT study (n = 7), or for the presence or previous treatment of another tumor

(n = 3). Patient characteristics are summarized in Table 1. There was no statistically significant

difference between LRT and HRT, between early and advanced TETs, between cases with and

Table 1. Patient characteristics.

Risk (WHO) Stage (TNM) Myasthenia gravis

LRT HRT early advanced No Yes

(n = 34) (n = 28) p-value (n = 49) (n = 13) p-value (n = 48) (n = 14) p-value

Characteristic

Age (y),

mean ± SD

58.8 ± 14.8 54.0 ± 12.4 0.182 57.5 ± 14.6 53.3 ± 10.8 0.334 57.4 ± 14.4 53.9 ± 12.3 0.410

Sex (n) 0.661 0.816 0.052

female 14 14 23 5 18 10

male 20 14 26 8 30 4

Diameter (mm),

mean ± SD

71.8 ± 34.9 79.2 ± 32.7 0.130 71.0 ± 34.1 90.6 ± 29.1 0.011 78.6 ± 35.3 63.0 ± 25.7 0.062

TNM Stage (IASLC/ITMIG) 0.001 - 0.673

I 32 17 49 0 37 12

II 0 0 0 0 0 0

III 2 2 0 4 3 1

IV 0 9 0 9 8 1

WHO Type - <0.001 <0.001

A 10 0 10 0 10 0

AB 16 0 16 0 15 1

B1 8 0 6 2 7 1

B2 0 13 11 2 5 8

B3 0 9 5 4 5 4

C 0 6 1 5 6 0

IASLC: International Association for the Study of Lung Cancer. ITMIG: International Thymic Malignancy Interest Group. TNM: Tumor-node-metastasis. WHO:

World Health Organization. SD: Standard deviation. P-values were derived from t-tests (age), Mann-Whitney U tests (diameter), or chi-squared tests for independence

(categorical variables).

https://doi.org/10.1371/journal.pone.0261401.t001
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without myasthenia gravis, or pericardial infiltration regarding gender (p> 0.05) or age

(p> 0.18).

Radiologists’ performance

The inter-reader agreement between radiologists was strong for the assessment of the tumor

stage (early vs. advanced TET; κ = 0.86; percent agreement 93.5%). The sensitivity and speci-

ficity were 84.6% and 77.6% for reader 1 and 92.3% and 71.4% for reader 2, respectively.

Inter-reader agreement was weak for the differentiation of high-risk vs. low-risk lesions (κ
= 0.58; percent agreement 79%). Radiologists reached a sensitivity and specificity of 53.6% and

50% for reader 1 and 75% and 41.2% for reader 2, respectively.

Feature selection

334 of initially 1316 features were excluded after intra- and inter-reader analysis. The remain-

ing features were used in the repeated nested cross-validation pipeline. Feature selection fre-

quencies across folds were recorded as a measure for selection stability, and SHAP values were

recorded to assess feature importance (Fig 2). Some of the selected features exhibited strong

positive or negative correlations (Figs 3 and S1–S3).

Twelve features were identified for the classification of the histologic type into LRT or HRT

(Fig 2A). The shape features sphericity and flatness (Fig 4) were frequently selected, signifi-

cantly higher in LRT (sphericity, 0.72 ± 0.06 vs. 0.60 ± 0.08 in HRT; flatness 0.60 ± 0.12 in LRT

vs. 0.43 ± 0.11 in HRT, p<0.001) and displayed high absolute SHAP values, suggesting a high

impact on the prediction of the histology type. Among the texture features, the most important

feature was the GLRLM feature short run low gray level emphasis (SRLGE) after applying the

LoG filter (σ = 4, LRT 0.11 ± 0.04 vs. 0.14 ± 0.03 in HRT, p<0.001). The values of all selected

features differed significantly between LRT and HRT (p<0.003).

Seven features were selected for the prediction of the TNM stage (Fig 2B), with all feature

values differing significantly between early and advanced stages (p<0.003). The shape feature

sphericity (advanced-stage TET, 0.47 ± 0.13 vs. early-stage TET, 0.54 ± 0.14, p<0.001) was

most frequently selected and displayed the highest mean absolute SHAP value.

Using the criterion “selected at least once per CV fold” (threshold frequency 0.25), no fea-

tures could consistently be selected for the prediction of myasthenia gravis. Experimentally

lowering the threshold to 0.125 yielded five features (Fig 2C, p<0.017 for all comparisons).

Model performance evaluation

Random forest classifiers were trained on the outer training sets and evaluated on the outer

test sets (Table 2, Fig 5). The prediction of the histologic subtype (Fig 6) displayed the best

performance (average ROC AUC, 0.876; 95%CI 0.763–0.943), followed by the tumor stage

(average AUC, 0.838; CI, 0.669–0.934). Poor predictive performance was reached for the pre-

diction of myasthenia gravis (average AUC, 0.639; CI, 0.448–0.795). Experimentally switching

to a base estimator from a different classifier family did not significantly alter the discrimina-

tory performance in any category (S1 Table).

Discussion

This retrospective study evaluated the utility of CT-derived radiomics for the prediction of fac-

tors relevant to the prognosis and therapy selection in patients with TET. The discriminatory

performance was good for predicting histologic subtype and TNM stage, and poor for the

detection of myasthenia gravis.
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Previous studies using CT-based radiomics for the prediction of the tumor stage [13,19]

mainly used the well-established Masaoka-Koga staging system, which was created based on a

small cohort of patients [20]. Recommendations from the International Association for the

Study of Lung Cancer (IASLC) and the International Thymic Malignancy Interest Group

(ITMIG) have been integrated into the 8th edition of the TNM classification. TET with infiltra-

tion of well resectable structures (e.g. mediastinal pleura, pericardium) have been moved to

TNM stages I and II, while the same TET were previously included in the highly heteroge-

neous stage III defined by the Masaoka-Koga classification, alongside TET infiltrating struc-

tures difficult to resect (e.g. great vessels, myocardium) [36]. The TNM staging system is thus

considered to be more appropriate for TET evaluation by helping to formalize resectability [8].

In a recent study, an elastic net penalized logistic regression model created from CT-based

radiomics exhibited fair discriminatory performance (AUC 0.708) to differentiate early from

advanced TNM stage TET [18]. Possible limitations of this approach are given if there are

Fig 2. Feature selection. Features selected for the prediction of a) histologic subtype (WHO classification, low-risk vs.

high-risk tumors), b) TNM stage (IASLC/ITMIG, early vs. advanced stage) and the presence of c) myasthenia gravis.

The bar plots on the left display how often features were selected across folds as an indicator of selection stability. The

bar plots in the center show the feature importance measured by the mean absolute SHAP values, representing the

impact of a feature on the individual model prediction. The boxplots on the right display the individual standardized

feature values grouped by the underlying category. The selected feature values differed significantly for all tested

categories (p<0.05).

https://doi.org/10.1371/journal.pone.0261401.g002
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non-linear relationships between features and the logit of the outcome variable, or complex

interactions among the features, which might be overcome by other classifiers. For instance, a

support vector machine trained on MRI-based radiomic features derived from multiple

sequences reached an AUC of 0.88 for the same task [21]. To the best of our knowledge, our

study is the first to use machine learning classifiers trained on CT-based radiomics to predict

the TNM stage of TET. The RF classifier exhibited good discriminatory performance (AUC

0.838). While the specificity of the RF was similar, both radiologists exhibited higher sensitivity

for detecting advanced stage lesions.

The histologic subtype bears implications for therapy selection. Low-risk TET (LRT) can

often be resected completely, and less frequently require additional radio-/chemotherapy [37].

Fig 3. Correlogram of all selected radiomic features. Colors and numbers show Pearson’s correlation coefficient r of the respective feature pair.

https://doi.org/10.1371/journal.pone.0261401.g003
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Estimating the histologic category based on visual features as heterogeneous enhancement,

irregular margins, and necrotic components showed weak interreader agreement and resulted

in poor performance. This is in line with the findings of Yasaka et al., who reported a poor dis-

criminatory performance reached by visual assessment of TET heterogeneity (AUC 0.46–0.50)

[12]. In contrast, the RF classifier in our study was able to distinguish LRT from high-risk TET

(HRT) with good discriminatory performance (AUC 0.88). The performance was similar to

the findings of Hu et al., who previously explored the use of CT-based radiomics derived from

unenhanced and contrast-enhanced scans and machine learning classifiers for the same task

and reached an AUC of 0.81 (RF classifier) [15], as well as to the findings of Ren et al., who

used logistic regression to build a nomogram (AUC 0.86) [16]. Our study therefore supports

the thought that quantitative, radiomic assessment of the tumor composition may outperform

visual assessment of heterogeneity and shape and may enrich TET diagnostics. While this

study relied on automatically extracted CT-based features alone, adding non-radiomic imag-

ing features might further improve classifier performance: for instance, a study by Nakajo et al.

reported an excellent AUC of 0.99, using both CT-based radiomics and maximum standard-

ized uptake value from 18F-FDG PET/CT scans [38]. Shen et al. reached good discriminatory

performance (ROC AUC 0.84) by integrating the TNM stage and a radiomics-based score in a

nomogram model for the differentiation of low vs. high-risk TET [17].

Fig 4. Axial CT slices (a, d, e, h) and corresponding volume renderings (b, c, f, g) of segmented VOIs with calculated values for sphericity (S) and flatness (F). LRT: Low-

risk thymic epithelial tumor. HRT: High-risk thymic epithelial tumor.

https://doi.org/10.1371/journal.pone.0261401.g004

Table 2. Random forest classifier performance.

Category AUC (%, [CI]) Accuracy (%, [CI]) Sensitivity (%, [CI]) Specificity (%, [CI]) F-Measure (%, [CI])

WHO Type 87.6 [76.3–94.3] 77.5 [63.5–85.4] 77 [56.8–89.9] 77.8 [60.4–89.7] 75.5 [60.3–86.4]

TNM Stage 83.8 [66.9–93.4] 75 [60.8–83.4] 74.9 [40.6–93.6] 75.1 [60.8–85.7] 56 [33.4–74.1]

Myasthenia gravis 63.9 [44.8–79.5] 61.5 [47.3–71.6] 61.1 [30.4–83.9] 61.6 [46.9–74.5] 42.1 [23–61.3]

Performance metrics of the random forest classifier with 95% confidence intervals (CI, square brackets). AUC: Area under the receiver-operator characteristic curve.

https://doi.org/10.1371/journal.pone.0261401.t002
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In our study, the predictive performance of the RF-based model for MG was poor (AUC

0.64), and the selected feature sets were less consistent than for the other categories. A possible

explanation might be the limited amount of available training data. For the same task, Liu et al.

assembled a cohort of 230 TET patients and reported the creation of a deep neural network

with a fair discriminatory performance (AUC 0.76), outperforming different machine learning

classifiers trained on CT-based radiomic features (AUC 0.70–0.75, validation cohort) [39].

Interestingly, the shape feature sphericity appeared in multiple previous studies, using dif-

ferent means of feature selection, as an important feature for TET characterization

[13,16,21,40,41]. In our study, sphericity was among the most important features for predic-

tions of the histologic subtype as well as the TNM stage. Sphericity is the ratio of the surface

area of a sphere with the same volume as a given VOI to the surface area of the VOI and was

higher in low-risk and early-stage TET. Sphericity has also been described as a discriminating

factor in other oncologic radiomic studies, e.g. in prostate cancer outcome [42].

Selected texture features predominantly stemmed from the gray level run length matrix

(GLRLM) and gray level size zone matrix (GLSZM). For instance, significantly lower values of

the features short run low gray level emphasis (SRLGE) and run length non-uniformity normal-
ized (RLNN) in LRT indicated a higher homogeneity than in HRT, and low values of size zone

Fig 5. Receiver operator characteristic curves of the random forest classifier performance in each category. Values

in square brackets indicate 95% confidence intervals. AUC: Area under the ROC curve.

https://doi.org/10.1371/journal.pone.0261401.g005
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non-uniformity (SZN) in early-stage TET indicated a higher homogeneity among the size

zones than in advanced-stage TET. These findings are in line with previous findings connect-

ing tumor heterogeneity with the potential of malignancy [2].

The dataset showed considerable heterogeneity in the CT scanner models as well as in the

employed scanning parameters (e.g. tube voltage, slice thickness, kernel), which is known to

influence the values of radiomic features [43,44]. This setup is a “real world” example reflective

of the high variability in CT scanner models, scan and reconstruction parameters across insti-

tutions. Elaborate techniques like ComBat can compensate for technical differences in CT

radiomics data but require more samples per subgroup than were available in our study [45].

Shape features were more consistently selected than texture features, supporting the knowl-

edge that some features (e.g. spatial relationships) are more likely to be preserved across differ-

ent acquisition techniques than others [46].

An advantage of the pursued approach was that, apart from the segmentation step, the pipe-

line introduced in this paper is mainly data-driven, with features and hyperparameters being

picked without human intervention. The Boruta algorithm does not account for multicolli-

nearity and may produce redundant features, and indeed several features showed high correla-

tion coefficients. However, this helps to identify all features “relevant to the subject of interest,

instead of merely building a black box predictive model” [27]. Additionally, RF models are

known to work well with highly correlated features.

Understanding the output of machine learning models is often non-trivial, and explainabil-

ity is important considering the responsibility of medical decision-making. In our study,

SHAP values helped to increase the explainability by assessing the impact of individual features

on both individual predictions and across the whole model [31]. The partial overlap of the

Fig 6. Comparison of a low-risk TET (LRT, left image) and high-risk TET (HRT, right image) with corresponding

radiomic fingerprints. Both tumors have been captured in early stages. DV: Dependence variance. LoGn: Laplacian of

Gaussian filter with σ = n. RLNUN: Run length non-uniformity. SRLGE: Short run low gray emphasis. SRE: Short run

emphasis. wlHHH: Wavelet filter with high-pass filters (H) in every spatial direction. LDE: Large dependence

emphasis.

https://doi.org/10.1371/journal.pone.0261401.g006
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selected features in this study with feature sets described in previous studies adds to the confi-

dence in the acquired results.

There were limitations to our study. The retrospective study design bears a risk of selection

bias, and prior to clinical utilization, the value of radiomics in TET characterization needs to

be validated in future prospective studies.

Secondly, despite a long inclusion range, only a comparably small number of samples could

be included in the final study cohort, which impeded the creation of a data split with training,

validation, and test set. In a future study, the feature sets established in this study could be vali-

dated on an external cohort.

Thirdly, the histopathologic report, which served as the gold standard for our study, was

often created by one pathologist, while there might be inter-observer variability in the assess-

ment of the histologic tumor type.

Conclusion

CT-based radiomics may serve as imaging biomarkers for the prediction of TET histology and

TNM stage. The shape feature sphericity exhibited discriminative value in both categories,

confirming previous studies. Radiomic models could be further evaluated to serve as an addi-

tional decision criterion for selecting the surgical approach, or for patients with contraindica-

tions for biopsy and therefore contribute to the goal of personalized medicine.
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