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Abstract: Colorectal cancer (CRC) is a leading cause of death from cancer in Canada. Early detection
of CRC remains crucial in managing disease prognosis and improving patient survival. It can also
facilitate prevention, screening, and treatment before the disease progresses to a chronic stage. In this
study, we developed a strategy for identifying colon cancer biomarkers from both gene expression
and gene pair correlation. Using the RNA-Seq dataset TCGA-COAD, a panel of 71 genes, including
the 20 most upregulated genes, 20 most downregulated genes and 31 genes involved in the most
significantly altered gene pairs, were selected as potential biomarkers for colon cancer. This signature
set of genes could be used for early diagnosis. Furthermore, this strategy could be applied to other
types of cancer.

Keywords: colon cancer; differentially expressed gene; gene pair correlation; diagnostic marker;
signaling pathway

1. Introduction

Colorectal cancer (CRC), which includes both colon cancer and rectal cancer, is the
third most common type of cancer in Canada [1]. According to the Canadian Cancer
Society, about 24,300 Canadians were diagnosed with CRC in 2022 (~10% of all new cancer
cases) [2]. Globally, it has been estimated that there could be more than 2.2 million new
cases and 1.1 million deaths from CRC by the year 2030 [3]. A significant number of CRC
cases are sporadic, and their etiology has been linked to lifestyle and environmental factors
such as age, ethnicity, sex, diet, morbidity (diabetes or obesity), and tobacco usage [3].
However, 2–8% of CRC cased are due to inherited syndromes [3].

Current treatment options for CRC generally include surgery (endoscopic and local
excision) and chemotherapy. Loco-regional surgery, local ablative therapy, targeted therapy,
and immunotherapy are also applied for advanced stage and/or metastatic CRC [4]. CRC
normally becomes symptomatic in the advanced stage. The five-year survival rate drops
from 92% for stage I to 12% for stage IV in colon cancer patients and from 88% for stage
I to 13% for stage IV in rectal cancer patients [5]. Thus, early diagnosis is essential for
patient survival in CRC. It has also been shown that only about 55.2% of Canadians aged
50–74 have undergone a stool test in the last two years [6] and 62% of Americans aged
50–75 have taken a colonoscopy/sigmoidoscopy in the last 10 years [7]. Although regular
colonoscopy has led to a decline in CRC in adults over 50 years old, there is an indication
that the CRC rate is increasing among adults less than 50 years old in both Canada [8,9] and
the USA [10,11]. A recent study characterized CRC outcomes in young adults and reported
that the five-year survival rate was lower in young patients in comparison to middle-aged
patients; this has been attributed to advanced tumor stage and distant metastasis at the
time of presentation [12].
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Up to now, there is no single treatment to treat every patient with equal efficacy [13].
While the development of an effective primary medical intervention is in process, the parallel
development of cost-effective, non-invasive early detection techniques (asymptomatic stage)
is also under investigation as a preventive strategy in CRC patients. Although extensive
genomic and transcriptomic studies have been undertaken to identify differentially expressed
genes (DEG) as potential cancer biomarkers [14,15], they have not been significantly impactful.
This is because CRC is highly heterogeneous and complex and is dynamically governed by a
combination of vast genes and environmental factors [16]. To better characterize CRC, gene
expression has to be analyzed as a system rather than an individual event. Herein, we propose
that alterations in the correlations for expression of gene pairs could serve as a supplement to
the current clinical biomarkers for early disease diagnosis. This novel approach integrates
multiple factors to shortlist pharmacologically relevant targets using a set of indirect and
network-dependent features that can be modulated in a differential fashion to bring out the
required phenotypic effect and help in disease management.

2. Results
2.1. Differentially Expressed Genes (DEGs)

Gene expression data were extracted from The Cancer Genome Atlas (TCGA) dataset
TCGA-COAD. The dataset contains RNA-Seq expression data and the corresponding clini-
cal data for 471 colon cancer patients and 41 healthy controls. Using |log2FC| ≥ 2.50 (FC,
fold change) as the cutoff, we identified 606 upregulated DEGs and 447 downregulated
DEGs (Supplementary Table S1). The top 20 upregulated and downregulated DEGs are
summarized in Table 1.

Table 1. Top 20 upregulated and downregulated DEGs in the colon cancer dataset TCGA-COAD.

Upregulated Downregulated

Gene Name Log2FC ≥ 2.50 p-Value Gene Name Log2FC ≤ 2.50 p-Value

MAGEA3 11.81 0 APOA4 −8.12 0
MAGEA6 10.71 0 OTOP2 −7.95 0

IGFL1 10.60 0 APOC3 −7.84 0
PRSS56 10.55 0 SLC10A2 −7.16 0

MAGEA12 10.16 0 APOA1 −7.10 0
KLK6 9.74 0 MS4A10 −7.07 0
PAEP 9.67 0 AQP8 −6.86 0

NOTUM 9.65 0 CA1 −6.58 0
PRR9 9.51 0 APOB −6.41 0
KLK8 9.28 0 INSL5 −6.14 0

SPRR2E 9.21 0 TMIGD1 −6.07 0
PPBP 9.21 0 GUCA2B −6.06 0

SPRR1A 9.10 0 G6PC −6.02 0
MAGEA1 9.07 1.58 × 10−10 CPO −5.83 0

FEZF1 8.99 0 KRTAP13-2 −5.75 0
DKK4 8.93 0 PYY −5.74 0
ZIC5 8.91 3.71 × 10−13 OTOP3 −5.73 0
KLK7 8.87 0 BEST4 −5.70 0
CST1 8.58 0 SLC30A10 −5.57 0

SPRR2D 8.52 0 CLDN8 −5.55 0
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2.2. Pathway Analysis

The upregulated and downregulated DEGs (|log2FC| ≥ 2.50) were subjected to path-
way analysis using InnateDB [17], which can categorize proteins into different biological
pathways. The top 10 significant biological pathways for the KEGG Pathways Database
were neuroactive ligand–receptor interaction, systemic lupus erythematosus, cytokine–
cytokine receptor interaction, pathways in cancer, bile secretion, Wnt signaling pathway,
cell adhesion molecules, metabolism of xenobiotics by cytochrome P450, drug metabolism,
and tight junction (Table 2). The uploaded gene count, (i.e., number of DEGs) and the total
number of genes in the top 10 biological pathways are provided in Table 2.

Table 2. Top 10 significant biological pathways identified for the upregulated and downregulated
DEGs (|log2FC| ≥ 2.50) using InnateDB.

Pathway Name Uploaded Gene Count Total Number of Genes

1
Neuroactive

ligand–receptor
interaction

29 275

2 Systemic lupus
erythematosus 28 126

3 Cytokine–cytokine
receptor interaction 27 258

4 Pathways in cancer 19 329

5 Bile secretion 18 72

6 Wnt signaling
pathway 17 140

7 Cell adhesion
molecules 17 144

8
Metabolism of
xenobiotics by

cytochrome P450
16 73

9 Drug metabolism 14 67

19 Tight junction 14 135

2.3. Alternation in Gene Pair Correlations

Carcinogenesis is a complicated and complex process, which requires the coordination
of multiple genes. To understand the modulation of the top 10 significant biological
pathways and the change in expression in relation to each other in colon cancer, we
calculated and compared the pairwise correlations for all genes in each biological pathway
between healthy controls and colon cancer patients (Figure 1). It is clear that the genes
in most of the biological pathways tend to lose their correlations/coordination upon
carcinogenesis, implying that the decoupling of gene regulations might be essential for
colon cancer development. This observation is consistent with our previous studies [18–20].
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Figure 1. Comparison of the gene pair correlations for genes in the top 10 significant biological path-
ways between healthy controls (left) and colon cancer patients (right). The 10 biological pathways are
neuroactive ligand–receptor interaction, systemic lupus erythematosus, cytokine–cytokine receptor
interaction, pathways in cancer, bile secretion, Wnt signaling pathway, cell adhesion molecules,
metabolism of xenobiotics by cytochrome P450, drug metabolism, and tight junction. Positive and
negative correlations were shown in blue and red, respectively.

3. Discussion
3.1. Top 20 Upregulated DEGs

As shown above, the top 20 upregulated DEGs had their fold changes more than
360 folds. Further analysis showed that four upregulated DEGs belong to the Melanoma-
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Associated Antigen-A (MAGE-A) cluster. The MAGE-A gene cluster is located at Xq28 in
the human genome and consists of 12 genes. The genes show silent/low expression in all
normal tissues except in the male germ cell and the placenta, as the MAGE-A family is
involved in spermatogenesis and embryonic development. Recently, the role of Melanoma-
Associated Antigen-A (MAGE-A) gene expression in various human cancers was reviewed
and it was reported that genes in this family are potential therapeutic targets in cancer
immunotherapies [21]. Although the exact function of these genes is not clearly under-
stood, some members (MAGE-A2, A3/6, and A9) have been shown to be tumorigenic and
involved in the dysregulation of the tumor suppressor p53 [22–26].

Overexpression of IGF-1 has been linked to an increased risk of colon cancer, and
IGF-1 has been shown to stimulate the growth of the colon cancer cell lines HT-29 and
SW-480 [27,28]. Three kallikreins, KLK6, KLK7, and KLK8, were found to be overexpressed
in colon cancer. The kallikrein gene family, which is located on chromosome 19q13.4,
encodes serine proteases. Proteases including kallikreins have been associated with the
progression of colon cancer and reported to help in cancer progression by extracellular
matrices and the invasion of surrounding tissues by the transformed cells [29,30]. KLK6,
KLK7, KLK8, and KLK10 were recently reported as potential diagnostic biomarkers for
colon adenocarcinoma [31]. PAEP (Glycodelin) is an immunosuppressive glycoprotein
and a high level of glycodelin is observed in the serum of colon cancer patients [32]. It
was reported as a biomarker for colon cancer as the serum glycodelin level is increased in
patients with metastatic CRC [33]. NOTUM encodes palmitoleoyl-protein carboxylesterase,
which is involved in the proliferation and migration of colorectal cancer and proposed as a
diagnostic and therapeutic candidate [34].

SPRR1A, SPRR2E, and SPRR2D are three members of the small proline-rich proteins
(involved in the keratinization pathway). SPRRs are critical components of the cornified
cell envelope (CE). The CE is involved in the formation of an envelope beneath the plasma
membrane that serves as a barrier to extracellular and environmental factors. Dysregulation
results in the compromise of the barrier [35]. PRR9, a paralog of SPRR2G, is also observed
to be overexpressed. SPRR1A was recently proposed as a prognostic marker of colon cancer
as its expression was higher in tumors compared to the adjacent noncancerous tissues [36].
High expression of SPRR1A was reported to be associated with poor survival in colon
cancer patients [37]. SPRR1A and SPRR2D are also interacting partners of KLK6 [38]. PPBP
(also known as CXCL7) is a chemokine involved in the immune response during vascular
injury [38,39]. It is proposed as a potential biomarker for cancers [40–42]. Overexpression
of PPBP affects the PI3K/AKT/mTOR signaling pathway and is associated with poor
prognosis for colon cancer [43–45].

DKK4 is a member of the Dickkopf family and modulates the Wnt signaling path-
way. It was reported to enhance the migration and invasive characteristics of colon cancer
cells [46]. Overexpression of DKK4 in colorectal cancer was also previously reported [47].
Zinc finger of the cerebellum 5 (ZIC5) is a transcriptional repressor. It plays an impor-
tant role in colorectal cancer via regulating cell cycle progression and the modulation
of CDC25/CDK/cyclin signaling [48]. Cystatin SN (cystatin 1, CST1) inhibits cysteine
proteases and promotes cell proliferation and metastasis. It was reported as a biomarker
in colorectal cancers [49]. COL10A is a member of the collagen family and has been re-
ported to be overexpressed in colorectal cancer. It has also been proposed as a potential
biomarker [50]. PRSS56 encodes a serine protease, which has a significant correlation with
clinical stage in bile duct cancer [51]. FEZF1 is a transcriptional repressor of the zinc finger
double domain protein family. No relationship with FEZF1 in CRC could be identified in
the literature (as of 14 September 2022).

3.2. Top 20 Downregulated DEGs

As for the downregulated SDEGs, all of them had fold changes more than 45 folds.
Four lipoproteins, APOA4, AOC3, APOA1, and APOB, were downregulated. Lipoproteins
are formed by the attachment of apolipoproteins (APOs) to lipids, and hence apolipopro-
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teins function as lipid carriers. APOs are primarily synthesized in the liver and the intestine.
APOA4 and APOA1 are involved in the transportation of chylomicrons (low-density
lipoproteins, LDLs) and high-density lipoproteins (HDLs) [52], while APOB transports
LDLs and APOC3 transports HDLs. APOA4 possesses anti-inflammatory activity in al-
lergies [53]. However, no report was found on its association with colon cancer or CRC.
Low ApoA-I levels have been proposed to be associated with increased mortality risk in
colorectal cancer patients. APOA1 was reported to be associated with anti-inflammatory,
antiangiogenic [54], immunoregulatory [55,56], and antithrombotic [57,58] activities. Al-
though no association was found between colon cancer and APOB and APOC3 expressions,
a recent report evaluated the role of APOB in bile duct cancer and demonstrated that APOB
influences the infiltration degree of immune cells [59]. Furthermore, APOC3 is involved
in the breakdown of triglycerides, and hence its plasma level directly correlates with the
plasma triglyceride level [60].

OTOP2 and OTOP3 encode for otopetrin 2 and otopetrin 3, respectively. OTOP2 was
downregulated in CRC and its expression is negatively correlated with the malignancy
grade and patient survival [61]. Although the exact mechanism of action is not known, it
could be regulated by wild type p53 [62]. OTOP3, which is a paralog of OTOP2, functions
as a proton-selective channel and is involved in the maintenance of intracellular pH. OTOP3
has been reported as an interesting candidate for future research in colon cancer [63].

SLC10A2 (ASBT/Apical sodium-dependent bile acid transporter) and SLC30A10
(Solute Carrier Family 30 Member 10) are also downregulated in colon cancer. ASBT is
involved in the reclamation of bile acids at the terminal ileum enterocyte brush border
membrane [64]. ASBT-deficient mice are reported to show a 2-fold increase in the number of
colon adenocarcinomas [65]. SLC30A10 has been observed to be downregulated in colorec-
tal cancer tissues and cell lines. Low expression of SLC30A10 promotes cell proliferation
and migration of colorectal cancer cells [66]. SLC30A10, which is a Mn transporter, is also
involved in Zn transport in endosomes. Mn is essential for the function of several enzymes,
such as those involved in the metabolism of neurotransmitters. The loss-of-function muta-
tions of SLC30A10 are associated with adult-onset Parkinsonism. Expression of SLC30A10
and cellular Mn efflux are regulated by the composition of bile acids [67].

MS4A10 encodes for a component of a multimeric receptor complex, which is involved in
signal transduction. However, its exact function is unknown. AQP8 is an aquaporin involved
in water transport across the biological membranes. It is downregulated in CRC. AQP8
inhibits PI3K/AKT signaling [68]. CA1 encodes for carbonic anhydrase 1 and is reported to
be downregulated in CRC patients [69]. CA1 is involved in electroneutral sodium chloride
reabsorption and short-chain fatty acid uptake [69]. INSL5 belongs to the insulin superfamily
and is downregulated in colon cancer. It encodes insulin-like peptide 5. Recently, INSL5 was
reported as a potential therapeutic target for CRC [70]. It also plays a role in gut contractility
in murine models [71]. It is important to note that colon cancer patients usually show changes
in bowel movements including constipation. TMIGD1, which is a putative tumor suppressor,
can induce G2-M cell cycle checkpoint arrest in colon cancer cells and is correlated with
poor overall survival [72]. GUCA2B encodes uroguanylin, which is an endogenous hormone
functioning as a paracrine endogenous ligand to regulate proliferation, metabolism, and
barrier function in the intestine by binding and activating guanylate cyclase C (encoded by
GUCY2C) [73].

G6PC is a glucose-6-phosphatase catalytic subunit component gene. Glucose-6-phosphatase
is involved in gluconeogenesis and glycogenolysis. Thus, it plays a key role in glucose home-
ostasis. Alterations in glucose metabolism have been noticed in many types of cancer, including
colon cancer [74]. CPO encodes carboxypeptidase O, which is involved in the small intestine
phase of protein digestion. It is a membrane-anchored brush-border enzyme that enables the
C-t proteolysis of the great majority of amino acids present in dietary proteins [75]. CPO was
observed to be downregulated in our current analysis and no report on its downregulation in
either colon cancer or CRC was found in the literature. KRTAP13-2 encodes Keratin Associated
Protein 13-2, which was also downregulated in rectal cancer [76]. Peptide YY (encoded by PYY)
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is a gut hormone. Decreased expression of peptide YY has been reported to be relevant to the
development and progression of colon adenocarcinoma [77]. BEST4 is significantly expressed
in the colon and belongs to the bestrophin gene family of anion channels. However, it is
dramatically downregulated in CRC [78]. Claudin 8 (encoded by CLDN8) is part of the tight
junction in cell membranes. In contrast to our observation, CLDN8 was previously reported to
be overexpressed in CRC patients and promoted cell proliferation, migration, and invasion of
colorectal cancer cells [79].

We herein provide a brief overview on the functions of the top 40 modulated DEGs in
colon cancer patients. Several genes have been identified as targets to develop therapeutic
agents against colon cancer. However, early detection remains crucial for cancer patient
survival, despite recent progress in drug development. Although several biomarkers and
targets have been proposed for colon cancer (some of them were discussed above), there is
lack of a technique that can address the issue of heterogeneity and differential expression
of biomarkers in colon cancer in a unified and effective manner among diverse populations.
Here, we investigated the alterations in gene pair correlations of the top 10 regulated
biological pathways in colon cancer and identified a set of genes that could be applied for
the early diagnosis of colon cancer.

3.3. Alternation in Gene Pair Correlations of the DEGs

In order to identify potential genes that could be used for the early detection of colon
cancer, we calculated the changes of gene pair correlation coefficients (CCs) between colon
cancer patients and health controls and identified a set of gene pairs with |log2FC| ≥ 2.50 and
|∆CC| (i.e., CCcancer − CCcontrol) ≥ 0.70.

Neuroactive ligand–receptor interaction: The 29 DEGs involved in this pathway are
ADCYAP1R1, AGTR1, CHRM2, CNR1, CTSG, DRD2, F2, GABRD, GABRE, GABRG2, GABRP,
GLP2R, GRIK3, GRIN2B, GRIN2D, GRPR, HTR1D, HTR4, KISS1R, NMUR2, NPFFR1,
NPY2R, OXTR, P2RX2, P2RY4, PRSS1, PRSS3P2, SSTR5, and TACR2. However, none of
these genes were among the top 20 up- or downregulated genes. Using |∆CC| ≥ 0.70, we
identified three gene pairs, CNR1-CHRM2 (−0.71), GRPR-AGTR1 (−0.87), and GRPR-
TACR2 (−0.78). The log2FC for CNR1, CHRM2, GRPR, AGTR1, and TACR2 were −3.20,
−3.00, 3.13, −3.30, and −3.40, respectively.

Systemic lupus erythematosus: The 28 DEGs involved in this pathway are C7, CTSG,
ELANE, GRIN2B, HIST1H2AD, HIST1H2AH, HIST1H2AJ, HIST1H2AM, HIST1H2BE, HIST1H2BF,
HIST1H2BI, HIST1H2BL, HIST1H2BO, HIST1H3D, HIST1H3F, HIST1H3I, HIST1H3J, HIST1H4A,
HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E, HIST1H4L, HIST2H2AB, HIST2H2AC, HIST2H2BF,
HIST2H3D, and HIST3H2BB. None of the 28 DEGs belong to the top 20 up- or downregulated
genes. Twenty-five of these genes are in the histone cluster. This is consistent with epigenetic
alterations, such as DNA methylation and histone acetylation, contributing to changes in gene
expression in systemic lupus erythematosus [80]. However, no gene pair shows a change in
correlation of |∆CC| ≥ 0.70.

Cytokine–cytokine receptor interaction: The 27 DEGs involved in this pathway are
AMH, BMP7, CCL26, CNTFR, CSF2, CXCL11, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6,
EDAR, FIGF, IFNK, IL11, IL1A, IL23A, IL6R, IL8, INHBA, LIFR, OSM, PPBP, TNFRSF12A,
TNFRSF13B, TNFRSF17, and TNFSF9. None of the 27 DEGs belong to the top 20 up- or
downregulated genes. Only one gene pair, CXCL5-CXCL11 (−0.78), was identified to have
|∆CC| ≥ 0.70. The log2FC for CXCL5 and CXCL11 were 5.50 and 2.79, respectively.

Pathways in cancer: The 19 DEGs involved in this pathway are AXIN2, BIRC7,
CDKN2A, CDKN2B, CTNNA3, FGF19, FGF20, FGF3, FIGF, FZD10, IL8, MMP1, PRKCG,
RXRG, WNT11, WNT2, WNT3, WNT7B, and ZBTB16. None of the 19 genes belong to the
top 20 up- or downregulated genes. Two gene pairs, WNT3-FGF19 (−0.82) and PRKCG-
CDKN2B (0.76), met the |∆CC| ≥ 0.70 cutoff requirement. The log2FC for WNT3, FGF19,
PRKCG, and CDKN2B were 2.64, 3.91, 3.80, and −3.04, respectively.

Bile secretion pathway: The 18 DEGs involved in this pathway are BABCB11, ABCG2,
ADCY5, AQP8, AQP9, ATP1A2, BAAT, CA2, CYP3A4, NR1H4, SLC10A2, SLC4A4, SLC51A,
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SLC51B, SLC9A3, SLCO1B3, SULT2A1, and UGT2B4. Four gene pairs, SLC10A2-CYP3A4 (0.77),
SULT2A1-CYP3A4 (−0.96), SULT2A1-NR1H4 (−0.86), and SULT2A1-SLC10A2 (−0.98), had
|∆CC| ≥ 0.70. The log2FC for SLC10A2, CYP3A4, SULT2A1, and NR1H4 were −7.16, −4.74,
−2.52, and −3.59, respectively. Only SLC10A2 is in the top 20-downregulated gene list.

Wnt signaling pathway: The 17 DEGs involved in this pathway are AXIN2, DKK1,
DKK4, FOSL1, FZD10, MMP7, NKD1, NKD2, PRKCG, SFRP1, SFRP4, SFRP5, WIF1, WNT11,
WNT2, WNT3, and WNT7B. The gene pairs AXIN2-NKD1 (0.84) and WNT7B-FOSL1 (0.86)
satisfied the |∆CC| ≥ 0.70 cutoff requirement. The log2FC for AXIN2, NKD1, WNT7B, and
FOSL1 were 2.62, 4.41, 6.39, and 2.76, respectively. None of them belong to the top 20 up-
or downregulated genes.

Cell adhesion molecules: The 17 DEGs involved in this pathway are CADM3, CDH3,
CLDN10, CLDN14, CLDN16, CLDN1, CLDN18, CLDN23, CLDN2, CLDN6, CLDN8, CLDN9,
CNTN2, NCAM1, NEGR1, NLGN1, and NRXN1. None of these genes are present in the
list of top 20 up- or downregulated genes. Two gene pairs, CDH3-CLDN18 (−0.73) and
CLDN1-CLDN14 (−0.70), show a change in correlation of |∆CC| ≥ 0.70. The log2FC for
CDH3, CLDN18, CLDN1, and CLDN14 were 6.12, 7.57, 5.04, and 3.32, respectively.

Metabolism of xenobiotics by cytochrome P450: The 16 DEGs involved in this path-
way are ADH1B, ADH1C, AKR1C4, ALDH3B2, CYP3A4, GSTA1, GSTA2, GSTM5, SULT2A1,
UGT1A10, UGT1A1, UGT1A8, UGT2A3, UGT2B15, UGT2B17, and UGT2B4. None of these
genes are in the list of top 20 up- or downregulated genes. Using |∆CC| ≥ 0.70 as the cutoff,
we identified 11 gene pairs, AKR1C4-CYP3A4 (−0.97), AKR1C4-GSTA1 (−0.95), AKR1C4-
GSTA2 (−0.93), AKR1C4-SULT2A1 (−0.87), AKR1C4-UGT1A1 (−0.72), CYP3A4-GSTA2
(−0.99), CYP3A4-SULT2A1 (−0.96), GSTA1-UGT1A1 (−0.80), GSTA2- UGT1A1 (−0.80),
GSTA2-SULT2A1 (−0.99), and SULT2A1-UGT1A1 (−0.78). The 11 gene pairs involve six
genes, AKR1C4, CYP3A4, GSTA1, GSTA2, SULT2A1, and UGT1A1, with their respective
log2FC of 5.83, −4.74, −3.90, −4.79, −2.52, and −2.73. None of them are in the list of top
20 up- or downregulated genes.

Drug metabolism: The 14 DEGs involved in this pathway are ADH1B, ADH1C,
ALDH3B2, CYP3A4, GSTA1, GSTA2, GSTM5, UGT1A10, UGT1A1, UGT1A8, UGT2A3,
UGT2B15, UGT2B17, and UGT2B4. None of these genes are in our list of top 20 up- or
downregulated genes. Two gene pairs, GSTA1-UGT1A1 (−0.80) and GSTA2-UGT1A1
(−0.80), met the |∆CC| ≥ 0.70 cutoff. The log2FC for GSTA1, UGT1A1, and GSTA2 were
−3.90, −2.73, and −4.79, respectively.

Tight junction: The 14 DEGs involved in this pathway are CLDN10, CLDN14, CLDN16,
CLDN1, CLDN18, CLDN23, CLDN2, CLDN6, CLDN8, CLDN9, CTNNA3, MYH11, MYL9,
and PRKCG. Only one gene pair, CLDN1-CLDN14 (−0.70), met the |∆CC| ≥ 0.70 cutoff.
The log2FC for CLDN1 and CLDN14 were 5.04 and 3.32, respectively. Neither of them are
in the list of top 20 up- or downregulated genes.

3.4. Design an Assay for Potential Early Diagnosis of Colon Cancer

The human body is a complex system. Any physiological process involves the delicate
regulation of a system that contains many genes. These genes coordinate one another to fulfill
the normal biological and physiological functions. Thus, any pathophysiological process, such
as carcinogenesis and cancer development, would involve the disruption of current regulations
and/or the re-establishment of new regulations. Our previous studies have shown that genes
tend to lose their coordination in different types of cancer. Thus, we undertook the current
study in an attempt to develop an assay that could be used for the early diagnosis of colon
cancer. From the above analysis, we identified 25 gene pairs, which involve 32 genes, that
met the significance criteria of |log2FC| ≥ 2.50 and |∆CC| ≥ 0.70. Although only one gene,
SLC10A2, is in the list of the top 20 downregulated genes, the other genes play important roles
in regulating vast biological, physiological, and/or pathophysiological processes. For example,
gene AGTR1 encodes the angiotensin II receptor type 1. High expression of AGTR1 will stimulate
the expression of vascular endothelial growth factor (VEGF), the key growth factor controlling
angiogenesis, and is associated with a poor prognosis for colorectal cancer [81–83]. Herein, we
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propose an assay array, which includes the top 20 upregulated genes, top 20 downregulated
genes, and the 31 genes involved in the significantly altered gene pairs, for potential early
diagnosis of colon cancer. This array takes both gene expression and gene coordination into
consideration. It would be more advantageous over the traditional biomarkers that only involve
gene or protein expression. Further studies are warranted to validate and optimize this array
using both tissue and fecal samples from colon cancer patients.

4. Materials and Methods
4.1. Data Acquisition

The colon cancer dataset TCGA-COAD was downloaded from The Cancer Genome
Atlas (TCGA) via the Genomic Data Commons (GDC) data portal. It contains the RNA-Seq
and clinical information for 471 colon adenocarcinoma patients and 41 healthy controls.
For every patient or control, we analyzed the expression of 60,483 RNA transcripts in terms
of FPKM values.

4.2. Identification and Visualization of Differentially Expressed Genes

Differentially expressed genes (DEGs) were identified using the DEGseq package
from R based on a previously published protocol developed in our laboratory [18–20].
The output was expressed in normalized Log2FC (FC, fold change). Information on the
change in expression for the genes in colon cancer patients compared to healthy controls
was extracted using p < 0.001 and |log2FC| ≥ 2.50 as the significance criteria.

4.3. Biological Pathway Analysis

A Pathway Overrepresentation Analysis was performed using InnateDB [17], a pub-
licly available resource that predicts biological pathways based on experiment fold change
data sets, based on levels of differential gene expression. Pathways were assigned a proba-
bility value (P) based on the number of proteins present in a particular pathway and the
degree to which they were differentially expressed or modified, relative to a control condi-
tion. The top 10 biological pathways that are significantly modulated in colon cancer were
identified to be neuroactive ligand–receptor interaction, systemic lupus erythematosus,
cytokine–cytokine receptor interaction, pathways in cancer, bile secretion, Wnt signaling
pathway, cell adhesion molecules, metabolism of xenobiotics by cytochrome P450, drug
metabolism, and tight junction.

4.4. Correlation Matrices

The correlation matrix for each biological pathway was computed using the NumPy
Python package. These matrices were then visualized using the pandas and matplotlib
Python packages. Positive and negative correlations were represented in blue and red,
respectively. Correlation plots for the top 10 biological pathways were then plotted for
cancer patients and normal controls (Figure 1). Gene pairs showing a change in correlation
of |∆CC| ≥ 0.70 (significance cutoff level: 0.7) were identified and analyzed.

5. Conclusions

In this study, we integrated differential gene expression and gene expression correla-
tion to identify a panel of 71 genes that may work together in concert and could potentially
be used for the early diagnosis of CRC. Further studies including in vitro and in vivo
validations are needed to confirm the roles they play both individually and coherently in
the development of CRC. The major limitations of the current study are the small sample
size and the lack of sufficient pathological information for the patients, which may decrease
the sensitivity and specificity of our research protocol. We are currently endeavoring to
establish collaborations with oncologists in both Canada and foreign countries in order
to improve and optimize this potential CRC diagnostic panel of genes. Furthermore, we
will conduct more detailed analysis of CRC in the future by including patients’ clinical
information, such as tumor stage, tumor grade, and metastatic status.
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