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Deep learning (DL) has shown explo-
sive growth in its application to bioinfor-
matics and has demonstrated thrillingly
promising power to mine the complex
relationship hidden in large-scale bio-
logical and biomedical data. A number
of comprehensive reviews have been
published on such applications, ranging
from high-level reviews with future per-
spectives to those mainly serving as
tutorials. These reviews have provided
an excellent introduction to and guide-
line for applications of DL in bioinfor-
matics, covering multiple types of
machine learning (ML) problems, differ-
ent DL architectures, and ranges of bio-
logical/biomedical problems. However,
most of these reviews have focused on
previous research, whereas current
trends in the principled DL field and per-
spectives on their future developments
and potential new applications to biol-
ogy and biomedicine are still scarce. We
will focus on modern DL, the ongoing
trends and future directions of the

principled DL field, and postulate
new and major applications in
bioinformatics.

Introduction
ML has been the main contributor to

the recent resurgence of artificial intelli-
gence. The most essential piece in mod-
ern ML technology is DL. DL is founded
on artificial neural networks (ANNs),
which have been theoretically proven to
be capable of approximating any nonlin-
ear function within any specified accu-
racy (Hornik, 1991) and have been
widely used to solve various computa-
tional tasks (Li et al., 2019). However,
they have been criticized for being black
boxes. This lack of interpretability has
limited their applications, particularly
when their performance did not stand
out among other more interpretable ML
methods, such as linear regression, lo-
gistic regression, support vector
machines, and decision trees.

During the past decade, three impor-
tant advances in science and technology
have led to the rejuvenation of ANNs,
particularly via DL. First, unprecedented
quantities of data have been generated
in modern life, mostly imaging and natu-
ral language data. The complex nature
of information derivation from such data

has posed great challenges to other ML
methods but has been handled well by
ANNs. Similarly, high-throughput biolog-
ical data such as next-generation se-
quencing, metabolomic data, proteome
data, and electron microscopic struc-
tural data, has raised equally challeng-
ing computational problems. Second,
computational power has been increas-
ing rapidly with affordable costs, includ-
ing the development of new computing
devices, such as graphics processing
units and field programmable gate
arrays. Such devices provide ideal hard-
ware platforms for highly parallel mod-
els. Third, a range of proposed
optimization algorithms have made
deep ANNs stand out as an ideal tech-
nique for large and complex data analy-
ses and information discovery
compared to competing techniques in
the big data era. Here are also some
problems in the bioinformatics field as
follows, which need to be tackled. First,
the interpretability of model is essential
to biologists to understand how model
helps solve the biological problem, e.g.
predicting DNA–protein binding (Luo
et al., 2020). Second, the clinical expect
accuracy of computational model re-
lated to the healthcare or disease diag-
nosis is �98%–99% and it is tough to
reach that high accuracy. Moreover, two
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fundamental breakthroughs have tre-
mendously increased the applicability of
ANN techniques: convolutional neural
networks (CNNs) for imaging data and
recurrent neural networks (RNNs) for
natural language data, which will be in-
troduced in the Supplementary material
with other well-known architectures. We
surveyed the literature and tabulated
the number of publications in log-scale
for 14 commonly studied biological
topics appearing together with ‘RNN’,
‘CNN’, or ‘deep learning’ according to
PubMed, which are detailed in Figure 1.
As expected, ‘image’ is the most com-
monly approached topic by DL, and ‘dis-
ease’ and ‘imaging’ follow closely. CNNs
are much more frequently used in bioin-
formatics than RNNs because CNNs can
easily capture local features, solving
fundamental issues, such as identifying
and applying conserved sequence motifs.

Here, we focus on the ongoing trends
and future directions of modern DL, per-
spective on future developments and
potential new applications to biology
and biomedicine.

Current trend in principled DL
Attention mechanism

Attention mechanisms, which were
first proposed to conduct machine-
based translation tasks (Vaswani et al.,
2017), can alleviate the problems faced
by RNNs when applied to bioinformatics
problems, thus expanding their domain
of applications in bioinformatics. The
self-attention layer can translate the
original representation of an input

sequence (e.g. one-hot encoding for
RNA, DNA, or protein sequences) into
another representation of the sequence.
For each position in the sequence, the
other positions in the input sequence
try to better characterize that position
for capturing the semantic meaning of
the sequence and interactions between
different sequential positions.

Attention mechanisms can poten-
tially be used in a wide range of biose-
quence analysis problems, such as RNA
sequence analysis and prediction (Park
et al., 2017), protein structure and
function prediction from amino acid
sequences (Zou et al., 2018), and iden-
tification of enhancer–promoter inter-
actions (EPIs) (Hong et al., 2020). For
example, EPIs show great significance
to human development because they
are critical to the regulation of gene ex-
pression and are closely related to the
occurrence of human diseases.
However, experimental methods to
identify EPIs require too much time,
manpower, and money. EPIVAN (Hong
et al., 2020) was designed to predict
long-range EPIs using only genomic
sequences via DL methods and atten-
tion mechanisms. This method has
been tested on six cell lines, and the
area under the receiver operating char-
acteristic (AUROC) and area under the
precision-recall curve (AUPR) values of
EPIVAN are higher than those without
the attention mechanism, which indi-
cates that the attention mechanism is
more concerned with cell line-specific
features and can better capture the

hidden information from the perspec-
tive of sequences.

Reinforcement learning
Reinforcement learning (Mnih et al.,

2015) considers what actions to take,
given the current state of the partial so-
lution to maximize the cumulative re-
ward. After each action, the state can
change. Observations about the set of
change-of-state become guiding infor-
mation for future actions. This type of re-
inforcement learning has recently been
incorporated into the DL paradigm, re-
ferred to as deep reinforcement learn-
ing. Note that a key distinguishing
feature is that users do not have to pre-
define all the states, and a model can
be trained in an end-to-end manner,
which has become an increasingly ac-
tive research field with numerous algo-
rithms being developed.

Reinforcement learning can be ap-
plied in collective cell migration (Hou
et al., 2019), DNA fragment assembly
(Bocicor et al., 2012), and characteriz-
ing cell movement (Wang et al., 2018).
DNA fragment assembly is a technique
that aims to reconstruct the original DNA
sequence from a large number of frag-
ments by determining the order in which
the fragments have to be assembled
back into the original DNA molecule,
and it is also an NP-hard optimization
problem. Bocicor et al. (2012) proposed
a new reinforcement learning-based
model for solving this problem.
Reinforcement learning in this problem
was formulated as training the agent to

Figure 1 Number of publications (log-scale) for 14 biological topics. For each topic, the three bars show the number of publications men-
tioning the terms ‘RNN’, ‘CNN’, and ‘deep learning’, respectively.
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find a path during assembling fragments
from the initial to a final alignment
state, maximizing the performance mea-
sure, one of the fitness functions, which
sums the overlap scores over all adja-
cent fragments. This reinforcement
learning model shows less computa-
tional complexity and unnecessary ex-
ternal supervision in the learning
process compared with the genetic algo-
rithm and supervised approach,
respectively.

Few-shot learning
Although there is a large amount of

data in the bioinformatics field (Li et al.,
2019), data scarcity still occurs in biol-
ogy and biomedicine. For example, un-
der the enzyme commission (EC)
classification (Li et al., 2017a), only one
enzyme belongs to the class of phos-
phonate dehydrogenase (EC 1.20.1.1).
In this case, standard DL algorithms can-
not work because one needs numerous
data for each class to train a generaliz-
able DL model (Li et al., 2018). Few-shot
learning, as its name indicates, is
designed to handle these cases. In prin-
ciple, few-shot learning trains an ML
model with a very small quantity of data.
In extreme cases, there is only one train-
ing sample for one class, referred to as
one-shot learning (Fei-Fei et al., 2006).
Similarly defined is zero-shot learning
(Socher et al., 2013) when a class has
no training sample. Using few-shot
learning algorithms, a model can be
trained with reasonable performance on
some difficult problems by utilizing only
the existing limited data.

Few-shot learning is suitable for many
problems in bioinformatics that have
limited data, such as protein function
prediction (Li et al., 2017a) and drug
discovery (Joslin et al., 2018). For in-
stance, the drug discovery problem is to
optimize the candidate molecule that
can modulate essential pathways to
achieve therapeutic activity by finding
analogue molecules with increased
pharmaceutical activity. Due to the limi-
tation of small biological data, it is chal-
lenging to form accurate predictions for
novel compounds. As we searched, one-

shot learning has been used to signifi-
cantly lower the quantity of data re-
quired and achieves precise predictions
in drug discovery (Altae-Tran et al.,
2017). The method proposed in this
work combines iterative refinement long
short-term memory (LSTM) and graph
CNNs and can improve the learning of
meaningful distance metrics over small
molecules. Iterative refinement LSTMs
can generalize to new experimental
assays related but not identical to
assays in the training collection, and
graph convolutional networks are useful
for transforming small molecules into
continuous vectorial representations.
The results of applying one-shot models
to a number of assay collections show
strong performance compared to other
methods, such as random forest and
graph CNNs. Consequently, this one-
shot method is capable of transferring
information between related but distinct
learning tasks.

Deep generative models
In biology, high-throughput omic

data tend to have high dimensionality
and be intrinsically noisy, such as
single-cell transcriptomic data (Lopez
et al., 2018). The widely used dimen-
sionality reduction methods, such as
principal component analysis, may not
work well with such data because of
those properties. Deep generative mod-
els, such as variational autoencoders
(VAEs) (Doersch, 2016), are powerful
networks for information derivation us-
ing unsupervised learning, which has
achieved remarkable success in recent
years. Generally, it is almost impossible
to model the exact distributions of any
property of such datasets; those meth-
ods are designed to model an approxi-
mate distribution that is as similar to
the true distribution as possible, im-
plicitly or explicitly. When training a
VAE, a low-dimensional latent represen-
tation of the raw data with latent varia-
bles can be learned, which were
assumed to generate the real data.
Those generated samples, which do not
exist in the real world, can be useful for
various biological data modelling

problems, such as drug design and pro-
tein design.

Deep generative models can be ap-
plied to problems related to protein
structure design (Anand and Huang,
2018; Ingraham et al., 2019), 3D com-
pound design (Imrie et al., 2020), pro-
tein loop modelling (Li et al., 2017b),
and DNA design (Killoran et al., 2017).
The structure and function of proteins is
a key feature of understanding biology
at the molecular and cellular levels.
However, there might be missing
regions that need to be reconstructed,
and the prediction of those missing
regions is also called the loop modelling
problem. A generative adversarial net-
work (GAN) is applied for this problem,
which can capture the context of the
loop region and predict the missing area
(Li et al., 2017b). The 3D protein struc-
ture is represented by the 2D distance
map in which each value is a real
Euclidean distance of Ca atoms of two
amino acids. The root-mean-square de-
viation score of their GAN method has
44% improvement compared to other
tools, and their GAN method obtains the
smallest standard deviation compared
to other tools, which show the stability
of their prediction.

Meta learning
Meta learning (Finn et al., 2017), also

known as ‘learn-to-learn’, attempts to
produce such models, which can quickly
learn a new task with a few training sam-
ples based on models trained for related
tasks. A good meta learning model
should generalize to a new task even if
the task has never been encountered
during the training time. The key idea is
that when training a model is finished,
the model needs to be exposed to a new
task during the testing phase, several
steps of fine-tuning are performed, and
then the model’s performance on the
new task is checked. In brief, meta
learning outputs an ML model that can
learn quickly.

For instance, the ability of an antibody
to respond to an antigen depends on
the antibody’s specific recognition of an
epitope (Hu et al., 2014). Thus, meta
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learning can be used in B-cell conforma-
tional epitope prediction in continuously
evolving viruses, which is useful for vac-
cine design. The proposed meta learn-
ing approach is based on stacked and
cascade generalizations. In the hierar-
chical architecture, the meta learner of
each level will input the meta features
outputted from a low level and output
the meta features to successive levels
until the top level which will output the
final classification result. Low correla-
tion among these meta learners indi-
cates that these learners truly have
complementary predictive capabilities,
and the ablation analysis indicates that
these learners differentially interacted
and contributed to the final meta model.
Consequently, the meta learner can ana-
lyse the complementary predictive
strengths in different prediction tools
and integrate these tools to outperform
the single best-performing model
through meta learning.

Symbolic reasoning empowered DL
It is noteworthy that until recently, DL

has yet to include symbolic reasoning or
logic as part of its toolkit, hence having
omitted the essential information pro-
vided by logic reason and the associ-
ated explainability (Hu et al., 2016). In
recent years, ML researchers have devel-
oped a number of methods to incorpo-
rate symbolic reasoning with DL. For
example, SATNet (Wang et al., 2019)
uses a differentiable satisfiability solver
to bridge DL and logic reasoning; NLM
(Hamilton et al., 2018) exploits the
power of both DL and logic program-
ming, utilizing it to perform inductive
learning and logic reasoning efficiently.

In the bioinformatics field, symbolic
reasoning is applied and evaluated on
structured biological knowledge, which
can be used for data integration, re-
trieval, and federated queries in the
knowledge graph (Alshahrani et al.,
2017). This method combines symbolic
methods, in particular, knowledge repre-
sentation using symbolic logic and auto-
mated reasoning, with neural networks
that encode for related information
within knowledge graphs, and these

embeddings can be applied to predict
the edges in the knowledge graph, such
as drug�target relations. The perfor-
mance combining symbolic methods
outperforms traditional approaches.

Conclusion
DL is a relatively new field compared

to traditional ML, and the application of
DL in bioinformatics is an even newer
field. However, the last decade has wit-
nessed the rapid development of DL
with thrillingly promising power to mine
complex relationships hidden in large-
scale biological and biomedical data. In
this article, we reviewed some selected
modern and principled DL methodolo-
gies, some of which have recently been
applied to bioinformatics, while others
have not yet been applied. This perspec-
tive may shed new light on the foresee-
able future applications of modern DL
methods in bioinformatics.
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