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Abstract 
 
Background: Many risk factors have emerged for novel 2019 coronavirus disease (COVID-19). It is relatively 
unknown how these factors collectively predict COVID-19 infection risk, as well as risk for a severe infection 
(i.e., hospitalization).  
 
Methods: Among aged adults (69.3 ± 8.6 years) in UK Biobank, COVID-19 data was downloaded for 4,510 
participants with 7,539 test cases. We downloaded baseline data from 10-14 years ago, including 
demographics, biochemistry, body mass, and other factors, as well as antibody titers for 20 common to rare 
infectious diseases. Permutation-based linear discriminant analysis was used to predict COVID-19 risk and 
hospitalization risk. Probability and threshold metrics included receiver operating characteristic curves to 
derive area under the curve (AUC), specificity, sensitivity, and quadratic mean.  
 

Results: The “best-fit” model for predicting COVID-19 risk achieved excellent discrimination (AUC=0.969, 95% 

CI=0.934-1.000). Factors included age, immune markers, lipids, and serology titers to common pathogens like 

human cytomegalovirus. The hospitalization “best-fit” model was more modest (AUC=0.803, 95% CI=0.663-

0.943) and included only serology titers. 

 

Conclusions: Accurate risk profiles can be created using standard self-report and biomedical data collected in 

public health and medical settings. It is also worthwhile to further investigate if prior host immunity predicts 

current host immunity to COVID-19.  
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Introduction 

Coronavirus disease 2019 (COVID-19), caused by a novel beta-coronavirus called severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2)1, is a worldwide pandemic that continues to severely disrupt the 

economic, social, and psychological well-being of countless people. Clinical presentation of COVID-19 widely 

varies, ranging from asymptomatic profiles to mild symptoms like high fever or cough to acute respiratory 

disease syndrome and death. Given this heterogeneous symptom presentation, as well as difficulties with 

serology testing, contact tracing, and more recently vaccine administration, it remains important to isolate or 

maximize safety for adults most at risk for COVID-19 infection and severe disease.  

By extension, a large body of research has investigated potential factors that increase COVID-19 infection and 

disease severity risk. It is well known, for example, that adults aged >65 years are much more likely to be 

hospitalized or die due to COVID-19. Obesity itself and adverse health behaviors like smoking also increase 

infection risk and likelihood of hospitalization2,3. Several age and obesity-related conditions such as 

cardiovascular disease, cardiometabolic diseases (e.g., type 2 diabetes), hypertension, and other disease 

states and syndromes are also of concern4. Non-white ethnicity, particularly being black regardless of country 

of origin, socioeconomic deprivation, and low levels of education even after adjustment for health factors 

point to less privilege unfortunately conferring risk5. Among biological markers, COVID-19 infection or severity 

has been related to higher C-Reactive Protein and more circulating white blood cells and lower counts of 

lymphocytes or granulocytes (e.g., monocytes)6-8. SARS-CoV-1 has a similar profile except for a relatively 

normal total white blood cell count9.  

These studies are invaluable for establishing or validating risk factors to guide clinical decisions and 

policymaker choices. However, we ultimately need to develop risk profiles derived from these factors to 

accurately predict who will and will not develop COVID-19, and if a COVID-19 disease course will be mild or 

presumptively severe (i.e., require hospitalization). Data-driven modelling using machine learning can be used 

to create robust prediction models based on routinely collected biomedical data like demographics, a 

complete blood count, and standard medical biochemistry data. Critically, by using non COVID-19 serological 

data, we may gain insight into the host’s ability to fight COVID-19 by examining antibody titers that detail the 

host response to past infectious pathogens. This “virome” may affect host innate and adaptive immunity9,10. 

For example, human cytomegalovirus vastly changes the composition of T and B cells11, and may induce 

immune senescence that could account for worse SARS-CoV-2 infection outcomes. 

Therefore, our objective was to use classification machine learning to determine how baseline measures, 

collected 10-14 years ago, could best predict which older adults developed COVID-19. Our second objective 

was to make similar predictions but for determining if someone positive with COVID-19 had a mild or severe 

infection. In summary, we achieved > 90% sensitivity and specificity with outstanding diagnostic value 

(AUC=0.969) for correctly predicting COVID-19 infection based on factors like age, biochemistry and white 

blood cell markers, and antibody titers to common pathogens like human cytomegalovirus, human 

herpesvirus 6, and chlamydia trachomatis. For COVID-19 severity, only antibody titers loaded for finals models 

that more modestly predicted severe disease (AUC: 0.803; specificity=61.1%, sensitivity=85.7%). Nonetheless, 

this report shows that trait-like baseline data from 10-14 years ago can better characterize who is most at risk 

for COVID-19 and if they are likely to be hospitalized with a presumptively severe infection. In addition, our 
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results suggest that past infection history and antibody response may be an invaluable, novel predictor of host 

immunity to COVID-19 that warrants further study. 

 

Methods 

Study design and participants 

This retrospective study involved the UK Biobank cohort12. UK Biobank consists of approximately 500,000 

people now aged 50 to 84 years (mean age=69.4 years). Baseline data was collected in 2006-2010 at 22 

centers across the United Kingdom13,14. Summary data are listed in Table 1. This research involved deidentified 

epidemiological data. All UK Biobank participants gave written, informed consent. Ethics approval for the UK 

Biobank study was obtained from the National Health Service Health Research Authority North West - 

Haydock Research Ethics Committee (16/NW/0274). All analyses were conducted in line with UK Biobank 

requirements.  

The following categories of predictors were downloaded: 1) demographics; 2) health behaviors and long-term 

disability or illness status; 3) anthropometric and bioimpedance measures of fat, muscle, or water content; 4) 

pulse and blood pressure; 5) a serum panel of thirty biochemistry markers commonly collected in a clinic or 

hospital setting; and 6) a complete blood count with a manual differential. 

 

Demographics 

These factors included participant age in years at baseline, sex, education qualifications, ethnicity, and 

Townsend Deprivation Index. Sex was coded as 0 for female and 1 for male. For education, higher scores 

roughly correspond to progressively more skilled trade/vocational or academic training. Ethnicity was coded 

as UK citizens who identified as White, Black/Black British, or Asian/Asian British. The Townsend index15 is a 

standardized score indicating relative degree of deprivation or poverty based on permanent address.  

 

Health Behaviors and Conditions 

This category consisted of self-reported alcohol status, smoking status, a subjective health rating on a 1-4 

Likert scale (“Excellent” to “Poor”), and whether the participant had a self-described long-term medical 

condition. As noted in Table 1, 48.4% of participants indicated having such an ailment. We independently 

confirmed self-reported data with ICD-10 codes while at hospital. These conditions included all-cause 

dementia and other neurological disorders, various cancers, major depressive disorder, cardiovascular or 

cerebrovascular diseases and events, cardiometabolic diseases (e.g., type 2 diabetes), renal and pulmonary 

diseases, and other so-called pre-existing conditions.  

 

Vital Signs 

The first automated reading of pulse, diastolic and systolic blood pressure at the baseline visit were used.  
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Body Morphometrics and Compartment Mass 

Anthropometric measures of adiposity (Body Mass Index, waist circumference) were derived as described16. 

Data also included bioelectrical impedance metrics that estimate central body cavity (i.e., trunk) and whole 

body fat mass, fat-free muscle mass, or water content17.  

 

Blood Biochemistry and Immunology 

Serum biomarkers were assayed from baseline samples as described18. Briefly, using immunoassay or clinical 

chemistry devices, spectrophotometry was used to initially quantify values for 34 biochemistry analytes. UK 

Biobank deemed 30 of these markers to be suitably robust. We rejected a further 4 markers due data 

missingness >70% (estradiol, rheumatoid factor), or because there was strong overlap with multicollinear 

variables that had more stable distributions or trait-like qualities (glucose rejected vs. glycated 

hemoglobin/hba1c; direct bilirubin rejected vs. total bilirubin). A complete blood count with a manual 

differential was separately processed for red and white blood cell counts, as well as white cell sub-types. 

 

Serology Measures for Non COVID-19 Infectious Diseases 

As described (http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/infdisease.pdf), among 9,695 randomized UK 

Biobank participants selected from the full 500,000 participant cohort, baseline serum was thawed and 

pathogen-specific assays run in parallel using flow cytometry on a Luminex bead platform19.  

Here, the goal of the multiplex serology panel was to measure multiple antibodies against several antigens for 

different pathogens, reducing noise and estimating the prevalence of prior infection and seroconversion in at 

least UK Biobank. All measures were initially confirmed in serum samples using gold-standard assays with 

median sensitivity and specificity of 97.0% and 93.7%, respectively. Antibody load for each pathogen-specific 

antigen was quantified using median fluorescence intensity (MFI). Because seropositivity is difficult to assess 

for several pathogens, we did not use pathogen prevalence as a predictor in models.   

Table 2 shows the selected pathogens, their respective antigens, estimated prevalence of each pathogen 

based roughly on antibody titers, and assay values. This array ranges from delta-type retroviruses like human 

T-cell lymphotropic virus 1 that are rare (<1%) to human herpesviruses 6 and 7 that have an estimated 

prevalence of more than 90%.  

 

COVID-19 Testing 

Our study was based on COVID PCR test data available from March 16th to May 19th 2020. Specifically, we used 

the May 26th, 2020 tranche of COVID-19 polymerase chain reaction (PCR) data from Public Health England. 

There were 4,510 unique participants that had 7,539 individual tests administered, hereafter called test cases. 

For modeling COVID-19 infection data, each test case was coded as ‘0’ and ‘1’, respectively representing a 
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negative or positive PCR test. For modeling COVID-19 disease severity, each test case was coded as ‘0’ and ‘1’, 

which represented out-patient testing (i.e., presumptively mild case) or hospital in-patient testing with clinical 

signs of infection (i.e., presumptively severe case).  

 

Statistical Analyses 

For a more technical description of the specific machine learning algorithm used to classify test cases, see 

Supplemental Text 1. SPSS 27 was used for all analyses and Alpha set at .05. Preliminary findings suggested 

that baseline serology data performed well in classifier models, despite a limited number of participants with 

serology. To determine if this serology sub-group was noticeably different from the full sample, Mann-

Whitney U and Kruskal-Wallis tests were done (Alpha=.05). Hereafter, separate sets of classification analyses 

were performed for: 1) the full cohort; and 2) the sub-group of participants that had serology data. In other 

words, due to the imbalance of sample sizes and by definition the absence or presence of serology data, 

classifier performance in the serology sub-group was never statistically compared to the full cohort. 

Next, linear discriminant analysis (LDA) was used to create predictive models that discriminated between 

negative vs. positive COVID-19 diagnosis or mild vs. severe disease status. LDA is a regression-like classification 

technique that finds the best linear combination of predictors that can maximally distinguish between groups 

of interest. To determine how useful a given predictor or related group of predictors (e.g., demographics) 

were for classification, simple forced entry models were first done. Subsequently, to derive “best fit,” robust 

models of the data, stepwise entry (Wilks’ Lambda, F value entry=3.84) was used to exclude predictors that 

did not significantly account for unique variance in the classification model. This data reduction step is critical 

because LDA can lead to model overfitting when there are too many predictors relative to observations20,21, 

which are COVID-19 test cases for our purposes. Finally, because there were multiple test cases that could 

occur for the same participant, this would violate the assumption of independence. To guard against this 

problem, we used Mundry and Sommer’s permutation LDA approach. Specifically, for each LDA model, 

permutation testing (1,000 iterations, P<.05) was done by randomizing participants across groupings of test 

cases to confirm robustness of the original model22. 

LDA model overfitting can also occur when there is a sample size imbalance. Because there were many more 

negative vs. positive COVID-19 test cases in the full sample (5,329 vs. 2210), the negative test group was 

undersampled. Specifically, a random number generator was used to discard 2,500 negative test cases at 

random, such that the proportion of negative to positive tests was now 55% to 45% instead of 70.6% to 29.4%. 

Results without undersampling were similar (data not shown). No such imbalance was seen for COVID-19 

severity in the full sample or for the serology sub-group. A typical holdout method of 70% and 30% was used 

for classifier training and then testing23. Finally, a two-layer non-parametric approach was used to determine 

model significance and estimated fit of one or more predictors. First, bootstrapping24 (95% Confidence 

Interval, 1000 iterations) was done to derive estimates robust against any violations of parametric 

assumptions. Next, ‘leave-one-out’ cross-validation20 was done with bootstrap-derived estimates to ensure 

that models themselves were robust. Collectively, the stepwise LDA models ensured that estimation bias of 

coefficients would be low because most predictors are “thrown out” before models are generated using the 

remaining predictors. 
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For each LDA classification model, outcome threshold metrics included: specificity (i.e., true negatives 

correctly identified), sensitivity (i.e., true positives correctly identified), and the geometric mean (i.e., how well 

the model predicted both true negatives and positives). The area under the curve (AUC) with a 95% 

confidence interval (CI) was reported to show how well a given model could distinguish between a COVID-19 

negative or positive test result, and separately for COVID-19+ test cases if the disease was mild or severe. 

Receiver operating characteristic (ROC) curves plotted sensitivity against 1-specificity to better visualize results 

for sets of predictors and a final stepwise model. For stepwise models, the Wilks’ Lambda statistic and 

standardized coefficients are reported to see how important a given predictor was for the model. A lower 

Wilks’ Lambda corresponds to a stronger influence on the canonical classifier.  

 

Results 

As shown in Table 1, 7,539 total test cases for COVID-19 were conducted among 4,510 UK Biobank 

participants (69.6 ± 8.8 years) between March 16th to May 19th 2020, either in outpatient or inpatient settings. 

There were 5,329 negative cases and 2,210 positive cases. Of the positive cases, there were 996 mild and 

1,214 presumptively severe disease outcomes. Baseline data from 10-14 years ago (Mean = 11.22 years) was 

available for demographic, laboratory, biochemistry, and clinical indices. Similar data from 2020 was not 

available. A central theme of this report is examining prediction models for the so-called full sample, but also 

an entirely separate set of models for a sub-group of test cases with serology data (Table 2). Table 1 indicates 

that the full cohort and serology sub-groups largely did not differ on most measures. A few significant 

differences were clinically unremarkable for the serology sub-cohort and well within the range of normal 

values, including lower pulse rate, several markers reflecting better kidney function, and lower total white 

blood cell count due to fewer lymphocytes. 

Next, each baseline variable was used to predict COVID-19 infection for a given test case. For context, model 

performance was judged by: 1) the AUC as a measure of probability, where 0.5 is at-chance prediction and 1.0 

is perfect prediction; and 2) the geometric mean or g-mean as a threshold metric, with a higher percentage 

corresponding to greater likelihood of correctly identifying both true positives and true negatives. Among all 

participants (Supplementary Table 1), as expected, model fit was poor for individual predictors that loaded 

significantly (mean AUC=0.532; AUC range=0.517-0.551). For example, known risk factors included larger body 

composition indices (AUC=0.526-0.548; g-mean=16.2%-29.6%), older age (AUC=0.522; g-mean=38.8%), and 

markers of dysmetabolism like higher hba1c % (AUC=0.537; g-mean=13.3%) and high diastolic blood pressure 

(AUC=0.519; g-mean=17.9%).  

For the serology sub-group (Supplementary Table 2), several established risk factors that loaded had better 

overall fit (mean AUC=0.656, AUC range=0.601-0.731). Like the full sample, examples included larger body 

mass like fat-free mass (AUC=0.687; g-mean=65.0%), hba1c % (AUC=0.638; g-mean=52.8%), and diastolic 

blood pressure (AUC=0.633; g-mean=55.2%). Some unexpected factors included total protein (AUC=0.662; 

65.8%) and testosterone (AUC=0.731; g-mean=55.8%). We then tested if antibody titers to antigens of 20 rare 

to common infectious pathogens could predict host immunity in 2020 to COVID-19. As shown in 

Supplementary Table 3, antibody titers to 15 antigens across 12 pathogens each performed as well on 

average as other non-serology predictors (mean AUC=0.653, AUC range=0.612-0.710). Specificity and 
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sensitivity were notable for antibody levels to the pp150 Nter antigen to human cytomegalovirus (g-

mean=61.0%) and U14 to Human Herpes Virus-7 (g-mean=66.1%), given their prevalence in the sample. 

Next, sets of similar predictors were used to gauge how well they collectively predicted COVID-19 infection, as 

listed in Table 3 and shown using ROC curves in Figure 1. A stepwise model was also used to create a classifier 

that only included predictors where each provided unique predictive utility, and to minimize likelihood of 

overfitting models. For the full sample (Table 3, top row), sets of predictors including the stepwise model were 

able to identify COVID-19 negative and positive test cases up to 96.1% and 23.8% of the time respectively. 

Supplementary Table 4 (top row) illustrates that the stepwise model included triglycerides, body mass, age, 

ethnicity, and other known risk factors for COVID-19. Importantly, for the serology sub-group (Table 3, bottom 

row), forced entry models showed worse performance compared to the same models among the full sample, 

except for the biochemistry set. This suggests that small sample size for the serology sub-group did not lead to 

model overfitting. While the forced entry serology model itself is likely overfitted, the stepwise model loaded 

15 predictors and performed well (g-mean=0.920). As shown in Supplementary Table 4 (bottom row), 

predictors that loaded in the stepwise model included antibody titers for antigens of several common 

pathogens (e.g., human cytomegalovirus, C. trachomatis), lipid markers, age, white and red cell counts, and 

testosterone. Due to potential concerns with model overfitting, the stepwise model was re-run with only 

predictors that had individually loaded significantly in forced entry models (Supplementary Tables 2 and 3). 

This stepwise model had 10 variables and achieved a g-mean of 85.4%, suggesting that stepwise models were 

not overfitted.  

 

Separately, another set of analyses determined how each baseline predictor could predict which of the 2,210 

positive COVID-19 cases had a mild or severe disease course. For context, 45% and 55% of test cases were 

mild or severe respectively. Among all positive test cases (Supplementary Table 5), significant predictors 

showed a trade-off between better sensitivity or specificity and were only modestly useful (AUC mean and 

range=0.536, 0.524-0.572). Similarly, for the serology sub-group, Supplementary Table 6 shows that only 

alanine aminotransferase and neutrophil count significantly predicted disease severity. For serology data 

itself, Supplementary Table 7 indicates that the only significant predictors were U14 antigen to human 

herpesvirus 7 (AUC=0.729; g-mean=0.600) and JC VP1 antigen to human JC polyomavirus (AUC=0.671; g-

mean=0.591). Table 4 shows the relative predictive value of groups of predictors for whether a COVID-19 

infection would be severe. Figure 1 shows the ROC curves for model fit. Supplementary Table 8 illustrates that 

the stepwise model included only alanine aminotransferase, age in years, and monocyte count. For the 

serology sub-group, despite strong concerns about model overfitting, the AUC and g-mean were similarly 

modest compared to the full sample, except for the stepwise model that performed noticeably better 

(AUC=0.803; g-mean=0.724). As shown in Supplementary Table 8, this model had only 2 predictors: antibody 

response to two antigens for two diseases (HTLV-1 gag for HTLV-1 and JC VP1 for Human Polyomavirus JCV).  

 

Discussion 

The objectives of this study were to determine if baseline data from 2006-2010 could predict which older 

adults would develop COVID-19 in 2020, and if an infection was mild or presumptively severe due to being at 

hospital. In summary, using a permutation-based LDA approach, we developed separate risk profiles that did 
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well at predicting test cases that were negative or positive (stepwise g-mean=92%), and to some degree 

among positive test cases whether the infection was mild or severe (stepwise g-mean=72.4%). Such profiles 

would require retrospective, routine self-report, blood test panels typically collected during annual medical 

wellness visits, and serology information for several antigens. As proof-of-principle that these profiles are 

sensible, we confirmed as others have noted that non-white ethnicity, low socioeconomic status, larger body 

mass, and alcohol use can increase infectious risk5.  

Our most novel finding was that antibody titers to past infections were strong predictors of COVID-19 

infection and severity, both as a group and especially in concert with established risk factors. This “virome” 

may consist of beneficial and detrimental pathogens, or fine-grained efficacy of the immune system to clear 

certain pathogens, that change how the immune system responds to a persistent viral challenge like COVID-

1910. For example, antibodies to human cytomegalovirus antigens were the strongest predictors of infection 

risk in our stepwise model. Older adults with prior infection show exhaustion of the naïve T cell pool and fewer 

memory versus effector cells25. This may explain why monocyte count was one of the few variables to predict 

COVID-19 severity among all test cases in this study, as innate immunity must compensate for deficits in 

acquired immune function. For COVID-19 severity, antibody titers to the HTLV1 virus and human JC 

polyomavirus were the only predictors that loaded significantly in our stepwise model. While HTLV1 is rare, 

57.5% of at least the UK Biobank sample have antibody levels that suggest prior infection with the human JC 

polyomavirus. This virus can induce hemagglutination in type O blood cells26, which may in some way 

influence why this blood type is protective against COVID-19 infection.  

For other immunologic factors, as expected, mobilization of innate immunity was relevant to infection risk and 

severity. In particular, granulocytes (e.g., neutrophils, monocytes) loaded significantly in stepwise models for 

COVID-19 infection and severity, but not cytokines such as C-Reactive Protein. C-Reactive Protein has been 

cited as a strong risk factor for COVID-1927. However, this marker merely reflects signaling of the acute phase 

response due to systemic infection, and changes to granulocytes in circulation already reflect this response. 

Although lymphopenia and suppression of humoral immunity have been noted in COVID-19, lymphocyte cell 

count did not load in final stepwise models. 

We also confirmed and extended the importance of age, lipids, vascular health, and socioeconomic status, but 

while body mass was important it was not adiposity per se. Among mostly elderly adults in our UK Biobank 

sample, age was one of the few factors to impact both infection and severity risk. Perhaps in concert, 

lipoprotein metabolism changes with aging can induce hyperlipidemia, which is a risk factor for cardiovascular 

disease and may increase COVID-19 infection risk28. The lack of association with anthropometric or 

bioimpedance-derived fat mass was unexpected, whereas fat-free mass such as muscle and bone did load as a 

factor. We speculate that more bone mineral density and somatic muscle would reflect less cardiometabolic 

impairment and systemic inflammation, but mechanisms are unclear. Finally, levels of testosterone weakly 

loaded as a predictive factor for who would later develop COVID-19. Sex differences favoring COVID-19 

infection in men are clear, bout andropause induces less testosterone production, which normally 

downregulates inflammation, and could increase COVID-19 susceptibility29.  

Several major limitations should be noted. The number of UK Biobank participants with COVID-19 and 

serology data is low, particularly for positive test cases. This could consequently lead to model overfitting or 

misestimation. Several steps were taken to guard against this problem, including feature reduction through 
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LDA, bootstrapped parameter estimation to guard against parametric assumption violations, and several 

cross-validation steps to maximize robustness. We also rigorously tested each predictor or set of predictors in 

the main sample and serology sub-group, where we found that model fit was not overly biased in general 

despite sample size differences. Nonetheless, we recognize future work must use much larger sample sizes to 

verify the usefulness of serology data. Another limitation was that using test case data nested within a 

participant violates the assumption of independence, which can lead to gross misestimation. While we 

ameliorated this issue using permutation testing, other latent concerns with the data like type 2 error may be 

present. We also chose to use LDA over other machine learning algorithms, where LDA tends to provide more 

conservative estimates. This was intentional, because it is still largely unknown how risk factors alone or 

additively reflect overall risk for COVID-19 infection and disease severity. Finally, we only looked at the so 

called main effects of all predictors instead of complex interactions, such as darker skin, vitamin D levels, and 

COVID-19 infection risk. Such interactions were beyond the scope of this report, but may be promising 

avenues to explore in future studies.  

 

Conclusions 

In summary, this study systematically used retrospective data in a large community cohort to predict who 

would develop COVID-19 and if the disease course was presumptively severe. Despite baseline data having 

been collected 10-14 years ago, we achieved excellent to encouraging results by combining several sets of 

established and novel risk factors together. It is especially interesting that serological data performed as well 

as or better than other data types. Future work should leverage markers of host immunity to inform what may 

happen when the host is challenged by COVID-19. 
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Figure and Table Legends 

 

Figure 1. Receiver Operating Characteristics (ROC) curves illustrating the relative classifier performance of various sets of 

predictors. Outcomes of interest were COVID-19 infection risk and whether an infection was mild or severe. Two 

separate sets of analyses were done for the full tested sample and a sub-group of participants with serology data. Test 

statistics for predictors are provided in Tables 3 and 4.  

Table 1. Blood pressure (BP); high-density lipoprotein (HDL); low-density lipoprotein (LDL). A summary and comparison 

of data among either all participant test cases or a sub-group of test cases that also had non COVID-19 serology. 

Contemporary COVID-19 testing data has no shading. All retrospective baseline data has “gray” shading. Values are in 

Mean ± SD, percentages, or frequency. P values less than .05 were considered significant and applicable predictors and 

indices are bolded. 

Table 2. Antibody levels are specific to each antigen and expressed in Median Fluorescence Intensity (MFI) units. 

Seroprevalence of at least the main UK Biobank cohort was estimated on samples from 9,695 randomized participants, 

as described in white papers (see Methods). The “gray” and “white” shading are used to distinguish between pathogens 

and their respective antigens. *CagA levels are based on roughly half of the original sample due to a technical lab error.  

Table 3. Area Under the Curve (AUC); Confidence Interval (CI); Geometric Mean (G-Mean). Non-parametric 

bootstrapping (1000 iterations, 95% CI) was used for robust estimation. P values less than .05 were considered 

significant. “Blue” and “white” shading are used to distinguish between predictors that loaded for a given model. *Due 

to several variables representing the same construct (i.e., being multicollinear), body composition consisted of: whole-

body water mass; whole-body fat mass; whole-body non-fat mass (i.e., muscle, bone). 

Table 4. Area Under the Curve (AUC); Confidence Interval (CI); Geometric Mean (G-Mean). Non-parametric 

bootstrapping (1000 iterations, 95% CI) was used for robust estimation. P values less than .05 were considered 

significant. “Orange” and “white” shading are used to distinguish between predictors that loaded for a given model. 

*Due to several variables representing the same construct (i.e., being multicollinear), body composition consisted of: 

whole-body water mass; whole-body fat mass; whole-body non-fat mass (i.e., muscle, bone). ^= Due to the full serology 

panel of 44 antibody titers exceeding degrees of freedom, titers for 6 antigens were excluded for pathogens with the 

lowest estimated prevalence in the cohort (HIV, HCV, HTLV-1).  
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Figure 1.   ROC curves and model fit for COVID-19 infection risk and infection severity
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Table 1. Baseline Demographics and Data Characteristics 

Variable Unit 
Full Sample 

Serology                         
Sub-Group 

P value 

Total COVID-19 Test Cases Testing Instance 7,539 124  
Total Participants  4510 80  
Test Cases per Participant  2.5 ± 1.6 2.6 ± 3.2 0.268 

Mean Time between Tests Days 2.0 ± 5.0 1.6 ± 3.2 0.951 

Age at Testing Years 69.6 ± 8.8 68.9 ± 8.4 0.474 

COVID-19 Result    0.606 

    COVID- Cases 5329 85  
    COVID+ Cases 2210 39  
COVID-19 Severity    0.983 

     Mild (i.e., outpatient) Cases 996 18  
     Severe (i.e., inpatient) Cases 1214 21  
Age at Baseline Years 57.5 ± 8.8 56.6 ± 8.3 0.373 

Sex % Female 48.9% 46.5% 0.692 

Education Qualifications Categories 2.59 ± 1.63 2.8 ± 1.6 0.332 

Deprivation Index Score -0.1 ± 3.6 -1.0 ± 2.7 0.122 

Ethnicity       0.353 

    White % 89.4% 92.8%   

    Asian or Asian British % 3.4% 4.3%   

    Black or Black British % 4.5% 2.9%   

    Other % 2.7% 0.0%   

Smoking Status       0.091 

    Never % 48.1% 56.5%   

    Previous % 38.2% 33.9%   

    Current % 13.0% 9.7%   

Alcohol Status       0.603 

    Never % 6.6% 9.9%   

    Previous % 5.7% 4.2%   

    Current % 87.7% 85.9%   

Body Mass Index kg/m2 28.7 ± 5.7 29.8 ± 6.7 0.227 

Waist Circumference cm 95 ± 15 97 ± 17 0.693 

Long-Term Medical Condition  % Present 49% 52% 0.400 

Subjective Health Rating 1-4 Likert Scale 2.41 ± 0.83 2.5 ± 0.7 0.355 

Pulse Rate Beats/Minute 71 ± 12 67 ± 10 0.003 

Diastolic BP mmHg 83 ± 11 80 ± 9 0.088 

Systolic BP mmHg 140 ± 20 136 ± 17 0.768 

Alanine Aminotransferase U/L 24.4 ± 16.6 23.1 ± 10.1 0.583 

Albumin g/L 44.7 ± 2.8 44.6 ± 2.4 0.617 

Alkaline Phosphatase U/L 88.0 ± 34.1 81.8 ± 23.3 0.031 

Apolipoprotein A g/L 1.5 ± 0.3 1.5 ± 0.2 0.723 

Apolipoprotein B g/L 1.0 ± 0.2 1.0 ± 0.3 0.876 

Aspartate Aminotransferase U/L 27.0 ± 11.7 26.8 ± 12.0 0.835 
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Bilirubin umol/L 9.0 ± 4.4 10.8 ± 7.3 0.667 

Calcium mmol/L 2.4 ± 0.1 2.4 ± 0.1 0.917 

Cholesterol (Total) mmol/L 5.5 ± 1.2 5.4 ± 1.2 0.493 

Creatinine umol/L 76.2 ± 30.2 79.2 ±  21.1 0.008 

Cystatin C mg/L 1.0 ± 0.3 1.0 ± 0.2 0.162 

Gamma Glutamyltransferase U/L 45.0 ± 59.9 35.0 ± 28.2 0.901 

HDL Cholesterol mmol/L 1.4 ± 0.4 1.4 ± 0.3 0.558 

Hemoglobin A1c mmol/mol 37.6 ± 8.8 36.5 ± 4.3 0.275 

Insulin-Like Growth Factor 1 nmol/L 21.0 ± 6.0 20.4 ± 4.8 0.784 

LDL Cholesterol mmol/L 3.4 ± 0.9 3.4 ± 0.9 0.687 

Lipoprotein A nmol/L 43.6 ± 48.9  43.5 ± 50.4 0.898 

Phosphate mmol/L 1.2 ± 0.2 1.1 ± 0.2 0.998 

Protein (Total) g/L 72.5 ± 4.4 70.9 ± 4.2 0.003 

Sex Hormone Binding Globulin nmol/L 50.5 ± 28.4 49.6 ± 27.0 0.728 

Testosterone nmol/L 7.1 ± 6.0 6.7 ± 5.6 0.975 

Triglycerides mmol/L 1.8 ± 1.1 1.8 ± 0.8 0.084 

Urate umol/L 324.0 ± 90.5 353.4 ± 91.0 <.001 
Urea mmol/L 5.6 ± 1.9 5.9 ± 1.7 0.005 
Vitamin D nmol/L 46.4 ± 21.4 47.1 ± 22.0 0.778 
C-Reactive Protein mg/L 3.2 ± 5.0 2.4 ± 3.3 0.212 
Red Blood Cell Count 1012/L 4.5 ± 0.4 4.5 ± 0.5 0.173 
White Blood Cell Count 109/L 7.2 ± 2.8 6.6 ± 1.4 0.002 
    Neutrophils 109/L 4.4 ± 1.5 4.2 ± 1.3 0.220 
    Lymphocytes 109/L 2.0 ± 2.1 1.8 ± 0.5 0.002 

    Monocytes 109/L 0.5 ± 0.3 0.5 ± 0.1 0.389 
    Eosinophils + Basophils 109/L 0.2 ± 0.2 0.1 ± 0.1 0.162 
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Table 2. Baseline characteristics of infectious disease serology from 2006-2010 

Pathogen Name Abbreviation 
UK Biobank 

Seroprevalence* 
Antigen Mean ± SD 

Herpes Simplex Virus-1 HSV-1 69.8% 1gG 3567.9 ± 3001.3 

Herpes Simplex Virus-2 HSV-2 16.2% 2mgG 382.4 ± 1180.4 

Varicella Zoster Virus VZV 92.5% gE/gl 834.0 ± 900.0 

Epstein-Barr Virus  EBV 94.7% 

VCA p18 6972.0 ± 3272.9 

EBNA-1  4146.2 ± 3269.2 

ZEBRA 2246.5 ± 1658.3 

EA-D 2765.5 ± 2721.7 

Human 
Cytomegalovirus  

CMV 58.2% 

pp150 Nter 1881.8 ± 2225.5 

pp 52 3284.8 ± 3296.7 

pp 28  1379.3 ± 1662.5 

Human Herpesvirus-6  HHV-6 90.8% 

IE1A 327.1 ± 391.9 

IE1B 575.1 ± 805.8 

p101 k  167.0 ± 416.6 

Human Herpesvirus-7 HHV-7 94.7% U14 771.8 ± 778.3 

Kaposi’s Sarcoma 
Associated 

Herpesvirus  
KSHV 8.1% 

LANA 158.1 ± 977.4 

K8.1 73.1 ± 95.0 

Hepatitis B Virus HBV 2.5% 
HBc 15.6 ± 55.6 

HBe 49.6 ± 202.3 

Hepatitis C Virus HCV 0.3% 
Core 6.7 ± 10.3 

NS3 37.7 ± 31.3 

Toxoplasma gondii  T. gondii 28.0% 
p22 51.4 ± 86.0 

sag1 121.1 ± 119.1 

Human T Lymphotropic 
Virus 1 

HTLV-1 1.6% 
HTLV-1 gag 320.2 ± 357.9 

HTLV-1 env 32.8 ± 19.8 

Human Immunodeficiency 
Virus 

HIV 0.2% 
HIV-1 gag 213.1 ± 452.4 

HIV-1 env 44.1 ± 24.9 

Human              
Polyomavirus BKV 

BKV 95.4% BK VP1 3718.9 ± 2550.5 

Human 
Polyomavirus JCV  

JCV 57.5% JC VP1 932.7 ± 1060.2 

Merkel Cell Polyomavirus MCV 66.7% MC VP1 2454.8 ± 2366.0 

Human Papillomavirus 
type-16 

HPV 16 4.4% 

L1 56.9 ± 60.2 

E6 19.3 ± 28.2 

E7 52.8 ± 104.2 

Human Papillomavirus 
type-18 

HPV 18 2.7% L1 52.8 ± 53.1 

Chlamydia trachomatis C. trachomatis 21.4% 

momp D 103.3 ± 405.9 

momp A 42.9 ± 115.3 

tarp-D F1 96.2 ± 394.6 
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tarp-D F2 171.8 ± 332.4 

PorB 23.8 ± 41.0 

pGP3 449.2 ± 1304.0 

Helicobacter pylori H. pylori 31.5% 

CagA* 1725.5 ± 3135.3 

VacA 427.3 ± 1364.7 

OMP 696.7 ± 1503.0 

GroEL 779.0 ± 1799.4 

Catalase 437.2 ± 1407.8 

UreA 329.2 ± 1516.6 
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Table 3. Sets of predictors used to predict classification of COVID-19 test cases as negative or positive 

  
Sets of Predictors Number of Predictors Classifier Method P value AUC (95% CI) Specificity Sensitivity G-Mean 

Fu
ll 

Sa
m

p
le

 

Basic Demographics 5 Enter <.001 0.539 (0.557-0.520) 92.4% 12.4% 0.338 

Body Composition* 3 Enter <.001 0.536 (0.552-0.520) 92.7% 8.5% 0.281 

Health Behaviors/Conditions 4 Enter .011 0.527 (0.511-0.544) 93.5% 8.2% 0.277 

Vitals     3 Enter .004 0.526 (0.510-0.542) 96.1% 4.8% 0.215 

Biochemistry   26 Enter .001 0.575 (0.555-0.596) 81.2% 22.9% 0.431 

Immunology   8 Enter <.001 0.533 (0.517-0.549) 94.4% 7.7% 0.270 

Stepwise Model   8 Stepwise <.001 0.549 (0.419-0.680) 83.0% 23.8% 0.444 

                     

Se
ro

lo
gy

 S
u

b
-G

ro
u

p
  

Basic Demographics 5 Enter 0.008 0.713 (0.620-0.805) 81.2% 10.3% 0.289 

Body Composition* 3 Enter 0.013 0.660 (0.558-0.763) 96.5% 5.1% 0.222 

Health Behaviors/Conditions 4 Enter 0.006 0.694 (0.599-0.789) 98.8% 0% 0 

Vitals     3 Enter 0.261 0.593 (0.485-0.702) 98.8% 0% 0 

Biochemistry   26 Enter <.001 0.799 (0.698-0.900) 80.0% 56.4% 0.672 

Immunology   8 Enter 0.393 0.639 (0.540-0.737) 94.1% 5.1% 0.219 

Serology     44 Enter <.001 0.976 (0.952-1.000) 80.0% 76.9% 0.784 

Stepwise Model   15 Stepwise <.001 0.969 (0.934-1.000) 91.8% 92.3% 0.920 
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Table 4. Sets of predictors used to predict classification of COVID-19 positive cases as mild or severe 

  Sets of Predictors Number of Predictors Classifier Method P value AUC (95% CI) Specificity Sensitivity G-Mean 

Fu
ll 

Sa
m

p
le

 

Basic Demographics   5 Enter <.001 0.581 (0.557-0.605) 36.9% 74.6% 0.525 

Body Composition*   3 Enter 0.025 0.528 (0.504-0.552) 0.9% 99.5% 0.095 

Health Behaviors/Conditions 4 Enter 0.011 0.531 (0.507-0.556) 0.0% 96.3% 0 

Vitals     3 Enter <.001 0.554 (0.530-0.578) 7.0% 94.6% 0.257 

Biochemistry     26 Enter <.001 0.579 (0.555-0.602) 22.1% 81.5% 0.424 

Immunology     8 Enter <.001 0.581 (0.557-0.605) 5.5% 95.8% 0.230 

Stepwise Model   3 Stepwise <.001 0.592 (0.568-0.615) 36.4% 76.1% 0.526 

                     

Se
ro

lo
gy

 S
u

b
-G

ro
u

p
 

Basic Demographics   5 Enter 0.964 0.652 (0.472-0.832) 22.2% 47.6% 0.325 

Body Composition*   3 Enter 0.665 0.597 (0.407-0.786) 33.3% 81.0% 0.519 

Health Behaviors/Conditions 4 Enter 0.994 0.598 (0.404-0.792) 35.3% 14.3% 0.225 

Vitals     3 Enter 0.448 0.636 (0.459-0.814) 44.4% 66.7% 0.544 

Biochemistry     26 Enter <.001 0.901 (0.808-0.993) 33.3% 71.4% 0.488 

Immunology     8 Enter <.001 0.763 (0.615-0.911) 44.4% 71.4% 0.563 

Serology^     36 Enter <.001 0.925 (0.847-1.000) 38.9% 81.0% 0.561 

Stepwise Model   2 Stepwise <.001 0.803 (0.663-0.943) 61.1% 85.7% 0.724 
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Supplemental Text 1.  
 

To reiterate, the main objectives of this report are to use Linear Discriminant Analysis (LDA) for probabilistic determination via naïve Bayesian 

classification of: 1) a two-class grouping defined as a positive vs. negative COVID-19 test case; and 2) a two-class grouping nested within positive 

COVID-19 tests, defined as a test case occurring in a hospital vs. non-hospital setting. For positive tests, these settings are considered as proxies for 

mild vs. severe COVID-19 disease status. Because two or more test cases could be nested within a given participant, this would normally violate 

independence and potentially invalidate results. While one could use a single random test case per participant, this reduces sample size and does 

not represent real world data and within-subject variability (e.g., changes in COVID-19 status or infection severity). Thus, for estimation robust to 

non-independence, we used Mundry and Sommer’s permuted LDA approach22. The unit of randomization across participants was a grouping of all 

test cases originally nested in a given participant. The null hypothesis was that a given LDA model with randomized data would not perform better 

than the original non-randomized data in 95% of permutations. As recommended, 1,000 permutations were run for each model using macros 

provided by the authors and Python scripting for automation. To ensure that models were stable and generalizable, we used a typical “holdout” 

method of 70% and 30% respectively for the training and test samples23. 

 

As discussed in the main text, forced entry models were first conducted for each predictor, and then among sets of similar predictors (e.g., 

demographics, vital signs). It was known from the outset that model overfitting would likely occur when a predictor set had dozens of features 

(e.g., biochemistry). This procedure was done for two reasons: 1) to show clinicians, researchers, and policymakers how a set of common features 

would discriminate COVID-19 groups in ideal circumstances, where in some cases model overfit is frankly likely; and 2) to contrast such models with 

the comparable or superior performance of stepwise models that had substantial feature reduction and enough n > p that model overfit was 

guarded against. 

 

We now explain why LDA was used. Foremost, prediction models derived using LDA are straightforward to interpret by a general audience, which is 

appropriate for the journal in question. For example, the Wilks’ Lambda statistic allows a clear interpretation for how well a given predictor 

distinguishes between classes and its directionality (e.g., higher age in years predicts increased likelihood of positive COVID-19 classification). 

Equally important, LDA creates models that maximally separate classes of interest, where a new observation’s data can be used to determine 

which class that observation would belong in. Since it is of central importance to have equally valid diagnostic assessment for who is and is not at 

risk for COVID-19 or if a positive would have a mild or severe infection, LDA is most appropriate. As a generative, supervised learning classification 

technique, LDA is also best used in complex datasets with high dimensionality composed of a few to hundreds of features per data category, where 

it can remove most redundant or dependent features that do not maximize model fit. Reducing the feature set size reduces the risk of model 

overfitting20,21. This procedure minimizes the High Dimensional, Low Sample Size (i.e., p>>N, or “small n, big p”) problem20 by reducing the 
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likelihood of the within-class covariance matrix approaching singularity30 and leading to instability of parameter estimation.  

 

LDA has several key assumptions that we wish to address. LDA is relatively robust to overfitting provided there is a relative lack of outliers, 

multivariate normality and lack of multicollinearity, and independence of data values between participants. To begin, UK Biobank removes extreme 

values during data quality control before posting datasets to their data showcase12. We further log-transformed all quantitative variables to 

normalize distributions and “bring in” outliers defined as data points >3SD from the mean. As described in the main text, we also removed 

biochemistry variables that were multicollinear (e.g., direct vs. total bilirubin). While some antigens of the same pathogen approached 

multicollinearity, removing them from feature selection led to identical results and thus they were kept in. Participant-level data was not 

dependent on data from other participants. To be clear, however, multiple observations were nested within a given participant and would violate 

independence. Because the permutation LDA testing randomizes which participants have a group of one to several COVID-19 test cases, however, 

these models are robust to non-independence.  

While other machine learning techniques are also appropriate for classification, we discuss why they were not used. Regarding logistic regression, 

this technique is attractive because it has no distribution assumptions. However, it assumes observations are independent. This does not occur 

with COVID-19 testing, in which a participant will often have multiple test cases. Logistic regression also requires a large numbers of observations 

to provide reliable estimates. Finally, it does not produce robust models for well-separate types of classes. As there are very clear immunologic 

differences that determine if someone has or does not have COVID-19, and a clear demarcation between mild vs. severe symptom presentation, 

we believe logistic regression model estimations might be inflated and thus less accurate. Finally, despite their methodological differences, LDA and 

logistic regression may perform the same with real data31, where LDA may be more conservative and was one of our goals for this proof-of-

principle study.  

More complex algorithms vs. LDA were also not considered due to feature complexity, the need for transparent model estimates, and sample size. 

First, in the dataset there are many features present for biochemistry markers, antibody load to specific antigens, and to a lesser degree immune 

factors. Data reduction is therefore important to determine which features are most useful for COVID-19 data and should receive attention. By 

contrast, clustering methods are not suitable because the dimensionality space is too high and model fit is likely to be poor. For newer machine 

learning techniques, such as deep learning, it is often unclear what set of features are selected or their relative contribution when a given 

prediction is made. This is unacceptable for predicting COVID-19 infection or severity risk. For researchers, it is unknown how various risk factors 

converge to affect risk and this information is necessary to better understand underlying mechanisms. In population health or the clinic, certain 

features have prohibitive time or cost constraints (e.g., body compartment imaging; ordering one versus multiple antigen tests). More importantly, 

it is critical for clinicians, policy makers, or other stakeholders to point out which exact features led or would lead to a predicted outcome. Finally, 

deep learning, support vector machines (SVM), and similar approaches also require much larger sample sizes to train and adapt a classifier to 
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produce robust estimates. By comparison, our dataset only had several thousand testing datapoints in the “full” sample and just over one-hundred 

in the sub-group that had serological data. 

We recognize that LDA has several limitations and used non-parametric estimation to minimize these issues. To begin, using simulation data, LDA 

performs comparably to logistic regression when predictor distributions are normal or near normal, but has worse fit when there are clear 

normality violations32. While we log-transformed quantitative measures with appreciable skewness (>3SD), normality nonetheless remained a 

concern, particularly for the serology sub-group that had 124 observations. To reduce potential problems, bootstrapping24 was used (95% CI, 1000 

iterations) to estimate model coefficients. This allows unbiased estimation of generalized absolute error, taking into account potential model 

overfit by substantially varying training and test sets from the selected sample. Nevertheless, with the serology sub-group, the small n, big p 

problem may still be a concern. Regularized LDA has been a popular choice to overcome this issue of within-class covariance singularity, where 

cross-validation presents a reasonable solution33. Due to computation problems in tandem with bootstrapping, we used a simple “leave-one-out” 

approach with bootstrap estimates.  
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Supplementary Table 1. Isolated effect of each non-serology predictor on COVID-19 risk among the full sample 

Predictor 
Classifier 
Method 

P value AUC (95% CI) Specificity Sensitivity G-Mean 

Basic Demographics               

    Age     Enter 0.002 0.522 (0.505-0.538) 86.9% 17.3% 0.388 

    Sex     Enter 0.033 0.517 (0.501-0.534) 100% 0% 0 

    Ethnic Background   Enter 0.080 0.514 (0.498-0.531) 93.6% 11.2% 0.324 

    Deprivation Index   Enter <.001 0.540 (0.524-0.556) 79.5% 22.5% 0.423 

    Education    Enter 0.626 0.505 (0.479-0.512) 100% 0% 0 

Body Composition               

    Waist Circumference Enter <.001 0.544 (0.528-0.561) 97.0% 2.7% 0.162 

    Body Mass Index   Enter <.001 0.548 (0.531-0.564) 94.0% 6.4% 0.245 

    Trunk Fat Mass   Enter <.001 0.533 (0.516-0.549) 97.4% 3.3% 0.179 

    Whole Body Fat Mass Enter 0.002 0.526 (0.509-0.542) 91.1% 8.8% 0.283 

    Whole Body Fat-Free Mass Enter 0.005 0.529 (0.513-0.545) 91.4% 9.6% 0.296 

    Whole Body Water Mass Enter 0.005 0.529 (0.512-0.545) 91.5% 9.6% 0.296 

Health Behaviors and Conditions             

    Smoking Status   Enter 0.167 0.511 (0.472-0.505) 100% 0% 0 

    Alcohol Status   Enter <.001 0.517 (0.501-0.533) 88.6% 14.6% 0.360 

    Long-Term Medical Condition  Enter 0.691 0.504 (0.488-0.520) 100% 0% 0 

    Health Rating   Enter 0.354 0.503 (0.481-0.514) 100% 0% 0 

Vitals                 

    Pulse Rate   Enter 0.954 0.503 (0.481-0.514) 100% 0% 0 

    Diastolic BP   Enter 0.041 0.519 (0.503-0.536) 97.3% 3.3% 0.179 

    Systolic BP   Enter 0.952 0.501 (0.483-0.516) 100% 0% 0 

Biochemistry               

    Alanine Aminotransferase Enter 0.302 0.512 (0.491-0.533) 99.8% 0% 0 

    Albumin   Enter 0.154 0.504 (0.484-0.525) 100% 0% 0 

    Alkaline Phosphatase Enter 0.781 0.508 (0.487-0.528) 100% 0% 0 

    Apolipoprotein A   Enter <.001 0.536 (0.515-0.557) 96.4% 3.0% 0.170 

    Apolipoprotein B   Enter 0.192 0.514 (0.493-0.534) 99.8% 0.1% 0.032 
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    Aspartate Aminotransferase Enter 0.284 0.518 (0.498-0.539) 100% 0% 0 

    Bilirubin (Total)   Enter 0.377 0.501 (0.480-0.521) 100% 0.1% 0.032 

    Calcium   Enter 0.104 0.517 (0.497-0.538) 99.8% 0.4% 0.063 

    Cholesterol (Total)   Enter 0.833 0.517 (0.484-0.525) 100% 0% 0 

    Creatinine   Enter 0.898 0.505 (0.515-0.556) 100% 0% 0 

    Cystatin C   Enter 0.032 0.523 (0.502-0.543) 100% 0% 0 

    Gamma Glutamyltransferase Enter 0.648 0.502 (0.481-0.522) 100% 0% 0 

    HDL Cholesterol   Enter <.001 0.536 (0.515-0.557) 95.2% 4.3% 0.202 

    Hemoglobin A1c   Enter 0.006 0.537 (0.516-0.558) 98.3% 1.8% 0.133 

    Insulin-Like Growth Factor 1 Enter 0.316 0.504 (0.483-0.525) 100% 0% 0 

    LDL Cholesterol   Enter 0.105 0.504 (0.484-0.525) 100% 0% 0 

    Lipoprotein A   Enter 0.081 0.503 (0.482-0.524) 100% 0% 0 

    Phosphate   Enter 0.173 0.515 (0.494-0.536) 100% 0% 0 

    Protein (Total)   Enter 0.078 0.517 (0.497-0.538) 100% 0% 0 

    Sex Hormone Binding Globulin Enter <.001 0.551 (0.531-0.572) 100% 0% 0 

    Testosterone   Enter 0.096 0.513 (0.492-0.533) 100% 0% 0 

    Triglycerides   Enter 0.098 0.517 (0.497-0.538) 97.7% 2.7% 0.162 

    Urate     Enter 0.105 0.517 (0.496-0.538) 98.9% 1.3% 0.113 

    Urea     Enter 0.081 0.504 (0.484-0.525) 100% 0% 0 

    Vitamin D   Enter 0.512 0.501 (0.480-0.521) 100% 0% 0 

Immunology               

    Red Blood Cell Count Enter 0.001 0.524 (0.509-0.539) 90.7% 11.6% 0.324 

    White Blood Cell Count Enter 0.426 0.505 (0.490-0.520) 100% 0.2% 0.045 

    C-Reactive Protein   Enter 0.394 0.511 (0.496-0.525) 99.2% 0.9% 0.094 

    Neutrophils   Enter 0.071 0.521 (0.507-0.536) 99.4% 0.7% 0.083 

    Lymphocytes   Enter 0.053 0.518 (0.503-0.533) 99.8% 0.3% 0.055 

    Monocytes   Enter 0.172 0.505 (0.490-0.519) 98.6% 1.6% 0.126 

    Eosinophils   Enter 0.853 0.514 (0.499-0.528) 100% 0% 0 

    Basophils   Enter 0.086 0.510 (0.495-0.525) 100% 0% 0 

 

Area Under the Curve (AUC); Confidence Interval (CI); Geometric Mean (G-Mean). Specificity and sensitivity are the likelihood of correctly detecting when 

COVID-19 infection for a test case was negative or positive respectively. G-Mean is the degree to which a given predictor correctly predicts both true negatives 
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and true positives for COVID-19 infection. “Blue” and “white” shading are used to better visualize predictors within a set of similar variables. P values less than 

.05 were considered significant and applicable predictors and statistics are bolded.  
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Supplementary Table 2. Isolated effect of each predictor on COVID-19 risk among test cases with serology data 

Predictor Classifier Method P value AUC (95% CI) Specificity Sensitivity G-Mean 

Basic Demographics             

    Age     Enter 0.634 0.568 (0.441-0.694) 100% 0% 0 

    Sex     Enter <.001 0.689 (0.578-0.800) 66.0% 71.8% 0.688 

    Ethnic Background Enter 0.647 0.528 (0.407-0.649) 98.1% 12.8% 0.354 

    Deprivation Index Enter 0.704 0.539 (0.416-0.662) 100% 0% 0 

    Education    Enter 0.017 0.635 (0.522-0.748) 64.2% 53.8% 0.588 

Body Composition               

    Waist Circumference Enter 0.142 0.598 (0.480-0.716) 83.0% 10.3% 0.292 

    Body Mass Index   Enter 0.575 0.548 (0.427-0.669) 96.2% 0% 0 

    Trunk Fat Mass   Enter 0.792 0.539 (0.413-0.665) 100% 0% 0 

    Whole Body Fat Mass Enter 0.252 0.582 (0.464-0.701) 92.5% 5.1% 0.217 

    Whole Body Fat-Free Mass Enter 0.003 0.687 (0.575-0.799) 71.7% 59.0% 0.650 

    Whole Body Water Mass Enter 0.003 0.680 (0.567-0.793) 71.7% 59.0% 0.650 

Health Behaviors and Conditions             

    Smoking Status   Enter 0.072 0.610 (0.494-0.726) 47.2% 0% 0 

    Alcohol Status   Enter 0.094 0.603 (0.482-0.723) 100% 20.5% 0.453 

    Long-Term Medical Condition  Enter 0.391 0.546 (0.427-0.666) 100% 0% 0 

    Health Rating   Enter 0.661 0.521 (0.403-0.639) 100% 0% 0 

Vitals                 

    Pulse Rate   Enter 0.335 0.582 (0.461-0.702) 92.5% 2.6% 0.155 

    Diastolic BP   Enter 0.047 0.633 (0.515-0.752) 84.9% 35.9% 0.552 

    Systolic BP   Enter 0.200 0.540 (0.420-0.660) 83.0% 12.8% 0.326 

Biochemistry               

    Alanine Aminotransferase Enter 0.303 0.588 (0.463-0.714) 100% 0% 0 

    Albumin   Enter 0.285 0.676 (0.525-0.828) 93.0% 0% 0 

    Alkaline Phosphatase Enter 0.272 0.541 (0.422-0.660) 98.1% 0% 0 

    Apolipoprotein A   Enter 0.333 0.600 (0.463-0.737) 95.3% 0% 0 

    Apolipoprotein B   Enter 0.125 0.545 (0.426-0.665) 88.7% 15.4% 0.370 
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    Aspartate Aminotransferase Enter 0.399 0.520 (0.398-0.641) 96.2% 0% 0 

    Bilirubin (Total)   Enter 0.319 0.543 (0.420-0.665) 88.7% 0% 0 

    Calcium   Enter 0.989 0.528 (0.386-0.670) 100% 0% 0 

    Cholesterol (Total) Enter 0.276 0.528 (0.408-0.649) 90.6% 5.1% 0.215 

    Creatinine   Enter 0.250 0.524 (0.403-0.646) 88.7% 5.1% 0.213 

    Cystatin C   Enter 0.169 0.634 (0.512-0.755) 88.7% 7.7% 0.261 

    Gamma Glutamyltransferase Enter 0.103 0.604 (0.482-0.725) 100% 0% 0 

    HDL Cholesterol   Enter 0.640 0.551 (0.410-0.692) 100% 0% 0 

    Hemoglobin A1c   Enter 0.035 0.638 (0.523-0.753) 90.6% 30.8% 0.528 

    Insulin-Like Growth Factor 1 Enter 0.852 0.533 (0.407-0.659) 100% 0% 0 

    LDL Cholesterol   Enter 0.247 0.533 (0.413-0.654) 84.9% 5.1% 0.208 

    Lipoprotein A   Enter 0.460 0.554 (0.418-0.691) 95.8% 0% 0 

    Phosphate   Enter 0.026 0.671 (0.531-0.811) 88.4% 4.3% 0.195 

    Protein (Total)   Enter 0.014 0.662 (0.514-0.811) 90.7% 47.8% 0.658 

    Sex Hormone Binding Globulin Enter 0.900 0.510 (0.360-0.659) 100% 0% 0 

    Testosterone   Enter 0.021 0.731 (0.625-0.836) 86.8% 35.9% 0.558 

    Triglycerides   Enter 0.063 0.614 (0.498-0.729) 71.7% 71.8% 0.717 

    Urate     Enter 0.088 0.656 (0.538-0.774) 86.8% 20.5% 0.422 

    Urea     Enter 0.021 0.632 (0.508-0.757) 86.8% 35.9% 0.558 

    Vitamin D   Enter 0.009 0.601 (0.479-0.722) 81.1% 38.5% 0.559 

Immunology               

    C-Reactive Protein Enter 0.394 0.567 (0.447-0.687) 99.2% 0.9% 0.094 

    Red Blood Cell Count Enter 0.943 0.504 (0.384-0.625) 90.7% 11.6% 0.324 

    White Blood Cell Count Enter 0.426 0.592 (0.476-0.709) 100% 0.2% 0.045 

    Neutrophils   Enter 0.037 0.628 (0.507-0.749) 99.4% 0.7% 0.083 

    Lymphocytes   Enter 0.053 0.552 (0.434-0.671) 99.8% 0.3% 0.055 

    Monocytes   Enter 0.020 0.646 (0.532-0.761) 98.6% 1.6% 0.126 

    Eosinophils   Enter 0.015 0.649 (0.535-0.762) 100% 0% 0 

    Basophils   Enter 0.086 0.528 (0.409-0.647) 100% 0% 0 

 

Area Under the Curve (AUC); Confidence Interval (CI); Geometric Mean (G-Mean). Specificity and sensitivity are the likelihood of correctly detecting when 

COVID-19 infection for a test case was negative or positive respectively. G-Mean is the degree to which a given predictor correctly predicts both true negatives 
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and true positives for COVID-19 infection. “Blue” and “white” shading are used to better visualize predictors within a set of similar variables. P values less than 

.05 were considered significant and applicable predictors and statistics are bolded. 
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Supplementary Table 3. Isolated effect of each baseline antibody titer on predicting current COVID-19 infection risk 

 

Pathogen Name Abbreviation Antigen 
Classifier 
Method 

P value AUC (95% CI) Specificity Sensitivity G-Mean 

Herpes Simplex Virus-1 HSV-1 1gG Enter 0.089 0.526 (0.407-0.645) 56.3% 51.3% 0.537 

Herpes Simplex Virus-2 HSV-2 2mgG Enter 0.422 0.518 (0.402-0.634) 18.8% 82.1% 0.393 

Varicella Zoster Virus VZV gE/gl Enter 0.046 0.612 (0.509-0.714) 31.3% 69.2% 0.465 

Epstein-Barr Virus  EBV 

VCA p18 Enter 0.002 0.675 (0.574-0.775) 0% 100.0% 0 

EBNA-1  Enter 0.996 0.549 (0.441-0.658) 0% 94.9% 0 

ZEBRA Enter 0.419 0.589 (0.49-0.688) 0% 100.0% 0 

EA-D Enter 0.815 0.503 (0.397-0.609) 0% 89.7% 0 

Human 
Cytomegalovirus  

CMV 

pp150 Nter Enter 0.006 0.654 (0.539-0.769) 50.0% 74.4% 0.610 

pp 52 Enter 0.285 0.555 (0.442-0.668) 43.8% 74.4% 0.571 

pp 28  Enter 0.284 0.602 (0.485-0.718) 34.4% 74.4% 0.506 

Human Herpesvirus-6  HHV-6 

IE1A Enter 0.110 0.586 (0.476-0.697) 31.3% 76.9% 0.491 

IE1B Enter 0.007 0.638 (0.539-0.738) 37.5% 82.1% 0.555 

p101 k  Enter 0.687 0.532 (0.431-0.633) 0% 92.3% 0 

Human Herpesvirus-7 HHV-7 U14 Enter 0.003 0.684 (0.577-0.792) 65.6% 66.7% 0.661 

Kaposi’s Sarcoma 
Associated 

Herpesvirus  
KSHV 

LANA Enter 0.899 0.546 (0.439-0.653) 0% 94.9% 0 

K8.1 Enter 0.912 0.564 (0.452-0.675) 0% 94.9% 0 

Hepatitus B Virus HBV 
HBc Enter 0.808 0.505 (0.399-0.611) 0% 100.0% 0 

HBe Enter 0.434 0.600 (0.486-0.713) 3.1% 82.1% 0.160 

Hepatitus C Virus HCV 
Core Enter 0.627 0.524 (0.415-0.633) 0% 94.9% 0 

NS3 Enter 0.011 0.663 (0.559-0.766) 50.0% 71.8% 0.599 

Toxoplasma gondii  T. gondii 
p22 Enter 0.036 0.617 (0.517-0.718) 40.6% 84.6% 0.586 

sag1 Enter 0.038 0.662 (0.554-0.769) 37.5% 82.1% 0.555 

Human T Lymphotropic 
Virus 1 

HTLV-1 
HTLV-1 gag Enter 0.003 0.710 (0.618-0.802) 56.3% 82.1% 0.680 

HTLV-1 env Enter 0.402 0.554 (0.451-0.658) 18.8% 92.3% 0.417 

HIV HIV-1 gag Enter 0.001 0.688 (0.592-0.785) 37.5% 84.6% 0.563 
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Human 
Immunodeficiency Virus 

HIV-1 env Enter 0.204 0.577 (0.469-0.685) 31.3% 69.2% 0.465 

Human              
Polyomavirus BKV 

BKV BK VP1 Enter 0.008 0.649 (0.539-0.759) 53.1% 59.0% 0.560 

Human 
Polyomavirus JCV  

JCV JC VP1 Enter 0.796 0.530 (0.419-0.641) 0% 100.0% 0 

Merkel Cell Polyomavirus MCV MC VP1 Enter 0.648 0.546 (0.442-0.649) 0% 89.7% 0 

Human Papillomavirus 
type-16 

HPV 16 

L1 Enter 0.961 0.525 (0.412-0.637) 0% 100.0% 0 

E6 Enter 0.029 0.622 (0.517-0.728) 53.1% 66.7% 0.595 

E7 Enter 0.009 0.646 (0.536-0.756) 34.4% 74.4% 0.506 

Human Papillomavirus 
type-18 

HPV 18 L1 Enter 0.404 0.556 (0.453-0.660) 12.5% 84.6% 0.325 

Chlamydia trachomatis C. trachomatis 

momp D Enter 0.455 0.501 (0.390-0.612) 3.1% 97.4% 0.174 

momp A Enter 0.075 0.551 (0.450-0.653) 28.1% 89.7% 0.502 

tarp-D F1 Enter 0.918 0.549 (0.431-0.668) 0% 100.0% 0 

tarp-D F2 Enter 0.814 0.572 (0.459-0.686) 0% 100.0% 0 

PorB Enter 0.352 0.597 (0.488-0.706) 9.4% 87.2% 0.286 

pGP3 Enter 0.005 0.656 (0.547-0.765) 21.9% 79.5% 0.417 

Helicobacter pylori H. pylori 

CagA* N/A N/A N/A N/A N/A N/A 

VacA Enter 0.045 0.613 (0.506-0.719) 25.0% 87.2% 0.467 

OMP Enter 0.770 0.509 (0.397-0.622) 0% 94.9% 0 

GroEL Enter 0.308 0.591 (0.467-0.715) 28.1% 74.4% 0.457 

Catalase Enter 0.663 0.525 (0.416-0.634) 0% 89.7% 0 

UreA Enter 0.290 0.567 (0.461-0.672) 18.8% 87.2% 0.405 

  

Area Under the Curve (AUC); Confidence Interval (CI); Geometric Mean (G-Mean). Specificity and sensitivity are the likelihood of correctly detecting if COVID-19 

infection for a test case was negative or positive respectively. G-Mean is the degree to which a given antigen correctly predicts both true negatives and true 

positives for COVID-19 infection. “Blue” and “white” shading are used to better visualize antigens specific to a given pathogen. P values less than .05 were 

considered significant and applicable antigens and statistics are bolded. *The CagA antigen was excluded from analysis due to roughly half of sample analyte 

values being lost to lab error. 
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Supplementary Table 4. Predictors that loaded into the stepwise models for COVID-19 infection risk 

  Stepwise Predictor Wilks' λ Coefficient Seroprevalence 

 A
ll 

Te
st

 C
as

es
 

Ethnicity 0.983 -0.319   

Triglycerides 0.983 0.355   

Townsend Deprivation Index 0.983 0.417   

Age in Years 0.983 0.26   

Monocyte Count 0.984 -0.246   

Whole Body Fat-Free Mass 0.984 0.231   

Alcohol Status 0.984 0.377   

Diastolic Blood Pressure 0.985 -0.292   

          

Se
ro

lo
gy

 S
u

b
-G

ro
u

p
  

pp 52 antigen for Human Cytomegalovirus 0.332 0.507 58.2% 

Gamma Glutamyltransferase 0.334 0.268   

Erythrocyte Count 0.334 -0.339   

PorB Antigen for Chlamydia trachomatis 0.336 -0.404 21.4% 

Cholesterol 0.339 -0.353   

Triglycerides 0.341 -0.369   

pp 28 Antigen for Human Cytomegalovirus 0.345 -0.754 58.2% 

IE1A Antigen for Human Herpesvirus 6 0.356 -0.490 90.8% 

Monocyte Count 0.382 -0.651   

Age in Years 0.384 0.656   

pGP3 Antigen for Chlamydia trachomatis 0.408 0.731 21.4% 

Neutrophil Count 0.420 0.782   

NS3 Antigen for Hepatitis C Virus 0.423 0.804 0.3% 

Urate 0.469 -0.961   

Testosterone 0.608 1.441   

 

Wilks’ λ represents the relative strength of a given predictor in contributing to the final model fit. Seroprevalence is the proportion of participants whose assay 

values were high enough such that they were considered positive for having a given disease. “Blue” and “white” shading are used to distinguish between 

predictors that loaded for a given model. 
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Supplementary Table 5. Isolated effect of each predictor on COVID-19 severity among the full sample 

 

Predictor Classifier Method P value AUC (95% CI) Specificity Sensitivity G-Mean 

Basic Demographics             

    Age     Enter <.001 0.572 (0.548-0.596) 75.5% 36.7% 0.526 

    Sex     Enter 0.009 0.528 (0.504-0.552) 100% 0% 0 

    Ethnic Background Enter <.001 0.524 (0.500-0.548) 91.0% 12.9% 0.343 

    Deprivation Index Enter 0.610 0.507 (0.483-0.531) 91.0% 12.9% 0.343 

    Education    Enter 0.854 0.505 (0.478-0.532) 100% 0% 0 

Body Composition               

    Waist Circumference Enter 0.003 0.541 (0.517-0.565) 93.6% 6.0% 0.237 

    Body Mass Index   Enter 0.198 0.522 (0.498-0.547) 100% 0% 0 

    Trunk Fat Mass   Enter 0.068 0.531 (0.506-0.555) 99.9% 0.1% 0.032 

    Whole Body Fat Mass Enter 0.341 0.521 (0.497-0.546) 100% 0% 0 

    Whole Body Fat-Free Mass Enter 0.104 0.522 (0.498-0.547) 100% 0% 0 

    Whole Body Water Mass Enter 0.095 0.522 (0.497-0.546) 100% 0% 0 

Health Behaviors and Conditions             

    Smoking Status   Enter 0.114 0.522 (0.497-0.546) 100% 0% 0 

    Alcohol Status   Enter 0.540 0.506 (0.482-0.530) 100% 0% 0 

    Long-Term Medical Condition  Enter 0.084 0.519 (0.494-0.543) 100% 0% 0 

    Health Rating   Enter 0.098 0.518 (0.494-0.543) 100% 0% 0 

Vitals                 

    Pulse Rate   Enter 0.652 0.510 (0.486-0.535) 100% 0% 0 

    Diastolic BP   Enter 0.969 0.501 (0.476-0.526) 100% 0% 0 

    Systolic BP   Enter 0.008 0.540 (0.515-0.565) 98.0% 2.0% 0.140 

Biochemistry               

    Alanine Aminotransferase Enter 0.039 0.540 (0.515-0.565) 100% 0% 0 

    Albumin   Enter 0.093 0.525 (0.498-0.552) 98.9% 0.4% 0.063 

    Alkaline Phosphatase Enter 0.198 0.522 (0.496-0.547) 100% 0% 0 

    Apolipoprotein A   Enter 0.245 0.513 (0.487-0.540) 99.7% 0.1% 0.032 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 5, 2021. ; https://doi.org/10.1101/2020.06.09.20127092doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20127092
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

35 
 

    Apolipoprotein B   Enter 0.862 0.502 (0.477-0.528) 100% 0% 0 

    Aspartate Aminotransferase Enter 0.047 0.534 (0.508-0.559) 100% 0% 0 

    Bilirubin (Total)   Enter 0.965 0.509 (0.483-0.534) 100% 0% 0 

    Calcium   Enter 0.545 0.507 (0.481-0.534) 99.8% 0% 0 

    Cholesterol (Total) Enter 0.352 0.510 (0.484-0.535) 100% 0% 0 

    Creatinine   Enter 0.289 0.510 (0.485-0.535) 100% 0% 0 

    Cystatin C   Enter 0.006 0.527 (0.502-0.553) 99.5% 0.7% 0.083 

    Gamma Glutamyltransferase Enter 0.181 0.529 (0.504-0.555) 100% 0% 0 

    HDL Cholesterol   Enter 0.180 0.517 (0.490-0.544) 98.7% 0.4% 0.063 

    Hemoglobin A1c   Enter 0.002 0.555 (0.529-0.580) 99.3% 0.7% 0.083 

    Insulin-Like Growth Factor 1 Enter 0.037 0.524 (0.499-0.550) 96.8% 3.8% 0.192 

    LDL Cholesterol   Enter 0.470 0.508 (0.483-0.533) 100% 0% 0 

    Lipoprotein A   Enter 0.216 0.518 (0.489-0.546) 100% 0% 0 

    Phosphate   Enter 0.357 0.513 (0.486-0.540) 99.9% 0% 0 

    Protein (Total)   Enter 0.930 0.512 (0.486-0.539) 100% 0% 0 

    Sex Hormone Binding Globulin Enter 0.036 0.525 (0.498-0.552) 94.2% 7.5% 0.266 

    Testosterone   Enter 0.060 0.521 (0.495-0.548) 100% 0% 0 

    Triglycerides   Enter 0.060 0.528 (0.503-0.554) 100% 0% 0 

    Urate     Enter 0.012 0.533 (0.508-0.559) 98.5% 1.7% 0.129 

    Urea     Enter 0.003 0.530 (0.505-0.556) 97.8% 2.7% 0.162 

    Vitamin D   Enter 0.562 0.503 (0.477-0.529) 100% 0% 0 

Immunology               

    Red Blood Cell Count Enter 0.732 0.504 (0.479-0.529) 100% 0% 0 

    White Blood Cell Count Enter 0.025 0.536 (0.511-0.561) 100% 0% 0 

    C-Reactive Protein Enter 0.598 0.528 (0.503-0.554) 100% 0% 0 

    Neutrophils   Enter 0.004 0.535 (0.510-0.560) 98.2% 3.6% 0.188 

    Lymphocytes   Enter 0.212 0.504 (0.479-0.530) 100% 0% 0 

    Monocytes   Enter 0.071 0.530 (0.505-0.555) 100% 0% 0 

    Eosinophils   Enter 0.291 0.520 (0.495-0.545) 100% 0% 0 

    Basophils   Enter 0.671 0.500 (0.475-0.525) 100% 0% 0 

 

Area Under the Curve (AUC); Confidence Interval (CI); Geometric Mean (G-Mean). Here, specificity and sensitivity are the likelihood of correctly detecting if a 
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positive COVID-19 test case was mild or severe respectively. G-Mean is the degree to which a given predictor correctly predicts both true negatives and true 

positives for COVID-19 infection severity. "Orange" and "white" shading are used to better visualize each class of predictors for COVID-19 severity. P values less 

than .05 were considered significant, where applicable predictors and classifier statistics are bolded. 
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Supplementary Table 6. Isolated effect of each predictor on COVID-19 severity for the serology sub-group  

Predictor Classifier Method P value AUC (95% CI) Specificity Sensitivity G-Mean 

Basic Demographics             

    Age     Enter 0.889 0.532 (0.348-0.716) 81.0% 0% 0 

    Sex     Enter 0.455 0.556 (0.373-0.738) 33.3% 0% 0 

    Ethnic Background Enter 0.889 0.520 (0.331-0.708) 95.2% 0% 0 

    Deprivation Index Enter 0.973 0.520 (0.331-0.708) 85.7% 0% 0 

    Education    Enter 0.706 0.504 (0.296-0.712) 100% 0% 0 

Body Composition               

    Waist Circumference Enter 0.308 0.612 (0.430-0.795) 85.7% 27.8% 0.488 

    Body Mass Index   Enter 0.363 0.517 (0.328-0.706) 81.0% 22.2% 0.424 

    Trunk Fat Mass   Enter 0.087 0.615 (0.423-0.806) 75.0% 47.1% 0.594 

    Whole Body Fat Mass Enter 0.100 0.629 (0.437-0.822) 90.0% 35.3% 0.564 

    Whole Body Fat-Free Mass Enter 0.763 0.515 (0.325-0.704) 100% 0% 0 

    Whole Body Water Mass Enter 0.851 0.562 (0.372-0.752) 100% 0% 0 

Health Behaviors and Conditions             

    Smoking Status   Enter 0.798 0.516 (0.331-0.701) 71.4% 0% 0 

    Alcohol Status   Enter 0.845 0.505 (0.321-0.689) 100% 0% 0 

    Long-Term Medical Condition  Enter 0.802 0.521 (0.334-0.708) 100% 0% 0 

    Health Rating   Enter 0.999 0.501 (0.317-0.686) 100% 0% 0 

Vitals                 

    Pulse Rate   Enter 0.128 0.593 (0.412-0.773) 71.4% 33.3% 0.488 

    Diastolic BP   Enter 0.984 0.520 (0.334-0.705) 90.5% 0% 0 

    Systolic BP   Enter 0.868 0.513 (0.324-0.702) 85.7% 0% 0 

Biochemistry               

    Alanine Aminotransferase Enter 0.043 0.690 (0.511-0.870) 47.6% 77.8% 0.609 

    Albumin   Enter 0.483 0.579 (0.332-0.827) 85.7% 0% 0 

    Alkaline Phosphatase Enter 0.311 0.538 (0.350-0.727) 71.4% 33.3% 0.488 

    Apolipoprotein A   Enter 0.892 0.587 (0.351-0.824) 92.9% 0% 0 

    Apolipoprotein B   Enter 0.587 0.542 (0.358-0.727) 85.7% 0% 0 
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    Aspartate Aminotransferase Enter 0.688 0.642 (0.463-0.820) 95.2% 0% 0 

    Bilirubin (Total)   Enter 0.482 0.586 (0.404-0.768) 57.1% 22.2% 0.356 

    Calcium   Enter 0.190 0.635 (0.406-0.864) 85.7% 22.0% 0.434 

    Cholesterol (Total) Enter 0.945 0.517 (0.333-0.701) 81.0% 0% 0 

    Creatinine   Enter 0.096 0.649 (0.474-0.825) 76.2% 55.6% 0.651 

    Cystatin C   Enter 0.497 0.545 (0.355-0.735) 81.0% 27.8% 0.475 

    Gamma Glutamyltransferase Enter 0.992 0.577 (0.393-0.760) 100% 0% 0 

    HDL Cholesterol   Enter 0.841 0.540 (0.286-0.794) 85.7% 0% 0 

    Hemoglobin A1c   Enter 0.506 0.560 (0.368-0.752) 65.0% 29.4% 0.437 

    Insulin-Like Growth Factor 1 Enter 0.786 0.544 (0.354-0.734) 95.2% 0% 0 

    LDL Cholesterol   Enter 0.808 0.546 (0.362-0.731) 85.7% 0% 0 

    Lipoprotein A   Enter 0.287 0.607 (0.385-0.829) 46.2% 71.4% 0.574 

    Phosphate   Enter 0.627 0.524 (0.278-0.770) 100% 0% 0 

    Protein (Total)   Enter 0.513 0.571 (0.335-0.808) 100% 0% 0 

    Sex Hormone Binding Globulin Enter 0.578 0.587 (0.347-0.828) 100% 0% 0 

    Testosterone   Enter 0.723 0.634 (0.446-0.821) 100% 0% 0 

    Triglycerides   Enter 0.989 0.540 (0.351-0.728) 90.5% 0% 0 

    Urate     Enter 0.372 0.597 (0.413-0.779) 71.4% 33.3% 0.488 

    Urea     Enter 0.300 0.604 (0.419-0.790) 76.2% 44.4% 0.582 

    Vitamin D   Enter 0.877 0.500 (0.315-0.685) 100% 0% 0 

Immunology               

    Red Blood Cell Count Enter 0.970 0.553 (0.361-0.746) 95.2% 0% 0 

    White Blood Cell Count Enter 0.177 0.646 (0.455-0.836) 61.9% 35.3% 0.467 

    C-Reactive Protein Enter 0.234 0.522 (0.322-0.723) 100% 22.2% 0.471 

    Neutrophils   Enter 0.049 0.653 (0.475-0.830) 61.9% 52.9% 0.572 

    Lymphocytes   Enter 0.581 0.548 (0.358-0.737) 95.2% 0% 0 

    Monocytes   Enter 0.822 0.534 (0.343-0.724) 90.5% 0% 0 

    Eosinophils   Enter 0.694 0.516 (0.323-0.709) 100% 0% 0 

    Basophils   Enter 0.153 0.604 (0.423-0.785) 76.2% 35.3% 0.519 

 

Area Under the Curve (AUC); Confidence Interval (CI); Geometric Mean (G-Mean). Here, specificity and sensitivity are the likelihood of correctly detecting if a 

positive COVID-19 test case was mild or severe respectively. G-Mean is the degree to which a given predictor correctly predicts both true negatives and true 
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positives for COVID-19 infection severity. "Orange" and "white" shading are used to better visualize each set of predictors for COVID-19 severity. P values less 

than .05 were considered significant, where applicable predictors and statistics are bolded. 
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Supplementary Table 7. Isolated effect of each baseline antibody titer on predicting current COVID-19 infection severity 

 

Pathogen Name Abbreviation Antigen 
Classifier 
Method 

P value AUC (95% CI) Specificity Sensitivity G-Mean 

Herpes Simplex Virus-1 HSV-1 1gG Enter 0.185 0.626 (0.447-0.804) 61.1% 57.1% 0.591 

Herpes Simplex Virus-2 HSV-2 2mgG Enter 0.625 0.511 (0.321-0.701) 0% 90.5% 0 

Varicella Zoster Virus VZV gE/gl Enter 0.220 0.594 (0.412-0.776) 38.9% 61.9% 0.491 

Epstein-Barr Virus  EBV 

VCA p18 Enter 0.686 0.565 (0.381-0.748) 0% 81.0% 0 

EBNA-1  Enter 0.087 0.634 (0.452-0.815) 33.3% 81.0% 0.519 

ZEBRA Enter 0.221 0.604 (0.421-0.788) 38.9% 71.4% 0.527 

EA-D Enter 0.285 0.599 (0.418-0.780) 44.4% 61.9% 0.524 

Human 
Cytomegalovirus  

CMV 

pp150 Nter Enter 0.465 0.585 (0.399-0.771) 44.4% 71.4% 0.563 

pp 52 Enter 0.649 0.512 (0.322-0.702) 0% 81.0% 0 

pp 28  Enter 0.763 0.544 (0.355-0.733) 0% 90.5% 0 

Human Herpesvirus-6  HHV-6 

IE1A Enter 0.592 0.538 (0.354-0.723) 0% 85.7% 0 

IE1B Enter 0.700 0.565 (0.375-0.755) 0% 95.2% 0 

p101 k  Enter 0.667 0.507 (0.319-0.694) 0% 90.5% 0 

Human Herpesvirus-7 HHV-7 U14 Enter 0.016 0.729 (0.568-0.890) 44.4% 81.0% 0.600 

Kaposi’s Sarcoma Associated 
Herpesvirus  

KSHV 
LANA Enter 1.000 0.616 (0.437-0.796) 0% 95.2% 0 

K8.1 Enter 0.785 0.560 (0.371-0.748) 0% 95.2% 0 

Hepatitus B Virus HBV 
HBc Enter 0.850 0.587 (0.402-0.773) 0% 95.2% 0 

HBe Enter 0.736 0.583 (0.350-0.727) 0% 95.2% 0 

Hepatitus C Virus HCV 
Core Enter 0.314 0.503 (0.316-0.689) 11.1% 100% 0.333 

NS3 Enter 0.847 0.578 (0.395-0.762) 0% 100% 0 

Toxoplasma gondii  T. gondii 
p22 Enter 0.259 0.549 (0.357-0.741) 5.6% 100% 0.237 

sag1 Enter 0.229 0.565 (0.379-0.751) 27.8% 90.5% 0.502 

Human T Lymphotropic 
Virus 1 

HTLV-1 
HTLV-1 gag Enter 0.065 0.647 (0.469-0.825) 66.7% 66.7% 0.667 

HTLV-1 env Enter 0.570 0.595 (0.414-0.776) 11.1% 81.0% 0.300 

Human Immunodeficiency 
Virus 

HIV 
HIV-1 gag Enter 0.364 0.538 (0.353-0.724) 16.7% 85.7% 0.378 

HIV-1 env Enter 0.634 0.534 (0.349-0.720) 0% 90.5% 0 
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Human              Polyomavirus 
BKV 

BKV BK VP1 Enter 0.782 0.562 (0.380-0.744) 0% 81.0% 0 

Human 
Polyomavirus JCV  

JCV JC VP1 Enter 0.045 0.671 (0.502-0.840) 66.7% 52.4% 0.591 

Merkel Cell Polyomavirus MCV MC VP1 Enter 0.294 0.628 (0.448-0.809) 55.6% 61.9% 0.587 

Human Papillomavirus type-
16 

HPV 16 

L1 Enter 0.554 0.525 (0.338-0.712) 11.1% 81.0% 0.300 

E6 Enter 0.740 0.538 (0.349-0.728) 0% 95.2% 0 

E7 Enter 0.134 0.565 (0.382-0.748) 72.2% 52.4% 0.615 

Human Papillomavirus type-
18 

HPV 18 L1 Enter 0.828 0.511 (0.322-0.699) 0% 85.7% 0 

Chlamydia trachomatis C. trachomatis 

momp D Enter 0.818 0.511 (0.322-0.699) 0% 95.2% 0 

momp A Enter 0.819 0.505 (0.315-0.695) 0% 95.2% 0 

tarp-D F1 Enter 0.809 0.585 (0.403-0.766) 0% 95.2% 0 

tarp-D F2 Enter 0.615 0.538 (0.343-0.734) 0% 90.5% 0 

PorB Enter 0.832 0.504 (0.319-0.689) 0% 95.2% 0 

pGP3 Enter 0.464 0.603 (0.422-0.784) 11.1% 95.2% 0.325 

Helicobacter pylori H. pylori 

CagA* N/A N/A NA N/A N/A N/A 

VacA Enter 0.915 0.602 (0.420-0.784) 0% 85.7% 0 

OMP Enter 0.340 0.558 (0.375-0.741) 0% 47.6% 0 

GroEL Enter 0.415 0.614 (0.433-0.795) 22.2% 85.7% 0.436 

Catalase Enter 0.335 0.642 (0.464-0.819) 16.7% 95.2% 0.399 

UreA Enter 0.300 0.606 (0.425-0.786) 0% 100% 0 

 

Area Under the Curve (AUC); Confidence Interval (CI); Geometric Mean (G-Mean). Here, specificity and sensitivity are the likelihood of correctly detecting if a 

positive COVID-19 test case was mild or severe respectively. G-Mean is the degree to which a given antigen correctly predicts both true negatives and true 

positives for COVID-19 infection severity. "Orange" and "white" shading are used to better visualize each set of antigens for a specific pathogen. P values less 

than .05 were considered significant, where applicable antigens and statistics are bolded. *The CagA antigen was excluded from analysis due to roughly half of 

sample analyte values being lost to lab error. 
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Supplementary Table 8. Predictors that loaded into the stepwise models for COVID-19 severity risk 

  Stepwise Predictor Wilks' λ Coefficient Seroprevalence 

A
ll 

T
es

t 
C

as
e

s Alanine Aminotransferase 0.979 0.298  
Age in Years 0.994 0.873  

Monocyte Count 0.980 0.351  

          

Se
ro

lo
gy

  
Su

b
-G

ro
u

p
  

HTLV-1 gag for Human T 
Lymphotropic Virus 1 

0.896 0.926 1.6% 
 

JC VP1 antigen for Human 
Polyomavirus JCV 

0.911 0.959 57.5%  

 

Wilks’ λ represents the relative strength of a given predictor in contributing to the final model fit. Seroprevalence is the proportion of participants whose assay 

values were high enough such that they were considered positive for having a given disease. "Orange" and "white" shading are used to better visualize each 

predictor that loaded into a given model. 
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