
Citation: Wang, X.; Yang, Z.; Cui, J.;

Zhu, S. Nitric Oxide Made a Major

Contribution to the Improvement of

Quality in Button Mushrooms

(Agaricus bisporus) by the Combined

Treatment of Nitric Oxide with

1-MCP. Foods 2022, 11, 3147. https://

doi.org/10.3390/foods11193147

Academic Editor: Yun Wang

Received: 9 September 2022

Accepted: 5 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Nitric Oxide Made a Major Contribution to the Improvement
of Quality in Button Mushrooms (Agaricus bisporus) by the
Combined Treatment of Nitric Oxide with 1-MCP
Xiaoyu Wang 1,2,3 , Zhifeng Yang 1,2, Jinxia Cui 1,2,* and Shuhua Zhu 3,*

1 Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
2 Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources

Utilization of Xinjiang Production and Construction Crops, Shihezi 832003, China
3 College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China
* Correspondence: jinxiacui77@163.com (J.C.); shuhua@sdau.edu.cn (S.Z.)

Abstract: Browning is one of the major effects of shelf-life responsible for the reduction in the commer-
cial value of the button mushrooms (Agaricus bisporus). In this study, the individual and the combined
effects of exogenous sodium nitroprusside (SNP, a nitric oxide donor) and 1-methylcyclopropene (1-
MCP) on the quality of button mushrooms were evaluated. The results demonstrated that mushrooms
treated with SNP+1-MCP promoted reactive oxygen species (ROS) metabolism thereby protecting
cell membrane integrity, hindering polyphenol oxidase (PPO) binding to phenolic compounds, and
downregulating the PPO activity. In addition, the SNP+1-MCP treatment effectively maintained
quality (firmness, color, total phenol, and flavonoid) and mitigated oxidative damage by reducing
ROS accumulation and malondialdehyde production through the stimulation of the antioxidant
enzymes activities and the enhancement of ascorbic acid (AsA) and glutathione (GSH) contents.
Moreover, the correlation analysis validated the above results. The SNP+1-MCP treatment was
observed to be more prominent on maintaining quality than the individual effects of SNP followed
by 1-MCP, suggesting that the combination of NO and 1-MCP had synergistic effects in retarding
button mushrooms senescence, and NO signaling molecules might be predominant in the synergy.

Keywords: Agaricus bisporus; nitric oxide; 1-methylcyclopropene; antioxidant system

1. Introduction

Agaricus bisporus is regarded as a delicacy due to its unique flavor (umami), richness in
protein, dietary fiber, vitamins, minerals, and amino acids. It is popular among consumers
not only due to its high nutritional and medicinal values, but also due to its high return on
sustainable economic and ecological value. However, the shelf life of Agaricus bisporus is
limited due to its special epidermal structure (no protective cuticle) and high susceptibility
to microbial infestation [1]. Agaricus bisporus has very high-water content (more than 90%)
and high respiration rate, which makes it prone to irreversible physiological phenomena,
such as water loss and wilting, tissue browning, and membrane breaking and opening after
harvesting [2,3]. Chemical preservation has the advantage of being fast and efficient. The
use of chemicals is of concern and involves the environment and human health. Therefore,
finding a safe and environmentally friendly means of chemical preservation is essential.

Nitric oxide (NO) and 1-methylcyclopropene (1-MCP) are widely used to delay the
senescence of fruit and vegetables due to their superior fresh-keeping effect and safety
without residues, such as pear [4], cauliflower [5], mango [6], and persimmon [7]. As a
biologically active small molecule, NO plays an important role in regulating fruit storage
quality and after-ripening. NO can reduce oxidative stress by directly scavenging ROS
in plants or by stimulating antioxidant defense systems, thereby maintaining the sensory
and nutritional quality of fruits [8]. On the other hand, it delays the senescence of fruits
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and vegetables by inhibiting the biosynthesis of ethylene [9,10]. Explosions of ethylene
can cause physiological disruptions, rapid senescence, and susceptibility to pathogens,
which in turn shorten shelf life [11]. Zhu et al. [12] found that NO can combine with
1-aminocyclopropane-1-carboxylate oxidase (ACO) to form a binary ACO-NO complex.
Then, the binary complex is chelated by 1-aminocyclopropane-1-carboxylate (ACC) to form
a stable ACC-ACO-NO ternary complex, which cannot be converted into ferric species
that affect the oxidation of ACC to ethylene, further inhibiting ethylene synthesis. 1-MCP
is an ethylene inhibitor that strongly binds to the ethylene receptor through a double
bond, preventing the normal binding of ethylene to its receptor and resulting in blocked
transmission and expression of ethylene action signals [13]. NO requires metal cofactors to
transport the hormone ethylene to bind to fruit and vegetable receptors, while 1-MCP acts
on ethylene receptors, thus it is speculated that the relationship between NO and 1-MCP
could enhance their ability to delay vegetable senescence [14].

The combination of exogenous NO with 1-MCP to preserve the quality of vegetables
has been reported in blueberries and tomatoes [15,16], but has not been studied in the
preservation of Agaricus bisporus. The single preservation technology method has not
achieved a satisfactory effect. The synergistic use of preservation technologies will be the
main trend in post-harvest preservation of fruit and vegetables. For example, the combina-
tion of 1-MCP and 5% CO2 in cold storage can store persimmons for up to 4 months while
maintaining high nutritional and antioxidant capacity compared with 1-MCP alone [7].
Gholami et al. [17] found that the combination of nano-doped packaging film and chi-
tosan coating treatment extended the storage period of Agaricus bisporus at 4 ◦C for up to
22 d. Therefore, the purpose of this work was to evaluate the effect of Agaricus bisporus
postharvest treatment with 1-MCP and NO individually or in combination, in order to
provide practical basis and theoretical reference for the application of fresh-keeping of
Agaricus bisporus.

2. Materials and Methods
2.1. Plant Materials and Treatment

Mushrooms (Agaricus bisporus, W192) were freshly picked from Taian, China. Mush-
rooms of the approximate size and excellent quality were selected and randomly divided
into three piles as three replicates. Each pile (about 21 kg per pile) was then randomly
divided into two groups and treated with 0 and 5 mg L−1 of 1-MCP in six separated 400 mm
desiccators for 16 h at 25 ◦C. Then, each group was divided into two treatments: 6 L of
distilled water or 10 µmol L−1 of SNP solution. The groups were immersed in the solution
for 5 min, respectively. After air drying, the mushrooms were stored at 25 ± 1 ◦C and
75–90% relative humidity (RH) for 6 d. 1-MCP (CAS No. 3100-04-7) and SNP (CAS No.
13755-38-9) were purchased from Shanghai Yuanye and Macklin Bio-Technology Co. Ltd.,
Shanghai, China, respectively. At least 40 mushrooms were randomly selected at 9:00 a.m.
daily. The color and firmness were measured with at least 0.5 kg mushrooms from each
treatment. The rest of the mushrooms were frozen in liquid nitrogen and stored at −80 ◦C.

2.2. Firmness and Color Measurements

The firmness of the mushroom cap was measured by a penetration test using GY-4
fruit hardness tester (Shanghai Shandu Co., Shanghai, China) equipped with an 11 mm
diameter probe at room temperature, and expressed in Newton.

The surface color of the mushroom caps was measured using a color reader (CR-10,
made in Japan) and used ∆E as described by the equation as follows [18]:

∆E = ((L* − L0
*)2 + (a* − a0

*)2 + (b* − b0
*)2)1/2

where “L*” shows light and dark, “a*” shows red and green, and “b*” shows yellow and
blue. The subscript “0” indicates the data measured from the sample on day 0.
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2.3. Electrolyte Leakage (EL) Measurement

The electrolyte leakage rate is an important parameter reflecting the degree of cell
membrane damage. When plants are under adverse conditions, adverse environmental
factors first act on the plasma membrane, causing damage to the plasma membrane and
an increase in membrane permeability. Stressed plant tissues were immersed in deionized
water, electrolytes were extravasated, and then the conductivity of water increased. There-
fore, the conductivity meter could be used to determine the change in plasma membrane
permeability by measuring the change in conductivity of the extracellular fluid [19]. The
specific steps are listed below. Ten mushrooms were randomly taken from each treatment,
cut into three 2-mm slices, and were floated in 40 mL of deionized water. Then, EL was
timely recorded (P0). The EL was measured once after incubation at room temperature
for 10 min and recorded as P1. Subsequently, the sample was boiled for 10 min. After
cooling to 25 ◦C, the last EL (P2) was documented. EL could be calculated according to the
following formula:

EL= ((P1 − P0)/(P2 − P0)) × 100%

2.4. Malondialdehyde (MDA) Content Measurement

MDA content was determined by referring to Zhang et al. [20]. Mushroom powders
(2 g) were homogenized with 6 mL of 10% (w/v) tri-chloroacetic acid (TCA), and the
homogenate was centrifuged at 13,000× g and 4 ◦C for 20 min. The supernatant (1 mL)
was added to 2 mL of 15% (w/v) TCA containing 0.5% (w/v) thiobarbituric acid. After
heating in a boiling water bath for 30 min, the mixture was cooled in time and centrifuged
at 12,000× g at 4 ◦C for 10 min. Absorbencies were measured at 450, 532, and 600 nm. The
MDA content was calculated according to the following equation and expressed as mmol
g−1 on the basis of fresh weight:

MDA (µmol·g−1) = 6.45 × (A532 − A600) − 0.56 × A450

2.5. Superoxide (O2
·−), Hydrogen Peroxide (H2O2), and Hydroxyl Radical (·OH)

Content Measurements

The O2
·− content was measured following the method by Zhang et al. [21]. Briefly,

1 mL of extract was incubated with 4 mL of reaction mixture containing hydroxylamine
hydrochloride (10 mmol L−1), sulfanilic acid (17 mmol L−1), and α-naphthol (7 mmol L−1)
at 30 ◦C for 1 h, and the absorption was recorded at 525 nm using a UV-6100S spectro-
photometer. The result was expressed as nmol g−1 on the basis of fresh weight.

The content of H2O2 was determined according to the method described by Zhu
et al. [22]. Mushroom powders (2 g) were mixed with 6 mL of precooled acetone. The
homogenate was centrifuged at 12,000× g for 15 min at 4 ◦C. The extracted solution (1 mL)
was mixed with 0.1 mL of 5% Ti(SO4)2 and 0.2 mL of concentrated NH4OH solution. The
mixture was centrifuged at 4 ◦C for 10 min at 12,000× g, and the supernatant was discarded,
then acetone was added 3–5 times to reduce color interference. The absorbance value was
measured at 415 nm by dissolving the precipitate in 3 mL of 18 mol L−1 H2SO4. The H2O2
content was calculated by comparison with a standard with known H2O2 concentrations
and expressed as nmol g−1 on the basis of fresh weight.

The production of ·OH was measured by referring to Shi et al. [10]. The sample (1 g)
was homogenized with 1.2 mL of 50 mmol L−1 sodium phosphate buffer (pH 7.0) and
centrifuged at 10,000× g for 20 min at 4 ◦C, and then 0.5 mL of supernatant was mixed
with 0.5 mL of 50 mmol L−1 sodium phosphate buffer (pH 7.0) and 1 mL of 25 mmol L−1

sodium phosphate buffer (pH 7.0) containing 2.5 mmol L−1 2-deoxyribose. The reaction
was developed at 35 ◦C in the dark for 1 h. Then, 1 mL of 1% TBA in 0.05 mmol L−1 NaOH
and 1 mL of acetic acid were added. The mixture was boiled for 30 min and immediately
cooled for 10 min on ice. The production of ·OH was followed by the measurement of
absorbance at 532 nm, and the content of ·OH was expressed as absorbance g−1 on the
basis of fresh weight.
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2.6. Enzyme Extraction and Assays

Superoxide dismutase (SOD) and catalase (CAT) activities were determined as de-
scribed in the method by Wang et al. [23]. Peroxidase (POD) and polyphenol oxidase (PPO)
activities were determined as described in the method by Hu et al. [24]. One unit (U) of
SOD, CAT, and POD activities were defined as the amount of enzyme converting 1 µmol of
substrate per second under assay conditions, and expressed as U mg−1 protein. One unit
of PPO activity was defined as the amount of enzyme required to decrease the absorbance
by 0.001 per second, and the result was expressed as U mg−1 protein.

Ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate re-
ductase (MDHAR), and dehydroascorbate reductase (DHAR) activities were determined
as described in the method by Hasanuzzaman et al. [25]. Glutathione peroxidase (GPX) ac-
tivity and the protein content were determined according to the method by Huan et al. [26].
One unit (U) of APX, GR, MDHAR, DHAR, and GPX activities were defined as the amount
of enzyme converting 1 µmol of substrate per second under assay conditions, and expressed
as U mg−1 protein.

The protein content of the extracts of the above enzymes was determined using the
method by Bradford [27].

2.7. Total Phenolic and Total Flavonoid Contents Measurements

Approximately 2.0 g of frozen samples were ground in liquid nitrogen and homoge-
nized with 6 mL of 60% precooled ethanol. After centrifugation at 12,000× g for 15 min,
the supernatant was collected for the following assay.

Total phenolic and flavonoid contents were measured according to the method by
Nie et al. [28]. The supernatant (0.1 mL) was mixed with 0.3 mL of 0.5 mol L−1 Folin-
Ciocalteu reagent, followed by 1.2 mL of 0.5 mol L−1 Na2CO3 solution, and then incubated
at room temperature for 1 h in the dark. Thereafter, the absorbance was measured at
760 nm with a UV-spectrophotometer (UV-6100S, Shanghai General Instrument Co., Ltd.,
China). Gallic acid was used to calculate the standard curve, and total phenolic content
was expressed as gallic acid equivalents (mg g−1).

The supernatant (0.2 mL) was mixed with 2 mL of distilled water, followed by the
addition of 0.04 mL of 5% (w/v) Na2CO3 solution and 0.16 mL of 10% (w/v) Al(NO3)3
solution, then incubated at room temperature for 15 min. The absorption was recorded at
510 nm. Flavonoid content was calculated as mg of rutin equivalents per g.

2.8. The Ascorbic Acid (AsA) and Glutathione (GSH) Contents Measurements

AsA and GSH contents were determined as described in the method by Huang et al. [29].
Results were expressed as mg g−1 on the basis of fresh weight.

2.9. Statistical Analysis

All experimental results were derived from three replications. All the data passed the
Shapiro-Wilk test and Levene’s test to check the normal distribution and the homogeneity
of variance. Then, data were subjected to the analysis of variance (ANOVA). Comparison
of differences between pairs of means was conducted by Duncan’s test. The variation with
statistical significance was considered if p < 0.05.

3. Results

3.1. Firmness, Lightness(L*), EL, and MDA Content

The firmness and L* of mushrooms showed a decreasing trend, while the ∆E, EL,
and MDA content showed an increasing trend in mushrooms during storage (Figure 1).
Specifically, the SNP+1-MCP treatment significantly (p < 0.05) sustained high firmness and
white color (Figure 1A,B) and suppressed mushroom ∆E, EL, and MDA levels (Figure 1C,D).
The SNP, 1-MCP, and SNP+1-MCP treatments maintained firmness (118.91%, 107.80%, and
126.01%), L* (107.54%, 103.89%, and 110.20%), ∆E (68.77%, 83.94%, and 57.83%), EL (66.07%,
75.49%, and 59.17%), and MDA content (91.85%, 86.22%, and 83.48%) in mushrooms
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compared with the control on day 6. Furthermore, 1-MCP-treated maintenance on the
quality of mushrooms were lower than observed with SNP or SNP+1-MCP treatment
(Figure 1).
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Figure 1. (A) Firmness, (B) L*, (C) ∆E, (D) electrolyte leakage (EL), and (E) malondialdehyde (MDA)
content of Agaricus bisporus at 25 ◦C. The letters indicate the significant difference (p < 0.05), and the
bars indicate standard error (means ± SE).

3.2. Contents of O2
·−, H2O2, and ·OH

The O2
·− content of Agaricus bisporus displayed an overall increasing trend during

storage, and the other three groups significantly (p < 0.05) constrained the increase in O2
·−

content compared with the control (Figure 2A). The SNP+1-MCP treatment significantly
(p < 0.05) exhibited a better inhibitory effect than SNP or 1-MCP individually on days 5
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and 6. In addition, the SNP+1-MCP treatment maintained a low level of H2O2 in Agaricus
bisporus, which was only 75.19% of the control (Figure 2B). On day 1, the highest level of
H2O2 content was found in mushrooms, but the H2O2 content reached the lowest level
on day 4. Similar inhibitory effects of the SNP+1-MCP treatment were also found in the
content of ·OH (Figure 2C). There was an interesting result that the treatment with SNP
had inhibition successfully on the contents of O2

·−, H2O2, and ·OH than the mushrooms
treated with 1-MCP, although the inhibitory effects of SNP treatment were lower than the
SNP+1-MCP treatment, suggesting that the SNP treatment had a higher ability in reducing
ROS injury than the 1-MCP treatment.
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·−), (B) hydrogen peroxide (H2O2), and (C) hydroxyl radical (·OH)

contents of Agaricus bisporus at 25 ◦C. The letters indicate the significant difference (p < 0.05), and the
bars indicate standard error (means ± SE).

3.3. Activities of SOD, CAT, POD, and PPO

An overall decreasing tendency was shown in the activities of SOD and CAT in
mushrooms, while the activity of PPO was opposite (Figure 3A,B). Compared with the
control, SNP+1-MCP treatment significantly (p < 0.05) increased the activities of SOD and
CAT and inhibited the activity of PPO. In addition, SNP+1-MCP treatment effect is better
than the SNP treatment, whereas the SNP treatment is better than the 1-MCP treatment.
POD activity increased sharply in the 1–2 d with a slow decrease after day 3 (Figure 3C).
Compared with the control, the other treatments significantly (p < 0.05) inhibited POD
activity. Particularly on the second day of storage, POD activity of SNP, 1-MCP, and SNP+1-
MCP-treated mushrooms was 50.83%, 51.26%, and 47.08% of the control, respectively.
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3.4. The Ascorbate–Glutathione Cycle (AsA-GSH)-Related Enzyme Activity

In the storage process, the activities of APX, GR, MDHAR, DHAR, and GPX in mush-
rooms showed an increasing trend followed by a decreasing trend (Figure 4). The highest
peaks of APX, MDHAR, and DHAR activities all occurred on day 3. Interestingly, com-
pared with the control, the peak GR and GPX activities appeared one day earlier in the
SNP-treated and SNP+1-MCP-treated mushrooms, while the peak GPX activity appeared
simultaneously in the control and 1-MCP treatment. The APX, MDHAR, and DHAR ac-
tivities in mushrooms treated with SNP+1-MCP were significantly (p < 0.05) higher than
SNP and 1-MCP treatments (Figure 4A–C). Compared with the control, SNP, 1-MCP, and
SNP+1-MCP treatments showed increases in APX activity (135.71%, 133.10%, and 155.88%),
MDHAR activity (137.66%, 123.24%, and 140.71%), and DHAR activity (110.98%, 106.13%,
and 118.55%) on day 3 (Figure 4A–C). Moreover, GR and GPX activities showed the same
trend as APX, MDHAR, and DHAR activities. In the pre-storage period, the GR and GPX
activities of SNP+1-MCP-treated mushrooms were significantly higher (p < 0.05) than the
SNP treatment (except on day 1), and the SNP treatment was significantly higher than the
1-MCP treatment. The GR activity of SNP, 1-MCP, SNP+1-MCP-treated mushrooms was
1.19, 1.06, and 1.43 times the control on day 2, respectively. Furthermore, compared with
the control, SNP, 1-MCP, SNP+1-MCP treatment enhanced the GPX activity by 128.88%,
114.29%, and 141.91% on day 2, respectively.
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Figure 4. (A) Ascorbate peroxidase (APX), (B) monodehydroascorbate reductase (MDHAR), (C) de-
hydroascorbate reductase (DHAR), (D) glutathione reductase (GR), and (E) glutathione peroxidase
(GPX) activities of Agaricus bisporus at 25 ◦C. The letters indicate the significant difference (p < 0.05),
and the bars indicate standard error (means ± SE).

3.5. Contents of Antioxidant Substances

AsA, GSH, total phenol, and flavonoid are the non-enzymatic antioxidants in plants.
All treatments promoted the accumulation of AsA, GSH, total phenol, and flavonoid
contents (Figure 5). The AsA content of mushrooms treated with SNP+1-MCP was higher
than the mushrooms treated with SNP (except on days 1 and 4), which were higher than the
mushrooms treated with 1-MCP (except on day 5) (Figure 5A). Compared with the control,
the supplementations of the SNP, 1-MCP, and SNP+1-MCP resulted in an increase in the
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content of AsA on day 6 by 1.22-fold, 1.09-fold, and 1.31-fold, respectively. The GSH, total
phenol, and flavonoid contents of mushrooms treated with SNP+1-MCP were also higher
than the mushrooms treated with SNP, which were higher than the mushrooms treated
with 1-MCP (Figure 5B–D). In comparison with the untreated mushrooms, the addition of
SNP, 1-MCP or SNP+1-MCP increased the GSH content (1.41-fold, 1.26-fold, and 1.55-fold),
total phenol content (1.18-fold, 1.15-fold, and 1.33-fold), and flavonoid content (1.23-fold,
1.22-fold, and 1.29-fold) in the mushrooms on day 6.
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3.6. Correlation between Quality, ROS Damage, Antioxidant Enzymes, and Antioxidants of
Agaricus bisporus

The results of the correlational analysis were summarized in Figure 6. Firmness was
positively correlated with antioxidant enzymes (SOD, CAT, APX, GR, MDHAR, DHAR,
and GPX), antioxidant substances (AsA and GSH), nutritional quality indicators (total
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phenols, flavonoids), and negatively correlated with ∆E, EL, MDA, and ROS (O2
·−, H2O2,

and ·OH). MDA was positively correlated with ROS (O2
·−, H2O2, and ·OH), POD, PPO,

and negatively correlated with antioxidant enzymes (SOD, CAT, APX, GR, and MDHAR),
antioxidant substances (AsA and GSH), and flavonoid. Flavonoid was positively correlated
with antioxidant enzymes (APX, GR, MDHAR, DHAR, and GPX), antioxidant substances
(AsA and GSH), and negatively correlated with ∆E, EL, MDA content, ROS (O2

·−, H2O2,
and ·OH), POD and PPO activities.
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4. Discussion

Under room temperature conditions, the apparent after-ripening effect of Agaricus
bisporus as well as its high respiration and extremely degradable characteristics make it
extremely soft and unstable for storage [1,2]. Both NO and 1-MCP can inhibit ethylene.
The difference is that NO inhibits ethylene biosynthesis, while 1-MCP acts on ethylene
receptors. Currently, reports on NO and 1-MCP in delaying aging in Agaricus bisporus are
lacking. In this study, we investigated the effects of SNP and 1-MCP treatments alone and
in combination on the postharvest storage performance of Agaricus bisporus.

During storage, the texture of Agaricus bisporus became rough as maturity and moisture
content changed. At the same time, Agaricus bisporus undergoes physiological processes,
such as nutrient consumption and biochemical reactions involving enzymes, and shows
symptoms, such as softening and browning, thereby shortening the shelf life. Firmness and
color are the main factors that people can intuitively judge the quality of Agaricus bisporus.
The color can reflect the degree of browning of Agaricus bisporus. In this study, compared
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with CK, both SNP or 1-MCP treatments applied alone maintained the higher firmness, L*

and lower ∆E of Agaricus bisporus, and the combination of both treatments was better than
the individual treatments. The results showed that the combined treatment of exogenous
NO and 1-MCP had a positive effect on maintaining the storage quality of Agaricus bisporus
(Figure 1A,B).

NO acts synergistically with 1-MCP to alleviate oxidative damage to Agaricus bis-
porus. Excessive accumulation of ROS can be triggered by handling practices, storage
environments, and mechanical damage from various processes. Notably, about 1% of the
O2 consumed by the plant is converted into a substrate for ROS production [11]. The three
most common forms of ROS in plants are O2

·−, H2O2, and ·OH [30]. These oxygenated
substances can destroy macromolecular structures, such as proteins and nucleic acids, espe-
cially attacking unsaturated double-chain fatty acids in cell membranes. During storage,
both SNP and 1-MCP reduced the levels of O2

·−, H2O2, and ·OH to different degrees
compared with CK, and SNP+1-MCP treatment was the most effective (Figure 2). The same
changes in ROS (O2

·−, H2O2, and ·OH) were found in previous studies of anxi persimmons
treated with 1-MCP or table grapes treated with NO [21,31] implying that NO and 1-MCP
may alleviate postharvest damage in fruits and vegetables by reducing the levels of reactive
oxygen species.

NO acts synergistically with 1-MCP to maintain the integrity of the cell membrane of
Agaricus bisporus. The phenolic is distributed in different subcellular regions with phenol
oxidase (for example, PPO) under normal conditions. However, when the organism under-
goes mechanical damage or natural senescence, the cell membrane integrity is disrupted,
the degree of membrane lipid peroxidation is subsequently increased, regionalization will
be disrupted, enzymes come into contact with the substrate, and phenols are oxidized to
quinones, which results in browning [32]. Evidently, the integrity of the cell membrane
plays an important role in inhibiting the development of browning. MDA content is often
used as an important indicator of the degree of membrane lipid peroxidation [33]. In the
present study, application of SNP or 1-MCP alone inhibited the increase in MDA, EL, and
PPO activity compared with CK (Figures 1C,D and 3D), and the inhibition effect was ranked
as SNP+1-MCP>SNP>1-MCP>CK. This suggests that SNP+1-MCP treatment can delay
browning of Agaricus bisporus by reducing cell membrane damage, maintaining membrane
integrity, and reducing enzyme exposure to phenolics. Studies on mushrooms treated with
melatonin and persimmons treated with 1-MCP also confirmed that low levels of MDA
and EL were consistent with the low activity of PPO [31,34]. Moreover, in our study, the
accumulation of ROS (O2

·−, H2O2, and ·OH), indicators of cell membrane integrity (EL
and MDA), and quality (firmness, L* and ∆E) showed a close correlation and coefficients
up to 0.85 or more (Figure 6), further validating the above analysis.

NO acts synergistically with 1-MCP to increase the antioxidant enzyme activity in
Agaricus bisporus. Endogenous antioxidant systems exist in Agaricus bisporus to protect
against oxidative stress, both enzymatically and non-enzymatically. Essential protective en-
zymes of the enzymatic clearance system include SOD, CAT, and POD [35]. SOD is the first
line of defense of the antioxidant enzyme system, which catalyzes O2

·− disproportionation
reactions to produce H2O and O2 [36]. CAT is a tetramer containing heme. CAT catalyzes
the decomposition of two H2O2 molecules into water and oxygen and has a high specificity
for H2O2 [35]. POD not only decomposes hydrogen peroxide into water and oxygen, but
also oxidizes phenolic substances in the presence of H2O2 to induce the onset of browning.
The AsA-GSH cycle is a cycle designed to remove H2O2, which consists of four enzymes
(APX, GR, MDHAR, and DHAR) and two metabolites (AsA and GSH). In the AsA-GSH
cycle, APX plays a key role in the scavenging of H2O2, while MDHAR, DHAR, and GR
provide substrates for H2O2 scavenging by APX mainly by affecting the regeneration of
AsA and GSH [30]. GPX, as a typical enzymatic ROS scavenger, can decompose hydrogen
peroxide to protect organisms from oxidative damage [37]. In this study, the activities of
SOD, CAT, POD, APX, GR, MDHAR, DHAR, and GPX in the fruiting bodies of Agaricus
bisporus treated with CK were at lower levels, while the activity of PPO was the largest,
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implying that the ability of mushrooms to scavenge ROS decreases with the prolongation of
storage time. Many studies have shown that 1-MCP and NO have different mechanisms of
action, but both can delay the accumulation of oxidants and the intensification of membrane
lipid peroxidation, increase the activity of antioxidant enzymes, and delay the decline of
fruit and vegetable quality, for example, in tomatoes [16], blueberries [15], grapes [19], and
persimmons [31]. In the present work, SNP or 1-MCP treatment upregulated SOD, CAT,
POD, APX, GR, MDHAR, DHAR, and GPX activities and downregulated PPO activity
compared with CK, and SNP treatment was superior to 1-MCP treatment and SNP+1-MCP
treatment was superior to SNP treatment, indicating that SNP+1-MCP treatment may have
a gaining effect on the activation of enzymatic antioxidant system (Figures 3 and 4). Dong
et al. [38] found that the 1-MCP treatment promoted the synthesis of endogenous NO in
Suli pears. Therefore, we speculated that 1-MCP induced lower levels of endogenous NO
than the exogenous NO supply pool (SNP). Additionally, ROS (O2

·−, H2O2, and ·OH)
showed a negative correlation with antioxidant enzymes (SOD, CAT, and AsA-GSH), and
the correlation coefficient could reach above 0.82 (Figure 6). The correlation analysis fur-
ther demonstrated that the SNP+1-MCP treatment scavenged toxic ROS by activating the
antioxidant system in Agaricus bisporus.

NO acts synergistically with 1-MCP to maintain the antioxidant content in Agaricus
bisporus. AsA and GSH are important indicators of the level of plant reducing reservoir
power. When soybean is subjected to abiotic stress, exogenous NO positively regulates the
activity of critical enzymes in the AsA-GSH cycle and the levels of AsA and GSH [39], and
the same results are found in 1-MCP treatment [5]. In addition, total phenol and flavonoid,
as secondary metabolites, are also good non-enzymatic antioxidants in plants [40]. The use
of NO fumigation activates the biosynthetic pathways of total phenol and flavonoid and
improves their antimicrobial capacity in mushrooms [41]. Li et al. [42] found that 1-MCP
has the same effect on preserving pears. Studies have shown that post-harvest fruits and
vegetables show a rapid increase in antioxidants followed by a rapid decrease, which is
consistent with our results (CK) [11]. 1-MCP promoted the synthesis of AsA, GSH, total
phenols, and flavonoids in the mushroom, and further improved the ability of scavenging
reactive oxygen radicals in the mushroom (Figure 5). We speculated that this is the result
of the joint action of NO and 1-MCP, but the specific molecular mechanism remains to
be studied.

5. Conclusions

This study shows that the combined use of SNP and 1-MCP is more effective than
single use in prolonging the shelf life of Agaricus bisporus, and SNP and 1-MCP may have a
synergistic effect in maintaining the postharvest quality of Agaricus bisporus. SNP+1-MCP
treatment of Agaricus bisporus can reduce the accumulation of ROS by upregulating ROS
metabolism (enzymatic and non-enzymatic systems) and maintaining the integrity of cell
membranes, thus impeding the binding of PPO to substrates and inhibiting the activity of
PPO, effectively reducing the occurrence of browning in Agaricus bisporus. While alleviating
the oxidative damage of Agaricus bisporus, SNP+1-MCP treatment effectively maintained
the firmness, white color (L*), total phenolic, and flavonoid contents of Agaricus bisporus. In
general, the combined application of NO and 1-MCP can be used as a potential method in
the preservation of Agaricus bisporus at room temperature.
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