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Abstract

Estimating the mutation rate, or equivalently effective population size, is a common task in

population genetics. If recombination is low or high, optimal linear estimation methods are

known and well understood. For intermediate recombination rates, the calculation of optimal

estimators is more challenging. As an alternative to model-based estimation, neural net-

works and other machine learning tools could help to develop good estimators in these

involved scenarios. However, if no benchmark is available it is difficult to assess how well

suited these tools are for different applications in population genetics.

Here we investigate feedforward neural networks for the estimation of the mutation rate

based on the site frequency spectrum and compare their performance with model-based

estimators. For this we use the model-based estimators introduced by Fu, Futschik et al.,

and Watterson that minimize the variance or mean squared error for no and free recombina-

tion. We find that neural networks reproduce these estimators if provided with the appropri-

ate features and training sets. Remarkably, using the model-based estimators to adjust the

weights of the training data, only one hidden layer is necessary to obtain a single estimator

that performs almost as well as model-based estimators for low and high recombination

rates, and at the same time provides a superior estimation method for intermediate recombi-

nation rates. We apply the method to simulated data based on the human chromosome 2

recombination map, highlighting its robustness in a realistic setting where local recombina-

tion rates vary and/or are unknown.

Author summary

• single-layer feedforward neural networks learn the established model-based linear esti-

mators for high and low recombination rates
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• neural networks learn good estimators for intermediate recombination rates where

computation of model-based optimal estimators is hardly possible

• a single neural network estimator can automatically adapt to a variable recombination

rate and performs close to optimal

• this is advantageous when recombination rates vary along the chromosome according

to a recombination map

• using the known estimators as a benchmark to adapt the training error function

improves the estimates of the neural networks

Introduction

The development of machine learning methods for population genetics faces multiple specific

challenges [1]. Nonetheless, it is meanwhile clear that machine learning is a promising tech-

nique to build more powerful inference tools. Especially for problems that are hard to tackle

down with classical methods they might offer a new approach. In contrast, in population

genetics, many theoretical results have been obtained within the last decades and enabled us to

identify the best inference technique for specific scenarios. For example, the variance of esti-

mators of the mutation rate, or equivalently the effective population size, is well understood, at

least if the rate is constant and recombination is low or high.

Estimating the effective population size or mutation rate

Estimating the scaled mutation rate, usually denoted by θ = 4Neμ, is a fundamental task in pop-

ulation genetics. If the per generation mutation rate μ is known, estimating the scaled muta-

tion rate corresponds to estimating the effective population size Ne, which is often of primary

interest and correlates with the genetic diversity in a given population [2]. More precisely, in

populations with a small effective population size, genetic drift, i.e. frequency changes due to

random sampling, is stronger. Knowledge about Ne allows thus to assess the relative impor-

tance of selection, mutation, migration, and other evolutionary forces compared to the influ-

ence of genetic drift. The effective population size is often significantly lower than the census

population size and varies among populations [3], but also in time [4] and along the genome

[5]. The same variation is also observed for the actual mutation rate μ [6–8]. Consequently,

estimating θ, i.e. the mutation rate or Ne, is of great interest in many evolutionary fields includ-

ing conservation genetics, breeding, and population demographics [9].

Many estimators of θ are developed within the coalescent framework without recombina-

tion, where mutations arise along a genealogy given by Kingman’s coalescent [10]. However, if

recombination is included into the framework [11], estimators of θ often require an estimate

of the recombination rate [12, 13]. One of the most common estimators is Watterson’s estima-

tor [14]. It is an easy to compute, unbiased and asymptotically consistent estimator, which has

a low variance for high recombination rates, when compared to alternative model-based, unbi-

ased estimators. For Watterson’s estimator the only necessary input is the total number of seg-

regating sites in the sample. However, for low recombination rates Watterson’s estimator,

while still unbiased and consistent, usually has a high variance, when compared to alternative

model-based, unbiased estimators. Multiple estimators have been developed based on the site

frequency spectrum (SFS), which is the number of segregating sites that occur in k out of n
individuals of the sample for k = 1, . . ., n − 1. In particular, without recombination, and if θ is
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known, the coefficients of an optimal unbiased linear estimator based on the SFS have been

computed by Fu [15] and the linear estimator that minimizes the mean squared error (MSE)

has been identified by Futschik et. al. [16]. Knowledge of the model-based estimators most

suitable without and with high recombination rates enables us here to assess and improve the

overall performance of artificial neural network estimators which have been trained either for

exactly these scenarios or with unknown intermediate recombination rates.

Machine learning in population genetics

Artificial neural networks are popular in various scientific fields and often used in cases where

theoretical models are very complex or hard to analyze [17–19]. Interestingly, machine learn-

ing approaches in population genetics, including support vector machines, neural networks,

random forests, and approximate Bayesian computation (ABC) often use summary statistics

of the genetic data borrowed from the theoretical literature as input data [1, 20], such as the

site frequencies. However, there is an increasing number of studies and methods that do not

rely on summary statistics. One example is a recent publication by Flagel et al. [21] who

showed that effective population genetic inference can also be reached with deep learning

structures like convolutional neural networks (CNNs) without precomputed summary statis-

tics. Instead of a set of summary statistics they used the full genotype matrix as input for their

CNN. The CNNs performed surprisingly good in different tasks from population genetics,

including inferring historic population size changes and selection pressures along the genome.

The genotype matrix has also been used as input data in other studies using deep learning in

population genetics [22, 23]. As, in contrast to image data, the rows of the genotype matrix can

be shuffled without loosing information, an adaptation of the network architecture or presort-

ing the genotype matrix is often beneficial. One approach is suggested in [24] introducing an

exchangeable neural network for population genetic data that makes the ordering of the sam-

ples invisible to the neural network. Besides summary statistics and the genotype matrix, tools

based on inferred gene trees and ancestral recombination graphs are emerging [25]. Recently,

Sanchez et al. [23] showed that combining deep learning structures using the genotype matrix

and approximate Bayesian computation provides an effective method to reconstruct the effec-

tive population size through time for unknown recombination rates. Thus, artificial neural

networks are a promising tool in more involved scenarios where theoretical insights are harder

to obtain, although the often complex architectures impair the comprehension of the underly-

ing learning process.

Here, we take a different perspective and consider the estimation of the mutation rate from

single nucleotide frequencies. If data is generated within a coalescent framework, the optimal

estimator (which is a linear map of the SFS) is known for no recombination when θ is known,

and for high recombination rates. In particular, we consider a dense feedforward neural net-

work with at most one hidden layer, which already suffices to achieve almost the performance

of the optimal linear estimators and at the same time to provide a superior estimator for vari-

able recombination rates.

Materials and methods

Model-based estimators of mutation rate and population size

In this section, we recall the properties of known estimators for θ, that are linear in the site fre-

quency spectrum. More precisely, we consider mutations as modeled by a neutral Wright

Fisher model with infinitely many sites model along Kingman’s coalescent. The model-based

estimators presented below were proposed and analyzed by Watterson [14], Fu [15] and
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Futschik et al. [16]. In order to give a self-contained presentation, we now recall some basics

on the coalescent and give details of the above estimators:

To obtain Kingman’s coalescent for a sample of size n we trace back the series of ancestors

through time. Therefore, we define an ancestral tree for this sample by repeatedly coalescing

each pair of two lineages at a rate 1, such that, when k is the number of remaining lineages, at

rate k
2

� �
two randomly chosen lineages coalesce. The resulting random tree is called Kingman’s

coalescent. We denote the random duration the coalescent spends with exactly k lineages by

Tk � Exp k
2

� �� �
. Neutral mutations are independently added upon this tree.

More precisely, for a given genealogical tree, mutations can happen everywhere along the

branches at rate y

2
, see Fig M in S1 Text. Given the length ℓ of a branch, the number of muta-

tions on this branch is Poi y

2
‘

� �
distributed. Consequently there are M � Poi yL

2

� �
mutations

along the tree, if L ¼
Pn

k¼2

kTk is the total length of the tree. We consider the infinitely many sites

model, where each mutation hits a new site. Thus the frequency of the derived allele in the

sample population is given by the number of descendants of the branch where the mutation

occurred. We define the site frequency spectrum as S = (S1, . . ., Sn−1), where Si is the number

of mutations that occur on a branch that is ancestral to exactly i out of n individuals in the

sample.

In the following, we are looking for estimators of the form

ŷ ¼
Xn� 1

i¼1

aiSi:

which are uniquely defined by the vector a = (a1, . . ., an−1). We will see that optimal choices

for a frequently depend on θ, which will lead to an iterative estimation procedure.

Unbiased linear estimators of the mutation rate θ. Watterson’s estimator is given by set-

ting a1 ¼ � � � ¼ an� 1 ¼ E½L�
� 1

, i.e.

ŷW≔
M
hn
¼
Xn� 1

i¼1

Si
hn

with hn≔
Xn� 1

i¼1

1

i

being the n-th harmonic number and S = (S1, . . ., Sn−1) the site frequency spectrum.

From a theoretical point of view, only the cases of no recombination or in the limit of high

recombination (leading to independence between loci) can easily be treated. Watterson’s esti-

mator is unbiased for θ for all recombination rates and if there is no recombination the vari-

ance, as found by Watterson [14], is given by

Vy ŷW

h i
¼ y

1

hn
þ y

2 gn
h2
n

where gn≔
Xn� 1

i¼1

1

i2
:

In the limit of high recombination (unlinked loci) we get that Sk � Poi y

k

� �
and (S1, . . ., Sn−1)

are independent, such that the variance reduces to

Vy

Xn� 1

i¼1

Si
hn

" #

¼
y

hn
:

In this case, using standard theory on exponential families,
Pn� 1

i¼1
Si is a complete and sufficient

statistic for θ, and it follows from the Lehmann–Scheffé theorem that Watterson’s estimator is

a unique Uniformly Minimum Variance Unbiased Estimator (Uniformly MVUE) [26]. How-

ever, this only holds for unlinked loci.
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If no recombination is included the MVUE estimator was found by Fu [15]. In this case, the

best linear unbiased estimator of θ from the site frequency spectrum S = (S1, . . . Sn−1) is given

in matrix notation by

fyðSÞ ¼
a>ðDa þ ySÞ

� 1

a>ðDa þ ySÞ
� 1
a

S;

whereby

a ¼ ða1; . . . ; an� 1Þ ¼ 1;
1

2
; . . . ;

1

n � 1

� �

; Da ¼ diagða1; . . . ; an� 1Þ and

S ¼ fsijg; i; j ¼ 1; . . . ; n � 1;

symmetric with

sii≔

bnðiþ 1Þ if i <
n
2
;

2
hn � hi

n � i
�

1

i2
if i ¼

n
2
;

bnðiÞ �
1

i2
if i >

n
2
;

8
>>>>>><

>>>>>>:

and for i> j

sij≔

bnðiþ 1Þ � bnðiÞ
2

if iþ j < n;

hn � hi

n � i
þ
hn � hj

n � j
�
bnðiÞ þ bnðjþ 1Þ

2
�

1

ij
if iþ j ¼ n;

bnðjÞ � bnðjþ 1Þ

2
�

1

ij
if iþ j > n;

8
>>>>>>>><

>>>>>>>>:

where

bnðiÞ≔
2nðhnþ1 � hiÞ

ðn � iþ 1Þðn � iÞ
�

2

n � i
:

We note that the optimal coefficients a(θ) = (a1(θ), . . ., an−1(θ)) depend on the real θ. In prac-

tice, therefore, the estimation of θ depends on an iterative procedure that approximates Fu’s

estimator as described below. The iterative version is neither linear nor unbiased, but close to

the non-iterative version (Fig H in S1 Text).

General linear estimators of the mutation rate θ. So far we only considered unbiased

estimators and minimized their variance. Allowing for a potential bias of the estimator can

decrease the MSE when compared to the unbiased estimators. The SFS based estimator with

minimal MSE in the absence of recombination was found by Futschik and Gach [16]:

The linear estimator of θ from the site frequency spectrum S = (S1, . . .Sn−1) with minimal

MSE is given by

~f yðSÞ ¼ a
> Da

y
þ Sþ aa>

� �� 1

S;

where α, Dα, and S are as above.

Note that Futschik and Gach introduced multiple variants for the estimation of θ. The esti-

mator ~f yðSÞ used here corresponds to formula (26) in Futschik and Gach [16]. Another variant
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from Futschik and Gach is a modification of Watterson’s estimate that minimizes the MSE for

estimates based on the number of segregating sites
Pn� 1

i¼1
Si in the scenario without recombina-

tion (Fig O in S1 Text). For positive recombination rates further variants depend on estimates

of the recombination rate.

Iterative estimation of θ. The estimators of Fu and Futschik depend on the true but

unknown θ. In practice, we thus have to build an iterative estimator, which will yield a θ-inde-

pendent estimator and approximate the variance minimizing or MSE-minimizing estimators.

Starting with some ŷ0, e.g. ŷ0 ¼ ŷW , Wattersons estimator, we set

ŷkþ1ðSÞ≔ fŷkðSÞ

which usually converges quickly. For example, for n = 40 and θ = 40 it takes about 5 iterations

until the estimate of θ is obtained up to 3 decimal places.

We call the resulting estimator ŷItV for Fu’s estimator fθ, and ŷItMSE for Futschik’s estimator

~f y. Note that due to the iteration the estimators are no longer explicitly linear or unbiased, but

do not depend on θ.

Estimating the mutation rate with a dense feedforward neural network

We trained dense feedforward neural networks with zero or one hidden layer to perform the

estimation task. Note that the architecture of the neural networks determine the type of func-

tions the neural network can approximate. For example, if no hidden layer and no bias is

included, the architecture ensures that the resulting estimator is a linear function in S = (S1,

. . ., Sn−1).

Simulation of training data. In contrast to model-based estimators, the estimators first

have to be trained in order to optimize parameters within the neural network. Therefore, we

rely on simulations to train the neural network and then evaluate the resulting estimators. Five

training data sets were generated with the software msprime by Kelleher et al. [27] for various

parameters. For each training data set with 2 � 105 independent site frequency spectra, the hap-

loid sample size is given by n = 40 and the recombination rate ρ was either set to 0 (no recom-

bination), 20, 35 (moderate recombination), or 1000 (high recombination). Hereby, the

recombination rate is scaled by Ne, such that ρ = rL4Ne, where r is the per generation per site

recombination rate and L is the length of the simulated sequence. Within all training data sets

the mutation rate θ is chosen uniformly in (0, 100). In addition, we combined the data sets

with no recombination and high recombination with a data set with a uniformly chosen

recombination rate in (0, 50). This creates the fifth training data set of total size 6 � 105 with a

variable recombination rate.

Feedforward neural networks. In this project we consider two artificial neural networks:

a linear dense feedforward neural network (no hidden layer) and a dense feedforward neural

network with one hidden layer and an adaptive loss function to ensure a robust performance.

All neural networks take S as input and are trained for θ chosen uniformly in (0, 100). ReLU

was used as activation function and as optimizer the Adam algorithm [28] was chosen. The

neural networks have been implemented in Python 3 via the library tensorflow and keras.

Details of the training procedure and hyperparameter choice are given in section B in S1 Text.

The code is made available on Github: fbaumdicker/ML_in_pop_gen.

Linear neural network. As a simple check whether the network is able to learn the muta-

tion rate at all we considered a neural network with no hidden layer and no bias node

included, i.e. a linear neural network. This simple network structure ensures that the estimator

is linear in S, but not necessarily unbiased.
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Neural network with one hidden layer. To investigate how more complexity in the archi-

tecture of the neural network improves the performance, we also implemented a neural net-

work with one hidden layer and one bias node. See Fig L in S1 Text for visualization.

Naturally, the question arises on how many hidden nodes to include in this additional layer.

We observed that the optimal number of nodes depends on the sample size n. Performace for

larger n improved when using more hidden nodes. In our experience, it is advisable to use at

least 2n nodes. Using too few hidden nodes introduces an increased risk of losing robustness

and using less than n nodes very often results in non-termination of the training process.

Using significantly more hidden nodes produced similar results, but the runtime can increase

significantly. For n = 40, using 200 nodes in the hidden layer has proven to be a good choice.

Adaptive reweighting of the loss function by model-based estimators. All neural net-

works have been trained on simulated data where θ is uniformly chosen in (0, 100). From the

linear model-based estimators in absence of recombination we know that the coefficients of

the optimal estimator depend on θ. Hence, within the neural networks, we included an adap-

tive reweighting of the training data with respect to the parameter θ. This ensures that the

inferred estimator is not worse than the iterative estimators of Fu and Futschik nor Watter-

son’s estimator for all possible values of θ. A visualization of the training procedure is shown

in Algorithm 1. The training of the “adaptive” neural network is done in several iterations.

Each iteration consists of training a neural network as before and subsequently increasing the

weight of those parts of the training data where the normalized MSE (nMSE), i.e. the MSE

divided by θ, is not close enough to the minimal nMSE of the iterative versions of Fu’s and

Futschik’s, Watterson’s, and the linear neural network estimator. Note, this evaluation in

between the training steps requires a second validation data set, in addition to the one used to

train the neural networks themselves.

For this comparison we divided the validation and training data into six subsets with

respect to θ. The borders of the subsets are defined by (ti)i=0,. . .,6, where t0 = 0, t1 = 1 and t0 < t1
< � � �< t6 = 100. In the k-th subset we let tk−1 < θ� tk. The tk are chosen such that the range

of coefficients aj(θ) in Fu’s estimator is the same in the subsets, i.e.

Xn� 1

j¼1

ajðtkÞ � ajðtk� 1Þ ð1Þ

yields the same value for all 1< k� 6. Fig K in S1 Text illustrates the chosen interval borders.

The total loss function is then given by

1

m

Xm

i¼1

ŷi � yi
yi

 !2

� oðyiÞ ð2Þ

with oðyiÞ ¼
P6

k¼1
ok � 1ftk� 1<yi�tkg

. In particular, the loss function can penalize errors in some

subsets more than in others.

The weights ωk are initialised by 1 and ωk is updated in every iteration of comparable poor

performance by setting

ok ¼ ok þ R �
max

Dk

bk
; 0

� �

maxk max
Dk

bk

� �

; 0

� � ð3Þ
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with

bk≔ minðnMSEkðŷWÞ; nMSEkðŷItVÞ; nMSEkðŷItMSEÞ; nMSEkðŷLinearNNÞÞ;

Dk≔ nMSEkðŷANNÞ � bk;

where nMSEkðŷÞ is the empirical normalized MSE of ŷ on the subset where tk−1 < θ� tk and

R is drawn uniformly at random between 0.25 and 0.5.

The training is finished as soon as an iteration does not result in a weight update, i.e. the

adaptive neural network performs comparable or better than the model-based estimators and

the linear neural network on each of the six subsets or to be precise

nMSEkðŷANNÞ�
!

1:02 � bk ð4Þ

for k = 1, . . ., 6. In principle, if the network architecture does not provide enough capacity, i.e.

if the number of hidden nodes is too low, the condition in (4) can lead to longer runtimes or

prevent a termination. In our scenario, using 200 hidden nodes, this rarely occurred.

Algorithm 1: Overview on adaptive training procedure. This pseudocode illustrates the

basic principle of the adaptive training procedure used for the adaptive neural networks.

input : n, classes, data
output: trained adaptive NN

obtain : six classes for adaptive training via Eq (1)
split : data into training and validation data
obtain : nMSE for µ̂W, µ̂ItV, µ̂ItMSE & µ̂LinearNN for each class on validation data
obtain : b containing smallest nMSE of µ̂W, µ̂ItV, µ̂ItMSE & µ̂LinearNN per class
init : loss weights !(µ) = 1 and nMSE(µ̂NN)À b

while not nMSE(µ̂NN) ∙ 1:02 ¢ b in each class (cond. (4)) do
train : NN via adaptive loss function (2)

obtain : nMSE(µ̂NN)
update: update loss weights !(µ) for each class as shown in Eq (3)

Results

To investigate the capabilities of neural networks, two dense feedforward neural networks,

with zero or one hidden layer, as a function of the site frequency spectrum were considered in

this work. Those fairly simple network architectures were consciously chosen to facilitate a bet-

ter understanding of the underlying learning process of the neural networks. Additionally,

neural networks as a function of the site frequency spectrum can be easily compared to the

model-based estimators, which use the same information. We observed multiple properties in

our simulations:

If no recombination is included in the training and test data, as in Fig 1A, the neural nets

perform comparably to Futschik and Gach’s estimator, which has the lowest MSE among lin-

ear estimators in this scenario. If the recombination rate is high in the training and test data, as

in Fig 1D the neural networks perform comparably to Watterson’s estimator, which is a uni-

formly MVUE for θ in this situation. For training and test data sets with moderate recombina-

tion (Fig 1B and 1C), the neural networks outperform the other estimators. The bias of the

adaptive neural network estimator is higher for smaller values of θ than for larger θ, but always

smaller than the bias of the estimator of Futschik and Gach, see Fig J in S1 Text.
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So far the considered neural network estimators depend on the recombination rate as the

neural networks are trained on data sets with the same recombination rate as the test data.

However, the recombination rate is often unknown or varies along the genome sequence such

that a method that has a low variance regardless of the local recombination rate is desirable. To

see if the neural networks can achieve this we trained them on data with variable

Fig 1. Performance of mutation rate estimators. The normalized MSE for four different estimators are shown: The iterated minimal MSE estimator

(Futschik (iter)), Watterson’s estimator, and two neural network estimators. A linear network without a hidden layer and an adaptive network with one

hidden layer and 200 hidden nodes. For each subplot, we used msprime to generate a total of 4.9 � 105 independent simulations with sample size n = 40,

recombination rate ρ, and 49 different mutation rates θ 2 (0, 40]. A: recombination rate ρ = 0, B: ρ = 20, C: ρ = 35, D: ρ = 1000. All shown neural

networks have been trained on data sets with the corresponding recombination rate ρ.

https://doi.org/10.1371/journal.pcbi.1010407.g001
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recombination rates. In this case, due to the restriction to linear estimators, the linear neural

network is not able to match the performance of the adaptive neural network, especially for

low and high recombination rates, but is surprisingly good for intermediate recombination

rates. In contrast, the non-linear neural network with one hidden layer produced an estimator

that had the lowest MSE for almost all possible values of the recombination rate (see Fig 2).

This is for example beneficial when a sliding window approach is used to estimate the local

mutation rate along a genome sequence. We illustrate this case applying the estimator to data

based on the human recombination map. There the estimate depends on the local recombina-

tion rate, such that the neural network trained for variable recombination has the advantage to

produce good estimates without an explicit estimate of the recombination map.

Naturally, the question of what has been learned by the neural network arises. To answer

this question, one usually tries to draw conclusions from the learned weights, but this is often

not trivial. Here, we used SHAP [29] to compute and analyze the feature importances of the

linear and adaptive neural network, see section A in S1 Text. The importance of mutations in

low frequency, i.e. Si for small i, was larger than the importance of high frequency mutations.

For the latter, however, the network has learned to take positive values of Si with larger i differ-

ently into account depending on the recombination rates. A more detailed consideration of

the SHAP values is given in section A in S1 Text.

Comparison with alternative ML methods

In this section, we compare the adaptive neural network to more sophisticated ML methods.

For this purpose, we consider the convolutional neural network by Flagel et al. [21] and a stan-

dard Approximate Bayesian Computation (ABC) approach. The CNN introduced by Flagel

et al. were applied to a number of evolutionary questions including identifying local introgres-

sion, estimating the recombination rate, detecting selective sweeps, and inferring population

size changes. As a test case, Flagel et al. also used a CNN to infer θ based on the genotype matrix.

We trained this CNN based on the same data sets as the other neural networks considered here.

While the genotype matrix carries more information than the site frequency spectrum, e.g.

about joint occurrence of mutations, it might be easier to learn some important features directly

from summary statistics. ABC is a method based on Bayesian statistics to estimate the posterior

distribution of model parameters. The basic idea of ABC is first to approximate the likelihood

function using simulations and then to compare the outcome with the observed data. For our

comparison we used the rejection method of the R package abc [30] based on the training data

sets of the adaptive neural network, i.e. with 2 � 105 simulations to estimate θ.

Fig 3 compares the adaptive neural network to the CNN, the ABC method and Watterson’s

estimator in the same setting as before. Both, the CNN and ABC were trained for θ 2 (0, 100),

as the adaptive neural network, and especially struggle for small θ values. The CNN stabilizes

for larger θ, whereas the ABC based estimator does not. Even though the CNN stabilizes for

larger θ, we generally did not observe a stable performance, as Fig N in S1 Text shows. In con-

trast, the adaptive neural network is more robust due to the adaptive training procedure, a

comparison is included in Fig N in S1 Text. In all four subplots of Fig 3 the adaptive neural

network represents the preferred choice. This highlights the capabilities of the adaptive com-

parison with model-based estimators despite the architectural simplicity of the neural

network.

Application

If a larger genome sequence is considered, the recombination rate varies between different

regions of the chromosomes. We applied the trained neural networks and model-based
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estimators in this more realistic setting. For this purpose, data for human chromosome 2

(chr2) were generated using stdpopsim [31] based on the HapMap human recombination map

[32], see Fig 4. The estimators were applied in a sliding window approach along the chromo-

some. Using a constant per generation mutation rate of 1.29 � 108 per base pair [33] and a win-

dow size of 70kb this resulted in a scaled mutation rate of θ = 36.12 and a scaled local

recombination rate between 0 and 1622 illustrated in Fig 4. The estimates of θ along the chro-

mosome are shown in Fig 5. Close to chromosome position 1.0 � 108 the impact of the depen-

dency on a single tree due to no recombination is observable. Watterson’s estimator often

resulted in a larger deflection from the true θ = 36.12 than the other estimators. This is in par-

ticular true for regions with low or no recombination. If multiple windows fall within one such

region the corresponding estimates are strongly correlated. For the region of low recombina-

tion near chromosome position 1.0 � 108 Fig P and Q in S1 Text show a zoomed-in version of

the recombination map in Fig 4 and the estimates of θ in Fig 5. To better illustrate this effect,

the estimators have been applied to data generated by an artificial recombination map with

multiple regions without recombination separated by regions with recombination, see section

C in S1 Text.

A separate consideration of disjoint windows with low (0 < ρ� 1), intermediate (30 < ρ�
40), or high (ρ> 150) recombination according the the human recombination map is shown

Fig 2. MSE for variable recombination rates. The normalized MSE of feedforward neural network estimators of the mutation rate compared to

model-based estimators. In particular, the adaptive networks trained with a fixed recombination rate are compared to the networks trained with

variable recombination rates. The recombination rate is given by ρ = 0, . . ., 50 or ρ = 1000, while the sample size n = 40 and mutation rate θ = 40 are

fixed. MSE estimates are based on 105 independently simulated SFS for each value of ρ.

https://doi.org/10.1371/journal.pcbi.1010407.g002
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in Fig 6. The observations in the constant recombination setting are also present in this more

realistic scenario. Watterson’s estimator more often strongly overestimates theta for low and

medium recombination rates while Futschik’s estimator performs better for low than high

recombination rates. The neural networks trained with variable ρ is also in this more realistic

scenario based on a recombination map able to adapt to the local recombination rate.

Fig 3. Comparison to other ML methods. The normalized MSE for four different estimators are shown: Watterson’s estimator and the adaptive neural

network (as in Fig 1), a retrained CNN by Flagel et al. [21] and Approximate Bayesian Computation (ABC). The same simulations as in Fig 1 have been

used. A: recombination rate ρ = 0, B: ρ = 20, C: ρ = 35, D: ρ = 1000. All shown neural networks and ABC have been trained on data sets with the

corresponding recombination rate ρ.

https://doi.org/10.1371/journal.pcbi.1010407.g003
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Discussion and conclusion

Different optimal estimators for the mutation rate or population size are known in scenarios

of low and high recombination. Fu’s and Watterson’s estimator are linear unbiased estimators

with minimal variance in the absence of recombination and in the limit of large recombination

rates, respectively. However, simulations show that they do not adapt well to other frequencies

of recombination. In the case of unknown recombination rates, it is therefore necessary for

model-based estimators to estimate the recombination rate in a separate step and numerically

compute a suitable estimator [12].

We were able to circumvent this step and created a simple neural network that has a low

MSE regardless of the recombination rate. It is worth noting that the true recombination rate

Fig 4. Recombination map for human chr2. Displayed recombination rates along the chromosome are based on a sliding window of 70kb. This also

ensures better comparability with Fig 5. The mean recombination rate in the 70kb windows varies along the genome and is on average approximately

ρ = 31.

https://doi.org/10.1371/journal.pcbi.1010407.g004

Fig 5. Estimation of θ for human chr2. The SFS for θ estimation was calculated based on a sliding window of size 70kb. Estimates based on Watterson,

Futschik, the linear neural network and the adaptive neural network are displayed. The neural networks have been trained with variable recombination

rates. The underlying true mutation rate θ = 36.12 is shown as a grey line.

https://doi.org/10.1371/journal.pcbi.1010407.g005
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was not used as an additional input here. Instead, the neural network adapts to the unknown

recombination rate solely based on the observed SFS.

In contrast to the recombination rate, variability in the mutation rate is no issue in practice,

although some of the considered estimators depend on the true but unknown mutation rate θ.

Iterative procedures for Fu’s and Futschik’s estimator are usually converging after 3–5 itera-

tions and show almost the same performance as the optimal estimators (Fig H in S1 Text). In

general, when training a neural network, the parameter range must be chosen carefully as they

can learn the simulation range and consequently overestimate or underestimate outside this

range. In our setting, this is mainly a problem if θ is smaller in the application than in the train-

ing data set since small θ values demand special attention to be learned. The linear and adap-

tive neural networks do not show dramatic overestimation or underestimation outside the

training range, as Fig I in S1 Text demonstrates. In an application, if there is no idea about the

realistic range of θ, we would recommend first using the Watterson’s estimator to get an

approximate idea about the range of θ and retrain the neural network if necessary.

We observe that the neural networks approximate model-based estimators in situations

where the model-based estimators are close to the optimal estimator (no or high recombina-

tion) and outperform them in scenarios that are hard to treat theoretically (moderate recombi-

nation). This remains true when applied in a more realistic setting with variable

recombination along the human chr2. Even compared to more sophisticated ML methods, i.e.

Flagel’s CNN and ABC, the adaptive neural network remains the preferred choice for all

recombination scenarios considered. In particular, the advantages of an adaptive method or

training procedure become apparent, since otherwise, for example, small θ values are not

given enough attention. This again highlights the capabilities of the adaptive neural network

despite its architectural simplicity and the potential of using model-based results to adjust the

training process. There is a multitude of other model-based estimators for the mutation rate,

population size and related quantities, e.g. for the expected heterozygosity [34], that could

enable machine learning methods in population genetics to adjust their performance.

Clearly, neural networks are computationally more demanding than model-based

approaches. For example, it is necessary to train the network separately for each sample size.

However, training is fast, even for the adaptive neural network. For n = 40 and training data

with 2 � 105 simulated SFS, training is completed after approximately 20–50 iterations, which

takes about 10 minutes on a laptop with an AMD Ryzen 7 octacore and 32 GB RAM. If these

pitfalls are considered, even minimal artificial neural networks are attractive alternatives to

Fig 6. Estimates of θ in regions of chr2 with low, intermediate, and high recombination. The mean recombination rates of disjoint 70kb windows of

chr2 were calculated and estimates for regions with low (0< ρ� 1) (A), medium (30< ρ� 40) (B) and large (ρ> 150) (C) recombination rates are

shown in a Violin plot. The white marker in the box of the violins visualizes the median. The true mutation rate θ = 36.12 is shown as a grey line.

https://doi.org/10.1371/journal.pcbi.1010407.g006
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model-based estimators of the scaled mutation rate since they can perform uniformly well for

different recombination scenarios.

It is worth noting that the observed outperformance of the neural networks was obtained

solely based on the site frequency spectrum, but genetic data usually contains more informa-

tion about the distribution of mutations among samples and their location along the genome.

Machine learning methods based on the raw genetic data will require more complex network

architectures and could help to automatically extract this additional information. Recent

advances in the development of machine learning methods for population genetics [22, 23,

35–37], indicate that expanding the toolbox of neural network-based inference tools to more

complex estimation tasks and larger data sets is a promising approach.

Supporting information

S1 Text. Supporting Information regarding the feature importance of neural networks,

neural networks training procedure, application with a block recombination map, and fur-

ther supporting figures.

(PDF)
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