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Early-stage (I and II) ovarian carcinoma patients generally have good prognosis. Yet, some

patients die earlier than expected. Thus, it is important to stratify early-stage patients

into risk groups to identify those in need of more aggressive treatment regimens. The

prognostic value of 29 histotype-specific biomarkers identified using RNA sequencing

was evaluated for early-stage clear-cell (CCC), endometrioid (EC) and mucinous (MC)

ovarian carcinomas (n = 112) using immunohistochemistry on tissue microarrays.

Biomarkers with prognostic significance were further evaluated in an external ovarian

carcinoma data set using the web-based Kaplan-Meier plotter tool. Here, we provide

evidence of aberrant protein expression patterns and prognostic significance of 17

novel histotype-specific prognostic biomarkers [10 for CCC (ARPC2, CCT5, GNB1,

KCTD10, NUP155, RPL13A, RPL37, SETD3, SMYD2, TRIO), three for EC (CECR1,

KIF26B, PIK3CA), and four for MC (CHEK1, FOXM1, KIF23, PARPBP)], suggesting

biological heterogeneity within the histotypes. Combined predictive models comprising

the protein expression status of the validated CCC, EC and MC biomarkers together

with established clinical markers (age, stage, CA125, ploidy) improved the predictive

power in comparison with models containing established clinical markers alone, further

strengthening the importance of the biomarkers in ovarian carcinoma. Further, even

improved predictive powers were demonstrated when combining these models with our

previously identified prognostic biomarkers PITHD1 (CCC) and GPR158 (MC). Moreover,

the proteins demonstrated improved risk prediction of CCC-, EC-, and MC-associated

ovarian carcinoma survival. The novel histotype-specific prognostic biomarkers may not

only improve prognostication and patient stratification of early-stage ovarian carcinomas,

but may also guide future clinical therapy decisions.
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INTRODUCTION

If diagnosed early, epithelial ovarian carcinoma patients have
a relatively good prognosis with an overall 5-year survival rate
of 89% for stage I and 71% for stage II (1). Unfortunately,
around 16% of early-stage ovarian carcinoma patients are at
greater risk of relapse and early death. Hence, the identification
of molecular tumor characteristics associated with high-risk
early-stage ovarian carcinomas would improve risk assessment,
potentially influence treatment decisions, and guide future
drug development. Recently, various studies have shown the
importance of histotype-based stratification in view of differences
in e.g., molecular and clinical behavior, and prognosis with
significant differences in 5-year survival rates across histotypes
[43% for serous ovarian carcinoma (SC), high-grade serous
(HGSC), and low grade serous ovarian carcinoma (LGSC), 82%
for EC, 71% for MC, and 66% for CCC] (1). Thus, it is crucial to
evaluate prognostication within individual histotypes to identify
early molecular events of histotype-specific tumorigenesis. To
date, limited information is available for prognostic biomarkers
associated with specific histotypes and early-stage disease.

In recent years, a number of studies have evaluated the
prognostic significance of specific biomarkers within ovarian
cancer histotypes. The prognostic role of p16 was examined
in a large cohort of ovarian carcinoma patients (n = 6,525),
wherein differences in prognosis were demonstrated across the
five main histotypes of varying FIGO stages. Block expression
(overexpression >90% of tumor cells are stained) of p16 was
associated with shorter overall survival (OS) in CCC and EC,
absence of p16 in LGSC correlated with shorter OS, while no
prognostic significance was found for HGSC- or MC-patients
(2). A further study showed an association between favorable
outcome and ARID1A- and p53-expression, as well as negative
nuclear/positive membrane expression for β-Catenin, in 97
ovarian [CCC (n = 11), EC (n = 21)] and endometrial [clear-
cell (n = 6) and endometrioid uterine (n = 59)] carcinomas.
However, prognosis was investigated in all 97 patient samples
regardless of type of carcinoma, histotype or FIGO stages I–IV
(3). A recent study examined the prognostic role of the five main
histotypes in early-stage ovarian carcinomas (n = 488), wherein
EC was found to be the most favorable histotype, while HGSC
and LGSC had the most unfavorable prognoses. Further, CCC
with abnormal p53 protein staining patterns was also reported
to have poor prognosis (4). Moreover, patients with stage Ia or
Ib of EC or MC histotypes have been shown to have a 10-year
disease-specific survival over 95% (5).

Therefore, reliable early-stage histotype-specific biomarkers
that are independent and complementary to established clinical
markers are needed to improve future prognostication at the
time of diagnosis, risk stratification and the administration of
adequate drugs for early-stage ovarian carcinoma patients. Here,
we used immunohistochemistry (IHC) on tissue microarrays
(TMA) to examine the prognostic role of 29 previously identified
RNA-based biomarkers for histotype-specific, early-stage ovarian
carcinoma [11 biomarkers associated with CCC (ARPC2, CCT5,
DDX24, GNB1, KCTD10, NUP155, RPL13A, RPL37, SETD3,
SMYD2, TRIO), eight with EC (ABCA12, CECR1, ESRRG,

KIF26B, MUC15, PDE4DIP, PIK3CA, RIMBP2), and 10 with
MC (CENPI, CHEK1, FOXM1, KIF15, KIF23, KNTC1, MTGR1,
NSD2, PARPBP, ZDHHC2)].

MATERIALS AND METHODS

Patients and Tissue Microarray
Construction
The patient study cohort comprised 112 early-stage (stage I
and II) primary invasive ovarian carcinoma patients (diagnosed

TABLE 1 | Clinicopathological data for the patient cohort (n = 112) comprising

clear-cell (CCC), endometrioid (EC) and mucinous ovarian carcinoma (MC)

histotypes.

Number of patients (%)

CCC

(n = 37)

EC

(n = 46)

MC

(n = 29)

P-value

Patient age 0.37

Mean 65 62 60

Range 42–84 25–83 30–82

Overall survival 0.24

0–2 y 5 (14) 3 (7) 6 (21)

2–5 y 10 (27) 9 (20) 3 (10)

5–10 y 8 (22) 7 (15) 7 (24)

>10 y 14 (38) 27 (59) 13 (45)

Cause of death 0.023

Ovarian carcinoma 19 (51) 7 (15) 5 (17)

Other cancer 2 (5) 6 (13) 4 (14)

Other 6 (16) 10 (22) 8 (28)

Alive 8 (22) 17 (37) 7 (24)

Not available 2 (5) 6 (13) 5 (17)

Stage 0.43

I 31 (84) 32 (70) 22 (76)

II 6 (16) 13 (28) 7 (24)

Tumor grade EC NA

FIGO grade I NA 11 (24) NA

FIGO grade II NA 27 (59) NA

FIGO grade III NA 8 (17) NA

CA125 0.58

<35 14 (38) 13 (28) 10 (35)

35–65 8 (22) 7 (15) 8 (28)

>65 15 (41) 25 (54) 11 (38)

Not available 0 (0) 1 (2) 0 (0)

Ploidy 0.14

Near diploid 5 (14) 17 (37) 7 (24)

Aneuploid 30 (81) 26 (57) 19 (66)

Not available 2 (5) 3 (7) 3 (10)

Chemotherapy 0.20

Yes 37 (100) 42 (91) 27 (93)

No 0 (0) 0 (0) 0 (0)

Not available 0 (0) 4 (9) 2 (7)

Significant values (P-value < 0.05) are marked in bold.
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between 1994 and 2006) of histotypes clear cell carcinoma
[CCC (n = 37)], endometrioid carcinoma [EC (n = 46)]
and mucinous carcinoma [MC (n = 29)]. Full face formalin-
fixed paraffin-embedded (FFPE) specimens corresponding to
the 112 patients were reclassified in 2016 by board certified
pathologists at Sahlgrenska University Hospital according
to current WHO criteria for ovarian carcinoma histotypes
(6). The clinicopathological information, obtained from the
National Quality Registry at the Regional Cancer Center
West (Gothenburg, Sweden) and the Cancer Registry at the
National Board of Health and Welfare (Stockholm, Sweden), is
summarized in Table 1. The FFPE specimens were obtained from
the Departments of Clinical Pathology at hospitals in Western
Sweden in accordance with the Declaration of Helsinki and
approved by the Regional Ethical Review Board (case number
767-14, Gothenburg, Sweden). The ethical review board further
approved a waiver of written consent to use the tumor specimens.

Prior to TMA construction, tumor areas were marked on
a hematoxylin and eosin stained slide for each tumor sample.
TMAs were prepared comprising 1.0mm triplicate cores from
each tumor with 1.6mm spacing distance between core centers.
The TMA block was baked for 1 h at 45◦C. Four micrometer
TMA sections were processed on microscope slides (FLEX IHC,
Dako, Sweden) and dried in an oven for 1 h at 60◦C.

Selection of Genes Associated With
Histotype-Specific Prognosis
The retrieval of prognostic genetic signatures for overall survival
(OS) and disease-specific survival (DSS) using 45/112 raw RNA
sequencing (RNA-seq) read counts for CCC, EC, and MC
histotypes and univariable Cox regression models has been
described elsewhere (7). The predictive performance of the Cox
regression models was measured using concordance index (C-
index), with values ranging from 0.5 to 1, wherein 1 is a perfect
prediction of survival outcome (8). Among the top 50 genes (P-
values < 0.05 and C-index >0.75) for each respective histotype,
29 genes were selected among those with gene expression
levels which could be measured using IHC (RNA-seq counts
>150) (Table 2).

Immunohistochemical Analysis and
Evaluation
The Human Protein Atlas (HPA) was used as a primary
source for the selection of suitable antibodies for each protein
(Table 2) (9, 10). Fifteen tumor samples representing different
histotypes (CCC, EC, HGSC, MC) and International Federation
of Gynecology and Obstetrics (FIGO) stages were used to
optimize the selected antibodies. In brief, each antibody was
optimized using full-face FFPE sections from 2/15 samples
corresponding to the histotype to be tested. Thereafter, a positive
control was chosen by testing the optimal antibody dilution on a
TMA containing the 15 samples in the optimization panel.

Four micrometer TMA sections for the patient cohort
were pretreated using the Dako PTLink system (pH 9) and
immunostained with respective antibodies (Table 2) using the
Dako Autostainer Plus (Agilent Technologies). Liquid DAB

(3,3′-diaminobenzidine) was used as chromogen and EnVision
FLEX hematoxylin (Link) as counterstain. Finally, the sections
were rinsed using deionized water, dehydrated in ethanol (70,
95, and 100% ethanol), cleared in xylene and mounted. The
immunostained sections were scanned using the ZEISS Axio
Scan.Z1 and visualized using ZEN lite software (Carl Zeiss
Microscopy) to enable easier evaluation of the immunostained
TMA cores. A board certified pathologist (AK), blinded to
patient survival outcome, performed the immunohistochemical
evaluation. An immunoreactive score (H-score) was determined
for each tumor core based on percentages of stained tumor
cells and staining intensities (weak = 1, moderate = 2, strong
= 3) (11). The resulting H-score was based on the mean of
the triplicate cores. The staining intensities in normal cells and
tumor stroma cells were also determined, wherein positively
stained stroma was evaluated in fibroblasts and not in tumor
infiltrating lymphocytes. Homogenous staining herein defines
IHC samples having either weak, moderate or strong protein
staining across one sample triplicate, whereas non-homogenous
protein staining is defined as a mix of the staining intensities (i.e.,
weak-moderate, moderate-strong, weak-moderate-strong) in at
least 2/3 TMA cores.

Statistical Analysis
The statistical analyses were conducted in R/Bioconductor (v.
3.6.0) with P-values< 0.05 (two-sided) for statistical significance.
To generate histotype-specific prognostic signatures, univariable
Cox proportional hazard models were used to correlate RNA-seq
expression data with survival outcome (OS/DSS) in respective
histotypes (CCC, EC, andMC). P-values for determining possible
confounding factors between clinicopathological parameters and
hisototype as well as positive/negative protein expression were
calculated using two-tailed Fisher’s exact test (tableone v. 0.10.0)
(12). Kaplan-Meier plots in X-tile software (v. 3.6.1) were used
to dichotomize H-score cutoff values into positive and negative
protein expression groups (13). Kaplan-Meier survival analyses
for determining the clinical relevance of protein expression (H-
score values) with survival data (OS/DSS) were performed using
R packages survival (v. 2.38) and survminer (v. 0.4.4) (14, 15).
Univariable and multivariable Cox proportional hazard models
were used to evaluate the individual and combined predictive
strength (C-index) of the CCC-, EC-, and MC-associated
biomarkers. Moreover, multivariable Cox proportional hazard
models were also utilized to determine predictive models for
the biomarkers related to CCC, EC, and MC in combination
with established clinical parameters (age, stage, CA125, ploidy).
External validation of the biomarkers’ clinical relevance was
performed using the Kaplan-Meier (KM) plotter online tool
(https://kmplot.com/analysis/) for overall survival of ovarian
carcinoma patients (n = 1,657) with Affymetrix gene expression
microarray data (16). The association with event probability,
i.e., increased or decreased survival risk, was also assessed with
forest plots (forestplot v. 1.9) (17). The relationship between
RNA expression log2 values (raw RNA-seq read counts) and
protein expression (H-score values) was compared using ggplot2
(v. 3.1.0) and the statistical difference was evaluated using
Wilcoxon test (18). The study cohort was validated in line
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TABLE 2 | Study cohort with respective statistical features derived from Cox proportional hazard models and selected antibodies with corresponding optimized antibody

dilution factors for immunohistochemistry (IHC) analysis.

Gene symbol Histotype Survival HR 95% CI P-value C-index Antibody Company Optimized dilution

ABCA12 EC DSS 0.50 0.28–0.89 0.019 0.90 ab98976 Abcam 1:25

ARPC2 CCC OS 17.48 2.95–103.41 0.0016 0.79 HPA008352 Sigma-Aldrich 1:200

CCT5 CCC DSS 17.81 2.42–131.34 0.0047 0.83 H00022948 Abnova 1:2,000

CECR1 EC OS 0.99 0.98–1.0 0.0110 0.76 SAB1410953 Sigma-Aldrich 1:25

CENPI MC OS 4.68 1.40–15.68 0.0120 0.85 ab118796 Abcam 1:100

CHEK1 MC OS 4.11 1.39–12.16 0.0110 0.85 AV32589 Sigma-Aldrich 1:25

DDX24 CCC OS 22.87 3.35–156.11 0.0014 0.78 HPA002554 Sigma-Aldrich 1:25

ESRRG EC DSS 0.59 0.35–0.98 0.0420 0.89 AV31655 Sigma-Aldrich 1:100

FOXM1 MC OS 2.55 1.17–5.55 0.0180 0.83 HPA029974 Sigma-Aldrich 1:100

GNB1 CCC OS 66.42 5.35–824.60 0.0011 0.81 SAB2701168 Sigma-Aldrich 1:250

KCTD10 CCC OS 42.42 4.88–368.71 0.00068 0.81 ab129245 Abcam 1:30

KIF15 MC OS 4.69 1.15–19.03 0.0310 0.84 HPA035517 Sigma-Aldrich 1:25

KIF23 MC OS 7.88 1.33–46.52 0.0230 0.85 SAB2104085 Sigma-Aldrich 1:50

KIF26B EC OS 0.46 0.23–0.91 0.0250 0.91 HPA028562 Sigma-Aldrich 1:25

KNTC1 MC OS 8.46 1.46–48.93 0.017 0.83 HPA025241 Sigma-Aldrich –

MTGR1 MC OS 64.84 2.70–1558.54 0.010 0.86 ab128164 Abcam 1:50

MUC15 EC OS 0.66 0.50–0.87 0.0032 0.79 ab171304 Abcam 1:50

NSD2 MC OS 27.69 1.96–391.91 0.0140 0.86 AMAb90848 Sigma-Aldrich 1:25

NUP155 CCC DSS 27.93 2.98–261.42 0.0035 0.86 ab157104 Abcam 1:100

PARPBP MC OS 8.079 1.32–49.28 0.0240 0.85 ab211634 Abcam 1:50

PDE4DIP EC OS 1.00 0.9964–0.9996 0.013 0.75 HPA008162 Sigma-Aldrich 1:25

PIK3CA EC OS 1.0033 1.001–1.0057 0.0044 0.77 SAB2701957 Sigma-Aldrich 1:100

RIMBP2 EC DSS 0.59 0.36–0.97 0.0370 0.84 ab128045 Abcam 1:25

RPL13A CCC OS 4.15 1.83–9.39 0.0006 0.79 ab209829 Abcam 1:25

RPL37 CCC OS 4.95 1.91–12.84 0.0010 0.80 SAB4502669 Sigma-Aldrich 1:100

SETD3 CCC OS 79.39 6.063–1039.64 0.0009 0.81 HPA003591 Sigma-Aldrich 1:25

SMYD2 CCC DSS 56.79 3.92–822.37 0.0031 0.89 PA5-51339 ThermoFisher 1:100

TRIO CCC OS 9.40 2.60–34.03 0.0006 0.83 HPA008157 Sigma-Aldrich 1:25

ZDHHC2 MC OS 0.34 0.15–0.78 0.011 0.84 ab174967 Abcam 1:50

All members of the study cohort had P-values below 0.05 and concordance index (C-index) values greater than or equal to 0.75. An optimized dilution factor could be determined

for all proteins except KNTC1. Monoclonal antibodies were used for CCT5, CENPI, NSD2, NUP155, and RIMBP2. The remaining antibodies were polyclonal antibodies. The statistics

data [hazard ratio (HR), 95% confidence interval (CI), P-value, C-index] refers to the Cox regression analysis with raw RNA sequencing (RNA-seq) read counts. Antibody, company and

optimized dilution refers to the IHC analysis.

with the REMARK reporting recommendations for prognostic
biomarkers (Supplementary Table 1) (19).

RESULTS

Selection of Candidate Genes Associated
With Ovarian Carcinoma Prognosis in
Different Histotypes
To identify genes associated with prognosis and specific
histotypes (CCC, EC and MC), univariable Cox proportional
hazards models were calculated using raw RNA-seq read counts
and survival outcome (OS, DSS). In total, 3,557 (OS) and 1,827
(DSS) genes with P-values < 0.05 were identified for CCC,
and 1,440 (OS) and 522 (DSS) genes for EC. For MC, 970
genes were significantly linked to OS. A selection of 11 genes
associated with CCC (ARPC2, CCT5, DDX24, GNB1, KCTD10,
NUP155, RPL13A, RPL37, SETD3, SMYD2, TRIO), 8 with EC

(ABCA12, CECR1, ESRRG, KIF26B,MUC15, PDE4DIP, PIK3CA,
RIMBP2), and 10 with MC (CENPI, CHEK1, FOXM1, KIF15,
KIF23,KNTC1,MTGR1,NSD2, PARPBP, ZDHHC2) were chosen
among the top 50 genes according to the selection criteria with
C-index ranging between 0.75 and 0.91 (Table 2). The majority
of the 29 selected genes were only significant (P-value < 0.05)
in the above specified histotypes, with the exception of KIF23
(DSS, C-index = 0.72), PDE4DIP (OS C-index = 0.69, DSS C-
index = 0.77), and ZDHHC2 (OS C-index = 0.67, DSS C-index
= 0.76) that were further significant in CCC, as well as KIF26B
(OS C-index= 0.74) in MC.

IHC Analysis Revealed Aberrant Protein
Expression Patterns
Optimal antibody dilutions were determined for 28/29
biomarkers (Table 2). KNTC1 showed negative protein
staining at 1:25 antibody dilution and was therefore excluded
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from further analysis. IHC analysis was performed for the
remaining 28 biomarkers using optimal antibody dilutions on
samples corresponding to the histotype to be tested (Table 2).
Dichotomization of H-scores using X-tile software could be
determined for 17/29 proteins. Positive staining was interpreted
as H-score >210 for ARPC2, >150 for CCT5, >73 for CECR1,
>17 for CHEK1, >55 for FOXM1, >193 for GNB1, >267 for
KCTD10, >180 for KIF23, >40 for KIF26B, >200 for NUP155,
>167 for PARPBP,>100 for PIK3CA,>200 for RPL13A,>73 for
RPL37, >200 for SETD3, >180 for SMYD2, and >150 for TRIO.

The IHC analysis revealed that the CCC-associated
biomarkers (ARPC2, CCT5, GNB1, KCTD10, NUP155,
RPL13A, RPL37, SETD3, SMYD2, TRIO) were mainly expressed
in the cytoplasm of tumor cells (Figure 1A). Apart from
cytoplasmic staining, RPL13A, RPL37, and SMYD2 also showed
nuclei staining. Positive immunostaining was prevalent for
GNB1 (68%), KCTD10 (59%), and RPL37 (97%), whereas
negative immunostaining was primarily found for the remaining
CCC-associated biomarkers [ARPC2 (24%), CCT5 (49%),
NUP155 (5%), RPL13A (3%), SETD3 (16%), SMYD2 (3%),
and TRIO (8%) (percentages of positive immunostaining is
shown in parenthesis)]. GNB1 immunostaining patterns (weak,
moderate or strong staining) were generally homogenous for
all samples. The nine remaining biomarkers were found to
have partially non-homogenous immunostaining patterns were
(weak-moderate or moderate-strong staining) in at least 2/3
of the TMA cores. Apart from age for ARPC2 and ploidy for
SETD3, none of the CCC-associated biomarkers showed any
association between protein expression and clinicopathological
data (Supplementary Table 2). Protein staining for biomarkers
related to EC (CECR1, KIF26B, PIK3CA) was mainly localized to
the cytoplasm of tumor cells (Figure 1B). CECR1, KIF26B, and
PIK3CA demonstrated mainly positive immunostaining with 76,
98, and 85%, respectively. Further, the EC-related biomarkers
revealed partially non-homogenous immunostaining pattern for
up to 16/46 samples. Stromal staining (majority of weak staining)
was found in 31/46 patient samples for PIK3CA. MC-associated
biomarkers (CHEK1, FOXM1, KIF23, PARPBP) were also
shown to display cytoplasmic staining (Figure 1C). Positive
immunostaining was mainly shown for CHEK1 (83%) and
FOXM1 (86%), and predominantly negative immunostaining for
KIF23 (7%) and PARPBP (41%). Generally, the staining pattern
was homogenous for the MC-associated biomarkers. However,
CHEK1 and PARPBP demonstrated partially non-homogenous
staining pattern for a few samples. No association was found
between EC- or MC-associated biomarker protein expression
and clinicopathological data (Supplementary Tables 3, 4).

The relationship between protein expression and RNA
expression levels was further examined by comparing both H-
score and raw RNA-seq read counts in log2 scale. Significantly
higher RNA expression levels (n = 17) were found for all
biomarkers related to CCC compared to protein expression
(n = 37) (Supplementary Figure 5). A similar trend was
demonstrated for EC-associated biomarkers (PIK3CA and
CECR1) with higher RNA expression (n = 17) in comparison
with protein expression (n = 46). KIF26B showed no significant
difference between the two expression types. For biomarkers

related to MC, no significant difference between protein (n= 29)
and RNA expression (n = 11) was found for CHEK1, FOXM1,
and PARPBP. The RNA-protein difference for KIF23 was barely
significant (P-value= 0.049).

CCC-Related Biomarkers Improved the
Predictive Performance of Prognostic
Models
Protein expression for CCC-associated biomarkers (10/29
biomarkers) was significantly associated with survival outcome
(OS and/or DSS) using Kaplan-Meier survival analysis and
log-rank tests (P-values < 0.05) with dichotomized protein
expression according to H-score cutoffs (Figures 2A,B,
Supplementary Figure 1). GNB1, NUP155, RPL13A, and
SETD3 protein expression revealed a significant association
with OS. Moreover, patients with positive protein expression
for ARPC2, KCTD10, SMYD2, and TRIO demonstrated
significantly shorter OS and DSS. CCT5- and RPL37-negativity
were associated with shorter DSS and both shorter OS and
DSS, respectively. These findings were in agreement with the
association between RNA expression and clinical outcome,
with the exception for CCT5 and RPL37, wherein positive gene
expression of these proteins correlated with shorter DSS and OS,
respectively. A comparison between RNA and protein expression
demonstrated consistently higher RNA expression levels than
protein expression levels for all CCC-associated biomarkers
(Supplementary Figure 5A). Moreover, CCT5 and RPL37
were shown to be associated with decreased risk of mortality
(hazard ratio (HR) values below 1), whereas the remaining
CCC-associated biomarkers were associated with increased risk
of mortality (HR values above 1) (Supplementary Figure 4).

Interestingly, univariable models containing the CCC-
associated biomarkers revealed predictive potential for OS and
DSS. In addition, predictive models containing all 10 CCC-
associated biomarkers (OS C-index= 0.83, DSS C-index= 0.82)
outperformed (increased C-index) models for individual markers
and established clinical markers (age, CA125, ploidy, and
stage) (Figures 2C–F). KCDT10 showed the highest individual
prognostic potential (OS C-index = 0.63, DSS C-index =

0.65). Moreover, multivariable survival analysis demonstrated
an improved predictive performance for OS when combining
the CCC-associated biomarkers with the established markers
from C-index 0.61–0.86 (Figures 2E,F, Supplementary Table 5).
However, the C-index (0.80) for the combined DSS model (CCC-
associated biomarkers and established clinical markers) was
lower than for the CCC-associated biomarkers alone. Including
PITHD1 protein expression status to the OS and DSS models
resulted in a further improvement of the C-indices [C-index =

0.88 (OS), 0.89 (DSS)] (7).
The prognostic potential of the CCC-related biomarkers

was validated in an external gene expression dataset (KM
plotter) for OS of ovarian cancer patients (n = 655 for
CCT5, KCTD10, and SETD3; n = 1,656 for the remaining
CCC-related biomarkers). The Kaplan-Meier survival plots
were dichotomized according to expression levels above the
median (i.e., positive expression) and below the median
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FIGURE 1 | Protein expression of clear-cell (CCC)-associated biomarkers (A), endometrioid (EC)-associated biomarkers (B), and mucinous ovarian carcinoma

(MC)-associated biomarkers (C). Representative immunohistochemical staining intensities showing protein expression (negative vs. positive) in ovarian tumor cells for

histotype-associated biomarkers (400 × magnification).
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FIGURE 2 | Prognostic value of CCC-associated biomarkers. Kaplan-Meier survival plots (A,B) showing patient survival [overall survival (OS)/disease-specific survival

(DSS)] in relation to dichotomized KCTD10 protein expression. Patients with KCTD10-positive staining (blue curve) correlated with both shorter OS and DSS [P-value

= 0.0057, hazard ratio (HR) = 3.03 (95% confidence interval (CI) 1.34–6.88); P-value = 0.011, HR = 3.54 (95% CI 1.26–9.91)]. The x-axis depict days after initial

diagnosis and the y-axis survival outcome (OS/DSS). The number of patients at risk by time (days after initial diagnosis) is shown below the Kaplan-Meier plot.

Univariable and multivariable time-dependent area under the ROC curve [AUC(t)] plots (C,D) illustrating the predictive performance of each model over time and a

(Continued)
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FIGURE 2 | significantly improved predictive model when combining the individual CCC-associated biomarkers (black curve) for OS and DSS. Multivariable survival

plots for OS and DSS showing improved outcome prediction for CCC-associated biomarkers in comparison with established clinical markers (E,F). The outcome

prediction concordance index (C-index) values are shown in parentheses. Further, the addition of protein expression status of CCC-associated biomarkers to

established clinical markers resulted in improved outcome prediction (C-index = 0.86) for OS. Survival analysis was adjusted for age, stage, CA125, ploidy. The x-axis

depicts survival time in days and the y-axis C-index values (OS/DSS). The prognostic value of each CCC-associated biomarker was validated using KM plotter for OS

in HGSC and EC histotypes (n = 655) (G). Here, the prognostic value of KCTD10 is validated wherein patients with KCTD10-positive gene expression (patient

samples with expression levels above the median) is shown in red and KCTD10-negative gene expression (patient samples with expression levels below the median) is

shown in black. The number of patients at risk is indicated below the Kaplan-Meier plot. Cox proportional hazard models and log-rank tests were used to calculate

HR, 95% confidence interval, and log rank P-value for Kaplan-Meier survival analysis and KM Plotter validation analysis.

(i.e., negative expression) (Figure 2G, Supplementary Figure 6,
Supplementary Table 8). CCT5, GNB1, KCTD10, NUP155, and
SETD3 gene expression was significantly correlated with shorter
OS (P-value < 0.05). ARPC2 and RPL37 gene expression showed
a tendency to shorter OS, but were not statistically significant.
Lastly, negative gene expression of RPL13A, SMYD2, and TRIO
was significantly correlated with shorter OS.

EC-Associated Biomarkers Demonstrated
Prognostic Value and Improved Predictive
Performance
Kaplan-Meier survival analysis (dichotomized according to
H-score cut offs) revealed an association between CECR1-
negativity and shorter DSS, and negative KIF26B and PIK3CA
protein expression and both shorter OS and DSS (Figures 3A,B,
Supplementary Figure 2). These results are in line with the
RNA-seq results (for 17 RNA-seq samples) for CECR1 and
KIF26B genes wherein higher RNA expression was found
in long-term survivors. Contradictive to protein expression,
PIK3CA showed lower RNA expression in relation to long-term
survival. Similar to the protein-RNA comparison for the CCC-
associated biomarkers, CECR1 and PIK3CA gene expression
levels were elevated compared to protein expression levels.
No significant difference in protein and RNA expression was
found for KIF26B (Supplementary Figure 5B). Patients with
negative CECR1 (DSS), KIF26B (OS, DSS) or RPL37 (OS,
DSS) protein expression had a decreased risk of mortality
(Supplementary Figure 4).

Univariable analysis of the EC-associated proteins showed
predictive performance, wherein PIK3CA showed the highest
C-index of 0.59 for OS, and CECR1 with C-index of
0.68 for DSS (Figures 3C,D, Supplementary Table 6). An
improved predictive performance was further demonstrated
when combining the EC-associated proteins (OS C-index =

0.61, DSS C-index = 0.71). Further, a multivariable predictive
model containing EC-associated proteins and established clinical
markers (age, stage, CA125, ploidy) revealed an overall improved
predictive performance (OS C-index = 0.79, DSS C-index =

0.84) (Figures 3E,F). Furthermore, survival analysis for the EC-
related biomarkers was performed in an external gene expression
dataset containing EC patients. No significant difference between
gene expression and OS was shown for the EC-associated
biomarkers using KM plotter for EC patients (n = 37).
However, the same tendency of correlation between negative
gene expression and shorter OS was shown for KIF26B and
PIK3CA in view of their protein expression patterns (Figure 3G,
Supplementary Figure 7, Supplementary Table 8).

MC-Related Biomarkers Improved the
Predictive Power of Prognostic Models
Survival analyses using Kaplan-Meier curves, dichotomized
according to protein expression, and log rank tests (P-value <

0.05) revealed prognostic value for the MC-related biomarkers.
More specifically, a correlation was found between positive
expression of CHEK1, FOXM1, KIF23, and PARPBP and shorter
OS. Further, PARPBP-positivity also correlated with shorter
DSS (Figures 4A,B, Supplementary Figure 3). This pattern was
also shown for the RNA-seq samples (11/29 patients), i.e.,
positive gene expression corresponded with shorter survival.
No significant difference was found between protein expression
and gene expression for CHEK1, FOXM1, and PARPBP,
whereas the protein-RNA comparison was barely significant
for KIF23 (P-value = 0.049) (Supplementary Figure 5C). The
proteins were also visualized in terms of risk vs. survival,
wherein CHEK1- (OS), KIF23- (OS) and PARPBP-positivity
(OS, DSS) demonstrated an increased risk of mortality
(Supplementary Figure 4). FOXM1 was not included in the
forest plot analysis, since none of the four patients in the FOXM1-
negative expression group were deceased.

Univariable analysis showed predictive potential for
the individual MC-associated biomarkers, with PARPBP
having the highest predictive performance (C-index = 0.65)
(Supplementary Table 7). An overall improved predictive
potential was found when combining the individual MC-
associated biomarker potentials (C-index = 0.77). Moreover, a
model containing the MC-associated biomarkers and established
clinical markers (age, stage, CA125, ploidy) resulted in improved
predictive power (C-index = 0.87) (Figures 4C,D). Further,
an increased predictive power was demonstrated (C-index =

0.91) when including the protein expression status for GPR158
(linked to MC-associated prognosis) from our previous study
to this model (7). KM-plotter confirmed the prognostic value
of CHEK1, KIF23, and PARPBP on the RNA level, wherein
high gene expression levels correlated with shorter OS. For
FOXM1, borderline significance (P-value = 0.05) was found
between positive gene expression and shorter OS (Figure 4E,
Supplementary Figure 8, Supplementary Table 8).

DISCUSSION

In the current study, 29 genes associated with ovarian cancer
histotype-specific (CCC, EC, MC) prognosis were evaluated on
the protein expression level using IHC to identify biomarkers
for survival. Our findings revealed that the expression levels of
17/29 proteins (10 biomarkers for CCC, three biomarkers for
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FIGURE 3 | Prognostic significance of EC-related biomarkers. Survival analysis using Kaplan-Meier plots (A,B) depicting OS and DSS patient survival in relation to

dichotomized PIK3CA protein expression. Positive PIK3CA protein expression (blue curve) was associated with longer OS and DSS [P-value = 0.004, HR = 0.27

(95% CI 0.11–0.70); P-value = 0.012, HR = 0.18 (95% CI 0.039–0.81)]. The x-axis depicts days after initial diagnosis and the y-axis survival outcome (OS/DSS). The

patient numbers at risk by time (days after initial diagnosis) is shown below the Kaplan-Meier plot. Univariable and multivariable survival analysis for OS/DSS (C,D)

showing AUC(t) plots of individual EC-associated biomarkers and in combination (black curve). Multivariable survival analysis (E,F) illustrating improved predictive

(Continued)
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FIGURE 3 | performance for both OS and DSS when combining protein expression of the EC-related biomarkers with established clinical markers (C-index = 0.79;

0.84). C-index values for each curve are shown in parentheses. Survival analysis was adjusted for age, stage, CA125, ploidy. The x-axis depicts survival time in days

and the y-axis C-index values (OS/DSS). KM plotter was used to test the prognostic value of the EC-associated biomarkers in an external ovarian carcinoma dataset

containing EC patients (n = 37). Here, PIK3CA gene expression is not associated with OS (G). However, RNA and protein expression for PIK3CA displayed similar

trends, where patient samples with low expression shorter OS. Cox proportional hazard model and log-rank tests were used to calculate HR, 95% confidence interval,

and log rank P-value for Kaplan-Meier survival analysis and KM Plotter validation analysis.

EC, four biomarkers for MC) had a significant impact (positive
or negative) on survival in respective histotypes. We performed
our analysis using the current ovarian carcinoma histotype
classification demonstrating the importance of histotype on
origin, clinical and molecular behavior, and prognosis (1,
20). This study performed better in comparison with our
previous study in terms of (1) the number of optimized
antibodies (28/29 vs. 12/29) and (2) the number of identified
biomarkers with prognostic significance on the protein level
(17/29 vs. 3/29) (7). This is primarily due to the selection
of candidate genes with an overall higher expression level
for respective histotypes that could be detected using IHC.
Candidate genes associated with the HGSC histotype were not
included here since their prognostic potential was relatively
low (C-index OS <0.66, C-index DSS <0.69), which may be
explained by the heterogeneous nature of Cancer Genome
Atlas Research Network (21). In general, the CCC- and EC-
associated biomarkers demonstrated lower protein expression
compared to observed RNA expression levels (with the
exception of no protein/RNA difference for KIF26B). The
difference in expression levels may be explained by the use
of different detection methods, i.e., protein expression was
detected in tumor cells only while transcriptomic expression
was determined for the entire tumor mass that contained
various cell types. Supporting the importance of histotype-
based prognostication, the validated biomarkers (17/29) were
only significantly correlated with prognosis in the identified
histotypes (for the RNA-seq samples), with the exception of
KIF23, which was also statistically significant in CCC, and
KIF26B in MC.

Interestingly, several of the CCC-associated biomarkers
(CCT5, NUP155, RPL37, SETD3, SMYD2) have been previously
reported to be associated with the p53 tumor suppressor
pathway in various types of cancers. p53 can determine the
fate of a cell by activating pathways such as growth arrest,
cellular senescence or apoptosis. Further, p53 mutations are
detected in more than 50% of all human cancers and 25%
of tumors lacking p53 mutations have other p53 pathway
abnormalities (22). More specifically, CCT5 mRNA expression
was upregulated in p53-mutated breast cancers, and has been
reported to play an important role in protein folding, wherein
the accumulation of misfolded proteins is associated with
various diseases including cancer (23, 24). Nup155, important
in nuclear envelope formation, was shown to control mRNA
translation of cyclin-dependent kinase inhibitor p21, a key
mediator of p53-dependent cell cycle arrest, in murine liver
cancer (23, 25, 26). In the normal cell state, p53 protein
expression levels are low, and MDM2 and MDMX are important
negative regulators of its activity (22, 27). The ribosomal

protein RPL37 has been shown to activate p53 in response
to genotoxic stress by e.g., binding to and inhibit degradation
of Mdm2 and p53, downregulate MdmX protein levels, and
upregulate p21 (28). The actin histidine methyltransferase
SETD3 upregulated p53-dependent activation of apoptosis in
response to doxorubicin treatment in colon cancer cells (29,
30). Lastly, the lysine methyltransferase SMYD2 has been
shown to repress the tumor suppressive function of p53 via
DNA methylation (31). A recent study demonstrated worse
prognosis for p53 negative/overexpressed tumors in comparison
with p53 positive tumors in a cohort of CCC, EC and
endometrial cancers (n = 97) (3). Herein, survival analysis using
Kaplan-Meier plots revealed significant correlations between
positive expression of SETD3 and SMYD2 and worse clinical
outcomes (OS and DSS) which is in line with our RNA-seq
results. SETD3-positivity has been reported to be associated
with poor prognosis in hepatocellular carcinoma (32). Similar
to our expression profile, high levels of SMYD2 expression
has been associated with unfavorable prognosis in different
cancer types, such as breast cancer (mRNA expression) and
cervical cancer (protein expression) (33, 34). A recent study
reported overexpression of SMYD2 in cancer vs. normal tissue,
and associated higher expression of SMYD2 with enhanced
proliferation in HGSC (35). NUP155-positivity correlated
with shorter OS in CCC, while esophageal squamous cell
carcinoma showed an association between low expression of
NUP155 with shorter OS (36). Contradictive to the RNA-
seq results, CCT5- and RPL37-positivity correlated with longer
DSS, and OS and DSS, respectively. No previous association
for CCT5 and RPL37 expression with survival outcome has
been shown.

Kaplan-Meier survival analysis for the remaining CCC-
associated biomarkers showed a significant correlation between
positive expression of ARPC2, GNB1, KCTD10, RPL13A, and
TRIO and unfavorable prognosis (OS or OS/DSS), which is in
agreement with the RNA-seq results. ARPC2 plays a crucial
role in actin polymerization and elevated expression thereof
was correlated with unfavorable outcome for breast cancer
patients (37). Moreover, a potential drug, benproperine, has
been suggested to target ARPC2, and thus inhibit cell migration
and metastasis in cell and mouse studies (38). In colon cancer,
positive expression of GNB1, which is part of the RAS-BRAF-
MAPK-ERK pathway, was associated with longer OS (39, 40).
KCTD10 plays a role in DNA repair, DNA replication and
cell-cycle control, and has been identified as a key gene in
pancreatic carcinogenesis (41). Little could be found linking
RPL13A to prognosis in cancer (42). Interestingly, RPL13A has
been reported to be stable independent of disease progression in
ovarian cancer patients (n= 50; 25 normal, benign or borderline
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FIGURE 4 | MC-associated biomarkers related to prognosis. Kaplan-Meier survival plots for OS/DSS illustrating dichotomized PARPBP protein expression. Positive

PARPBP protein expression correlated with shorter OS and DSS [P-value = 0.002, HR = 4.33 (95% CI 1.60–11.74); P-value = 0.032, HR = 7.71 (95% CI

0.85–69.66)]. The x-axis depict days after initial diagnosis and the y-axis survival outcome (OS/DSS). The number of patients at risk by time (days after initial diagnosis)

is shown below the Kaplan-Meier plot (A,B). Univariable and multivariable survival plots depicting predictive potential [AUC(t) plots] of individual MC-associated

biomarkers and improved predictive power when in combination (black curve) for OS (C). Multivariable survival analysis showing improved predictive performance

when adding protein expression status of the MC-associated biomarkers to the established clinical markers (age, stage, CA125, ploidy) for OS (C-index = 0.87) (D).

C-index values for respective curve is shown in parentheses. The x-axis depict survival time in days and the y-axis C-index values (OS/DSS). External validation using

KM plotter for ovarian carcinoma patients was used to test the prognostic value of the biomarkers associated with MC. Here, the prognostic value of PARPBP is

validated wherein PARPBP-positive gene expression (red curve) corresponds with shorter OS (n = 655 HGSC and EC patients) (E). The number of patients at risk by

(days after initial diagnosis) is indicated below the Kaplan-Meier plot. Cox proportional hazard models and log-rank tests were used to calculate HR, 95% confidence

interval, and log rank P-value.
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patient samples, 25 malignant epithelial tumors), and a suitable
reference gene for qPCR (43). It should however be noted that
only 4/25 cancer samples were characterized as CCC. TRIO plays
a role in cell proliferation and progression of cancer, wherein
higher protein expression has been shown to be associated
with worse outcome (OS) (44). To the best of our knowledge,
we are the first to report an association between CCC-related
biomarkers (ARPC2, CCT5, GNB1, KCTD10, NUP155, RPL13A,
RPL37, SETD3, SMYD2, TRIO) and prognosis. Additionally,
the majority (8/10) of CCC-associated biomarkers could be
validated in the KM plotter external cohort, consisting of
geographically different populations. However, RPL13A, SMYD2,
and TRIO showed opposing prognostic significance, i.e., positive
gene expression correlated with longer survival. This could be
explained by the fact that the majority of KM plotter ovarian
carcinoma samples were comprised of HGSC (n = 1,232)
and a few EC patients (n = 62). Unfortunately, there are
no public databases comprising expression data for CCC or
MC patients.

The protein expression levels of the EC-associated biomarkers
(CECR1-negativity and KIF26B-negativity) were significantly
correlated with unfavorable survival outcomes (DSS; OS and
DSS), which was in line with the RNA-seq data. Shorter
OS and DSS were correlated with PIK3CA-negativity on the
protein expression level, but PIK3CA-positivity on the RNA
level. However, the KM plotter data and protein expression
data showed a similar association (however P-value > 0.05)
with survival outcome. No connection with prognosis in
ovarian carcinoma has previously been shown for CECR1. In
glioblastoma, upregulated CECR1 has however been shown
to contribute to tumor expansion and angiogenesis (45).
Upregulation of KIF26B increased proliferation and migration
in ovarian cancer cell lines (46). Although not statistically
significant in KM plotter (P-value = 0.076), KIF26B-positivity
correlated with favorable outcomes in EC patients using RNA-seq
and IHC analysis. Interestingly, KIF26B-positivity was associated
with unfavorable OS using HGSC data from TCGA-OV and KM
plotter (46). This also highlights the importance of histotype-
based survival analyses. PIK3CA is frequently mutated in ovarian
EC (47). Few studies have evaluated PIK3CA in view of prognosis
for ovarian EC. One study coupled mutations in Pik3ca or Trp53
with shorter survival and metastasis in an EC mouse model (48).
As far as we know, we are the first to report a connection between
CECR1, KIF26B, and PIK3CA protein expression and prognosis
in ovarian EC patients.

Survival analysis showed that the RNA expression levels
for 4/10 MC-related biomarkers (CHEK1, FOXM1, KIF23,
PARPBP) significantly correlated with their respective protein
expression levels, as well as, the association of positive expression
with shorter OS. CHEK1, involved in checkpoint mediated
cell cycle arrest in response to e.g., DNA damage, has been
reported to act as BRCA-like tumor suppressors when mutated
in hereditary ovarian cancer (49). In breast cancer, CHEK1
mRNA expression and phosphorylated CHEK1 protein have
demonstrated prognostic value in breast cancer-related death
(50). Mutations in TP53 have been suggested to contribute to
FOXM1 overexpression, and the FOXM1 transcription factor

network to be altered in the majority (87%) of (21). Further,
FOXM1 plays a role in cell proliferation and has been linked
to epithelial ovarian carcinoma prognosis wherein FOXM1-
positivity was associated with shorter OS (51). KIF23 has been
suggested to promote cell proliferation and migration, and
KIF23-expression to be coupled to poor OS prognosis in ovarian
tumors (52). PARPBP has been demonstrated to be a negative
regulator of homologous recombination and to be involved in
cell cycle regulation and contribute to unfavorable outcomes in
hepatocellular carcinoma (53, 54). Moreover, PARPBP has been
suggested to be activated by FOXM1 in gastric cancer cells (55).
Our prognostic results were further in line with the KM plotter
data (HGSC and EC patients) [with the exception of borderline
significance (P-value = 0.05) for FOXM1]. To the best of our
knowledge, no association between CHEK1, FOXM1, KIF23,
or PARRPBP expression and prognosis has been reported for
mucinous ovarian carcinoma. Furthermore, combined predictive
models comprising protein expression status of all validated
biomarkers related to CCC, EC, and MC together with
established clinical markers improved the predictive power
(increased C-index values) compared with models containing
only established clinical markers, further strengthening the
importance of these biomarkers. Interestingly, the addition of
protein expression status of our previously identified PITHD1
(CCC) and GPR158 (MC) biomarkers to the predictive models
(CCC- or MC-associated biomarkers and established clinical
markers) further increased the predictive power [C-index= 0.88
(OS), 0.89 (DSS), and C-index= 0.91 (OS)].

Our study has many strengths. It involves the validation of
prognosis-related biomarkers within 3/5 of the major histotypes
in early-stage ovarian carcinoma. To date, such information of
histotype-specific prognostic biomarkers is limited for CCC, EC,
and MC, particularly for early-stage disease. IHC (a standard
method of testing protein expression) was used in the present
study, enabling easy detection of the identified biomarkers in the
clinic. The biggest drawback of the present study is the small
sample size (n = 112). Stratification of the cohort by histotype
and survival led to relatively small groups, e.g., three CCC-
related biomarkers (RPL13A, RPL37, SMYD2) only contained
one patient, resulting in questionable statistics. This is however
a general problem for studies on ovarian carcinomas since it is
a rare disease (541 patients diagnosed in 2016 in Sweden) (56).
Further, the majority of epithelial ovarian carcinoma patients
are diagnosed at late stages (stage III+IV: 62%) vs. early stages
(stage I+II: 36%) (57). Lastly, it has been reported that the
highest incidence of early-stage ovarian carcinomas are classified
as HGSC and not the studied histotypes [HGSC (35.5%), LGSC
(1.9%), EC (26.6%), MC (7.5%), CCC (26.2%)] (58). In the IHC
analysis, we were able to extend our RNA-sequenced patient
group (n = 45) with additional FFPE samples. However, larger
clinical studies involving larger patient cohorts are needed,
using patients from different regions and/or countries, to
further validate our conclusions and reduce the number of
histotype-specific biomarkers thereby enabling practical clinical
application of each panel. A further limitation is the difficulty
to validate our results in external cohorts within corresponding
histotypes, since most cohorts are primarily comprised of HGSC
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patients (e.g., the TCGA ovarian carcinoma cohort and KM
plotter). Only 3/17 biomarkers (CCT5, RPL37, PIK3CA) showed
opposing protein expression vs. RNA expression in relation to
clinical outcome. The discrepancy may be explained by e.g., the
different techniques used (transcriptomic expression of all cell
types vs. protein expression in tumor cells only), or regulation
of gene expression (59). In summary, we validated 17 novel
histotype-specific prognostic biomarkers; 10 biomarkers for
CCC, three biomarkers for EC and four biomarkers for MC, that
to the best of our knowledge have not previously been connected
with ovarian CCC-, EC-, or MC-prognosis in early-stage ovarian
carcinoma. The validated proteins may better predict the risk
(high or low) of CCC-, EC-, or MC-associated survival and
may thereby be used as potential targets to guide clinical
therapy decisions.
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