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Osteosarcoma (OS) is the most common primary malignancy of bone. Epi-

genetic regulation plays a pivotal role in cancer development in various

aspects, including immune response. In this study, we studied the potential

association of alterations in the DNA methylation and transcription of

immune-related genes with changes in the tumor microenvironment (TME)

and tumor prognosis of OS. We obtained multi-omics data for OS patients

from the Therapeutically Applicable Research to Generate Effective Treat-

ments (TARGET) and Gene Expression Omnibus (GEO) databases. By

referring to curated immune signatures and using a consensus clustering

method, we categorized patients based on immune-related DNA methyla-

tion patterns (IMPs), and evaluated prognosis and TME characteristics of

the resulting patient subgroups. Subsequently, we used a machine-learning

approach to construct an IMP-associated prognostic risk model incorporat-

ing the expression of a six-gene signature (MYC, COL13A1, UHRF2,

MT1A, ACTB, and GBP1), which was then validated in an independent

patient cohort. Furthermore, we evaluated TME patterns, transcriptional

variation in biological pathways, somatic copy number alteration, anti-

cancer drug sensitivity, and potential responsiveness to immune checkpoint

inhibitor therapy with regard to our IMP-associated signature scoring

model. By integrative IMP and transcriptomic analysis, we uncovered
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distinct prognosis and TME patterns in OS. Finally, we constructed a clas-

sifying model, which may aid in prognosis prediction and provide a poten-

tial rationale for targeted- and immune checkpoint inhibitor therapy in OS.

1. Introduction

Human osteosarcoma (OS) is one of the most common

and aggressive primary bone tumors, which is most

prevalent in adolescents and young adults, and primar-

ily affects the long bones, such as the distal femur, prox-

imal tibia, and humerus [1,2]. Although definitive

surgical resection combined with adjuvant chemother-

apy has remarkably improved the prognosis of patients

with localized OS, ~20% of OS patients suffer from pul-

monary metastatic disease at initial diagnosis [3]. The 5-

year survival rate of OS patients with chemotherapy

resistance or metastasis is ~20–30% [4–6]. To effectively

improve OS patients’ survival, it is imperative to iden-

tify novel biomarkers that can predict clinical outcomes

and the treatment sensitivity of OS.

DNA methylation alterations play a crucial role in

cancer development. During oncogenesis, the hyper-

methylation promoter region can lead to the epigenetic

silencing of tumor suppressor genes, whereas aberrant

DNA methylation of nonpromoter elements is an

important contributor to intratumoral heterogeneity.

Thanks to their highly conserved characteristics, some

DNA methylation-related biomarkers have been iden-

tified for the early diagnosis or prognosis prediction of

cancer [7–10].
The important role of the immune system in suppress-

ing oncogenesis and progression has made immunother-

apy the fourth pillar in cancer management, along with

surgery, chemotherapy, and radiotherapy. Nevertheless,

not all patients fully benefit from such therapies, and

many of them, including OS patients, fail to achieve

complete responses or suffer frequent relapses. Epige-

nomic signatures in immune and cancer cells are promis-

ing predictors of clinical outcomes with immunotherapy.

Jeschke et al. [11] profiled DNA methylation markers to

identify a methylation of the tumor-infiltrating lympho-

cytes (MeTIL) signature, thus evaluated the local tumor

immune response and improved the prognostic accuracy

for patients with breast cancer and other cancers. Dejae-

gher et al. [12] evaluated the relationship of epigenetic

glioblastomas subgroups with immune cell infiltrations

and survival, and validated the importance of DNA

methylation profiles in stratifying patients for

immunotherapy trials.

In this study we clustered OS patients into three

immune-related DNA methylation patterns (IMPs) that

were distinctly related to prognosis, and then analyzed

the diverse clinicopathological characteristics and tumor

immune microenvironmental landscape of patients in

different IMPs. A six-gene IMP-associated signature

scoring model and nomogram were constructed as a

robust prognostic model with favorable predictive per-

formance. After evaluating the genetic and epigenetic

features of IMPs and the correlations between IMPs and

somatic copy number alternations (SCNAs) in OS, we

demonstrated that the IMP-associated signature scoring

model was capable of distinguishing tumor microenvi-

ronment (TME) subtypes, predicating clinical outcomes,

and assessing therapeutic sensitivities in targeted therapy

and immunotherapy of OS.

2. Materials and methods

2.1. Data selection and acquisition

The acquisition and use of patients’ genetic data and

clinical information strictly followed the TARGET

Publication Guidelines (https://ocg.cancer.gov/programs

/target/target-publication-guidelines). We obtained clini-

cal information, RNA-seq (gene expression), DNA

methylation array, and DNA copy number variation

data of OS patients from the Therapeutically Applicable

Research to Generate Effective Treatments (TARGET,

https://ocg.cancer.gov/programs/target). RNA-seq data

of count and TPM (transcript per million) formats were

extracted from a total of 98 patients (96 of 98 with

matched clinical information). The Homo sapiens

GRCh38.103.chr.gtf annotation file from Ensembl was

downloaded for gene symbol annotation corresponding

to Ensembl ID [13]. The DESEQ2 R package was applied

to filter out low-abundance profiles and normalize

RNA-seq counts data [14]. Variance stabilizing transfor-

mation (VST) data processed by DESEQ2 was used for

downstream analysis such as the unsupervised clustering
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of patients, gene set variation analysis (GSVA), and

scoring model construction. Beta value matrices based

on the Illumina (San Diego, CA) HumanMethyla-

tion450 BeadChip assay were extracted from a total of

86 patients (84 of 86 with matched clinical information).

The CHAMP R package was used to normalize (using

BMIQ function) the DNA methylation profiles [15,16].

We utilized the IlluminaHumanMethyla-

tion450kanno.ilmn12.hg19 R package for genomic anno-

tation of CpG sites [17]. DNA copy number

segmentation profiles were extracted from a total of 88

patients. Clinical information of OS patients in the

TARGET cohort was collected, including patient ID,

gender, race, age, relapse during the follow-up, vital sta-

tus, overall survival follow-up time, relapse-free survival

follow-up time, metastasis at diagnosis, and histologic

response to chemotherapy.

We collected publicly available datasets for indepen-

dent validation. The gene expression profile (processed

microarray data) of OS patients in the GSE21257

dataset was downloaded from the GEO database

(www.ncbi.nlm.nih.gov/geo) [18,19]. DNA methylation

profiles (raw IDAT data) of OS patients in the E-

MTAB-9875 dataset and chondrosarcoma patients in

the E-MTAB-7263 dataset were downloaded from the

ArrayExpress of the EMBL-EBI database (www.ebi.

ac.uk) [20–22] and then processed through the CHAMP

R package. Clinical information of these cohorts was

collected when available, including patient ID, age,

gender, vital status, overall survival follow-up time,

metastasis status, metastasis-free survival follow-up

time, histologic response to chemotherapy, and tumor

grade. Detailed information for the TARGET OS and

the three validation datasets are documented in

Table S1. All patient cohorts used in this study were

obtained from publicly available datasets that were

collected with patients’ informed consent. The study

methodologies conformed to the standards set by the

Declaration of Helsinki, and were approved by the

local Ethics Committee.

We constructed the immunologic gene list

(Table S1) by combining gene sets from two previously

reported databases: the ImmuneSigDB (via MSigDB

Collections) and ImmPort [23,24].

2.2. Clustering immune-related DNA methylation

patterns of OS

To identify the immune-related methylation patterns in

OS, we applied an unsupervised consensus clustering

algorithm. Before clustering, we first performed uni-

variate Cox regression analysis on the methylation

level (beta values) of all CpG sites in 84 patients with

matched DNA methylation profiles and overall sur-

vival follow-up data. CpG sites that were associated

with patients’ OS were retained (P < 0.05). Next,

according to the genomic annotation of CpG sites, we

selected CpG sites corresponding to genes that were

subject to immunologic signature gene sets. Finally, we

utilized the CONSENSUSCLUSTERPLUS R package to carry

out an unsupervised consensus clustering on these

immune-related CpG sites based on the K-means algo-

rithm, and the resampling was set to be 1000 repeti-

tions to ensure clustering stability [25]. The distance

matrix of consensus clustering was applied for a sil-

houette analysis to assess how similar an individual

was matched to its assigned cluster compared to other

clusters by using the CANCERSUBTYPES R package [26].

2.3. Identification of differentially expressed

genes and differentially methylated CpG sites

The DESEQ2 R package was applied to process RNA-seq

counts data and then identify differentially expressed

genes (DEG) between two groups. The differential

expression threshold was defined with a fold-change of

threshold at 1.5 and an adjusted P value (false discovery

rate, FDR) < 0.05. The CHAMP R package was applied

to normalize beta-value matrices and then identify dif-

ferentially methylated probes (DMP) between two

groups. The differential methylation threshold was

defined with a 15% differential (|Db| > 0.15) and an

adjusted P value (FDR) < 0.05 [27]. ENHANCEDVOLCANO

and PHEATMAP R packages were utilized for the visualiza-

tion of volcano plot and heatmap [28,29].

2.4. Correlation between DNA methylation and

gene expression

A total of 83 OS patients with matched methylation

and expression data were used for correlation analysis.

According to genomic annotation of CpG sites, we

selected probes that were located in the promoter region

including TSS1500, TSS200, 50UTR, and 1st Exon.

Both cis- and trans-regulations were analyzed on the

DEGs. Pearson correlation coefficients were calculated

between the expression value and the methylation level

of each CpG site. Correlation was with significance if

the correlation coefficient was greater than 0.3 and the

adjusted P value (FDR) was less than 0.05.

2.5. Evaluation of TME cell infiltration

abundance

We used gene expression in TPM format (not log-

transformed) and applied three independent algorithms
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to evaluate the TME cell infiltration abundance: (a)

the CIBERSORTx algorithm was conducted through

its online tool (https://cibersortx.stanford.edu/) to

quantify the abundance of 22 types of TME infiltrat-

ing cells. We set parameters as follows: 100 times for

permutation test, batch correction – bulk mode, RNA-

seq data without quantile normalization, and output

scores using the absolute mode [30]; (b) the quanTIseq

algorithm was applied to quantify the abundance of 10

types of TME-infiltrating cells via the IMMUNEDECONV

R package [31,32]; (c) the xCell algorithm was applied

to evaluate the overall TME infiltration extent

including immune and stromal infiltration levels via

the IMMUNEDECONV R package [33].

2.6. Functional enrichment analysis

The CLUSTERPROFILER and GOPLOT R packages were

used for overrepresentation analysis, preranked gene

set enrichment analysis (GSEA), and visualization [34–
36]. Gene sets of hallmarks, Gene Ontology (GO) Bio-

logical Process section, Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway, and Reactome path-

way were analyzed in this study [37–40]. A P-

value < 0.05, FDR < 0.05 and | normalized enrichment

score (NES) | > 1.0 was considered as significant for

the preranked GSEA. The nonparametric GSVA of

patients among multiple groups was conducted by

using the GSVA R package [41].

2.7. Construction and validation of IMP-

associated signature scoring model

In order to evaluate the IMP and prognosis of individ-

ual patients with OS, we constructed an IMP-

associated signature scoring model by using TARGET

datasets as the training cohort and validated it using

an external dataset (GSE21257) as the testing cohort.

We first evaluated the prognostic significance of DEGs

between IMPs based on the univariate Cox regression

analysis and selected genes associated with patients’

overall survival (P < 0.05). Next, we applied Lasso

(least absolute shrinkage and selection operator)

regression analysis to narrow the range of candidates

and screened a relatively small group of genes with a

nonzero regression coefficient by using the GLMNET R

package [42]. A stepwise regression using the Akaike’s

information criterion (AIC) method was further per-

formed to construct a signature scoring model with an

optimal number of genes. For each individual, the risk

score was calculated as the sum of Expi 9 Betai, where

Exp means normalized gene expression, Beta means

regression coefficient and i means the candidate gene

in the scoring model. We conducted time-dependent

receiver operating characteristic (ROC) curves analysis

and Kaplan–Meier survival analysis to evaluate the

prognostic significance and accuracy of the IMP-

associated signature scoring model through the SUR-

VIVALROC and SURVMINER R packages. Harrell’s concor-

dance index (C-index) was calculated by using the

SURVCOMP R package. The optimal cutpoint for divid-

ing patients into high- and low-IMP_Risk group was

defined as the value with the largest Youden index in

the time-dependent ROC curve of the median overall

survival time. For each individual, the IMP_Risk score

along with clinicopathological characteristics were ana-

lyzed by univariate and multivariate Cox regression

analyses. Identified independent prognostic factors

were then selected to construct a nomogram for the

prediction of the likelihood of overall survival by using

the RMS R package [43]. Furthermore, we applied the

RMS and RMDA R packages to produce calibration plots

and performed decision curve analysis (DCA) to evalu-

ate the nomogram [44].

2.8. Identification of recurrent regions with

somatic copy number alteration

To determine significantly amplified or deleted regions

of SCNA, we applied GISTIC 2.0 to analyze DNA

copy number segmentation profiles [45]. The full anal-

ysis process of GISTIC 2.0 was conducted on the

GenePattern platform [46]. We set parameters of GIS-

TIC 2.0 as follows: a noise threshold of 0.3, a focal

length cutoff of 0.5, a confidence level of 90%, a

q-value threshold of 0.25, a copy-ratio cap of 1.5, and

arm-level peel-off mode enabled. GISTIC 2.0 identified

significant amplification or deletion and listed the

“wide peak” region of SCNA. We applied the GENOMI-

CRANGES R package to determine genes that overlapped

in any “wide peak” region with a residual q value less

than 0.05 (Residual q-values: The q-value of the peak

region after removing segments shared with higher

peaks) [47]. The results of GISTIC 2.0 analysis were

visualized by the MAFTOOLS R package [48].

2.9. Evaluation of protein–protein interaction

For the genes sets identified significantly associated

with IMP risk scores, we constructed a protein–protein
interaction (PPI) network based on the STRING data-

base and applied the CYTOSCAPE plugins for evaluation

[49,50]. CYTOHUBBA was utilized to identify hub genes

with top degree in the network [51]. MCODE was uti-

lized for identification of the most highly correlated

subclusters [52].
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2.10. Assessment of IMP-associated signature

scores on drug sensitivity

The database of the Genomics of Drug Sensitivity in

Cancer (GDSC) provided a landscape of pharmacoge-

nomic interactions in cancer [53]. GDSC collected the

transcriptomic profiles for about 1000 cancer cell lines.

Compounds were screened on these cancer cells and

corresponding dose responses were measured as IC50

or area under the curve (AUC) quantitatively. We

obtained normalized gene expression data, drug

response quantification (AUC), and information on

putative targets or pathways of drugs from the GDSC

database. Spearman correlation analysis was per-

formed to assess the correlation between drug sensitiv-

ity and the IMP risk score. A drug is considered

sensitive to the IMP risk score when the RS is less than

�0.15 and the adjusted P value (FDR) is less than

0.05.

2.11. Clustering analysis of expression pattern of

pan-cancer TME signatures

The categorizing method for pan-cancer TME patterns

and 29 sets of gene expression signatures describing

pan-cancer TME characteristics are referred to in

Bagaev et al.’s [54] Cancer Cell publication and col-

lected from its corresponding supplementary files. We

first calculated signature enrichment scores through

GSVA. Then the GSVA scores were robustly stan-

dardized (median-centered and scaled by median abso-

lute deviation) for all the patients. By using the

CONSENSUSCLUSTERPLUS R package, we applied an unsu-

pervised clustering algorithm to analyze the standard-

ized GSVA scores of TME signatures in 96 OS

patients. The K-means clustering algorithm was used

and resampling was set to 1000 repetitions. An analy-

sis of t-distributed stochastic neighbor embedding

(t-SNE) by using the RTSNE R package was further con-

ducted and visualized on a 3D map with the scatter-

plot3d package of R [55,56].

2.12. Comprehensive evaluation of predictive

capacity on response to immunotherapy

To evaluate the predictive capacity of IMP-associated

signature scoring model on response to immunother-

apy, we performed comprehensive exploration on two

independent approaches: (a) TIDE, Tumor Immune

Dysfunction and Exclusion, a computational algorithm

to evaluate the potential of tumor immune escape and

response to ICI therapy [57]. In our study, normalized

gene expression data (VST) was scaled (z-score) for

the analysis of the TIDE algorithm. (b) TIS, an 18-

gene T-cell inflamed signature developed by Nano-

String Technologies (Seattle, WA) which quantitatively

predicts the response to anti-PD-1 therapy [58]. We

calculated the TIS scores by averaging the normalized

gene expression data of the included 18 genes. In addi-

tion, we performed exploration on an external clinical

dataset with immunotherapy. The IMvigor210 cohort

with anti-PD-L1 therapy was analyzed in the study on

the association of the IMP-associated signature scoring

model and ICI therapy response [59]. The full dataset

of the IMvigor210 cohort, including the gene expres-

sion data and clinical information, was obtained from

http://research-pub.gene.com/IMvigor210CoreBiologies.

2.13. Statistical analysis and visualization

Statistical tests in this study were conducted via the R

software (v. 4.0.3, https://www.r-project.org/). To com-

pare continuous variables, we applied the Wilcoxon

test for two groups and a Kruskal–Wallis test for three

or more groups. Categorical data were tested by the

chi-square test. The Kaplan–Meier method using the

log-rank test and Cox proportional hazards regression

were applied in survival analysis. A statistical test was

considered statistically significance at two-sided

P < 0.05. We applied the GGPLOT2 R package for data

visualization [60].

3. Results

3.1. Identification of immune-related DNA

methylation patterns (IMPs) that associates with

prognosis of OS patients

We downloaded clinical information and DNA

methylation profiles of all OS tissue patients from

TARGET and normalized the methylation beta value

matrix via the CHAMP R package. A total of 84

patients were matched with DNA methylation profiles

and clinical information. We found that a methylation

level of 39,335 CpG sites were associated with OS

patients’ overall survival by univariate Cox regression

analysis. In order to explore the immune-related

DNA methylation patterns (IMPs) in OS, we curated

an immunologic signature gene set, which included

20,837 genes through combining two previously

described databases: ImmuneSigDB and Immport.

Referring to the Illumina HumanMethylation450k

annotation file, we obtained the target gene of each

methylation probe according to the UCSC genome

annotation, and further identified 25,924 out of the
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39,335 CpG sites that were subject to the immuno-

logic signature gene sets. The methylation beta value

matrix of these immunologic CpG sites were

extracted for an unsupervised consensus clustering

(Table S2).

As shown in Fig. 1A and Fig. S1A,B, we catego-

rized OS patients into three clusters with a reasonable

number of patients in each cluster (n = 32, 26 and 26

in clusters 1, 2, and 3, respectively. Average silhouette

width: 0.71). To determine the association of IMP and

prognosis of OS patients, we performed Kaplan–Meier

survival analysis and obtained a P value of 1.402e-09

from the log-rank test, indicating that patients of dif-

ferent IMPs had distinct overall survival probability.

As shown in Fig. 1B, patients in cluster_2 had a satis-

factory prognosis. However, the prognosis of patients

in cluster_3 was extremely unfavorable, and the overall

survival probability drops to 50% in the 2-year follow-

up and 25% in the 5-year follow-up. Furthermore, we

compared the clinicopathological characteristics of OS

patients (Fig. 1C,D, and Fig. S1C), with no obvious

alterations of age, gender, or race among three IMPs.

Notably, patients of cluster_3 were observed with an

unsatisfactory histological response to chemotherapy

and a higher metastasis rate. In order to confirm the

robustness of IMP, we performed validation on two

independent DNA methylation cohorts (E-MTAB-

9875 and E-MTAB-7263) by extracting the same

immunologic CpG sites and conducted unsupervised

consensus clustering (Table S2). For the E-MTAB-

9875 cohort, in order to avoid nonbiological variation,

a small number of OS patients tested by 450K Bead-

Chip were excluded. A total of 219 OS patients tested

by the EPIC BeadChip were used for clustering. We

observed a significantly different distribution of tumor

differential grades among three IMPs (P = 0.001)

(Fig. S1D–F). For the E-MTAB-7263 cohort, all 102

chondrosarcoma patients were clustered into three

IMPs and we found that a distinct prognosis existed

among three IMPs through the Kaplan–Meier survival

Fig. 1. Identification of immune-related methylation patterns (IMPs) in osteosarcoma and immune infiltration characteristics of different

IMPs. (A) An unsupervised consensus clustering (k = 3) of Methylation beta value matrix of these immune-related CpG sites in the TARGET

OS cohort. (B) Kaplan–Meier analysis reveals distinct overall survival of the three IMPs (log-rank test, n = 84). (C) Histological response to

chemotherapy (Stages 1/2 and 3/4) of patients with OS among three IMPs (chi-square test, n = 42). (D) Metastasis at diagnosis of patients

with OS among three IMPs (chi-square test, n = 84). (E) Relative proportion of immune infiltrating cells patients with OS of three IMPs and

infiltrating scores of each type of immune infiltrating cells analyzed by CIBERSORTx (Kruskal–Wallis test, n = 83). Boxplot displaying the

data distribution: the lower and upper hinges represent the first and third quartiles, the upper/lower whiskers extend from the

corresponding hinges to the largest/smallest values at most 1.5 * interquartile range from the hinges. Data beyond the end of the whiskers

are considered outliers and are not shown. (F) Heatmaps of GSVA enrichment scores (z-score) of hallmark, GO biological process and

Reactome pathway gene sets in relation to TME in different IMPs.

2179Molecular Oncology 16 (2022) 2174–2194 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

D. Shi et al. IMP-associated prognostic model for osteosarcoma



analysis (P = 3.05e�11) (Fig. S1G–I), in which

patients of cluster 3 have an extremely poor overall

survival.

3.2. Immune infiltration characteristics of

different IMPs

To comprehensively evaluate tumor immune microen-

vironment characteristics of the three IMPs, we

extracted the transcriptomic profile of each sample and

applied two independent deconvolution algorithms:

CIBERSORTx and quanTIseq, to calculate specific

immune cells composition in the TME (Table S3). The

results from both analytic approaches presented signifi-

cantly different immune infiltration features in the

TME of three IMPs, indicating that the patients in dif-

ferent IMPs were of different immune cells infiltration

landscapes.

As shown in Fig. 1E, CD8+ T-cell infiltration was

significantly higher in cluster_2 patients, while T cells

CD4 naive infiltration was significantly higher in clus-

ter_3 patients compared to the other two clusters.

Cytotoxic CD8+ T cells can recognize tumor-specific

(neoantigens) or tumor-associated antigens and exert

an antitumor function by releasing perforin and gran-

zymes, etc. [61]. In addition, patients of cluster_2 were

found to have an obviously higher level of activated

NK cells, and a lower level of resting NK cells.

Patients of cluster_3 were found to have a relatively

higher infiltration level of cdT cells, which are known

to promote cancer progression by producing IL-17 or

facilitating the ability on myeloid derived suppressor

cells in TME [62,63], although antitumorigenic effects

of cdT cells through various mechanisms have also

been reported [64–66]. The quanTIseq analysis

revealed apparently lower infiltration of macrophages,

neutrophils, CD4+ T cells, and higher infiltration of B

cells, DCs in cluster_3 (Fig. S1J). The pro- and antiin-

flammatory macrophages may have complex crosstalk

and biological roles along with the varying TME sta-

tus [67]. The CD4+ T cells are associated with the

enhanced tumor immune response [68]. Nonetheless,

the controversial protumor or antitumor roles of B

cells [69], neutrophils [70] and DCs [71] have been

reported and may be affected by the tumor immune

microenvironment in different cancers. Moreover, we

applied the xCell algorithm, a practical method for

inferring multiple immune and stromal cell types based

on ssGSEA, to evaluate the overall TME composition

in different clusters (Table S3). We found a higher

TME score and immune score in cluster_2, while no

significant difference of stomal score was found among

the three clusters (Fig. S1K).

In order to assess whether the distribution of immune

cells coincide with our finding that a distinct prognosis

exists among IMPs, we carried out the Kaplan–Meier

survival analysis to examine potentially beneficial or

harmful significance of the infiltration level on OS

patients’ prognosis of each cell type. The “surv_cut-

point” function of the “SURVMINER” R package was used

to determine the optimal cutoff point of the CIBER-

SORTx absolute scores (the minimal proportion of

observations per group was set to 20% to avoid the

occurrence of too few individuals in a certain group). As

shown in Fig. S1L, we observed that the high infiltra-

tion levels of T cells CD4 memory resting, T cells follic-

ular helper, T cells CD8, Monocytes, and Macrophages

M2 were beneficial to OS patients’ overall survival,

while that of T cells CD4 naive, NK cells resting, and

Dendritic cells resting could be harmful. Together, T

cells CD8, T cells CD4 naive, NK cells resting, Mono-

cytes, Dendritic cells resting and Macrophages M2 infil-

trations were shown to be consistent in the distribution

among IMPs and the potential impact on survival.

The gene set variation analysis (GSVA) analysis

indicated that some cancer-related hallmarks and path-

ways varied among the IMPs, as shown in the heat-

maps of GSVA enrichment scores such as: apoptosis,

Notch signaling and KRAS signaling, and immune

biological processes including interleukins-,

interferons-, TNFa- and TNFb-signaling, CD4+ abT
cells activation, DCs chemotaxis and leukocytes medi-

ated cytotoxicity, and PD-1 signaling pathways

(Table S3 and Fig. 1F). Taken together, our results

demonstrated that elevated immune infiltration,

enhanced cytotoxic potential, and activated antitumor

immune response were found in the cluster_2 OS

patients, while the cluster_3 presented with immuno-

suppressive TME status, and hence was associated

with better prognosis in the cluster_2 but shorter sur-

vival in the cluster_3.

3.3. Characteristics of DNA methylation and

gene expression in IMPs

With regard to the most distinct overall survival and

TME-infiltrating cells composition between cluster_2

and 3, we performed differentially methylated probes

(DMPs) and differentially expressed genes (DEGs)

analyses (Table S4). Compared to cluster_2, a total of

32,805 DMPs (15,410 hypomethylated and 17,395

hypermethylated) and 2747 DEGs (1516 upregulated

and 1231 downregulated) were identified in cluster_3

(Fig. S2A,B). Among them, 8176 DMPs and 1910

DEGs were found to form the immunologic signature

gene sets (Fig. 2A,B).
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To study the regulatory effect of DNA methylation

on gene expression of the 1910 immunologic DEGs,

we performed Pearson correlation analysis to inspect

both cis- and transregulation. For the cis-regulation

effect, where gene expression is usually colocated with

the DNA methylation level of its promoter region, we

found methylation levels of 2047 CpG sites corre-

sponding to 754 genes, that were significantly corre-

lated with gene expression levels (1309 negative and

738 positive correlations), consistent with the notion

that cis-regulation usually implies a negative correla-

tion between promoter methylation and gene expres-

sion. The transregulation effect, where the methylation

level at the promoter region of one gene is correlated

with expression level of other genes, was analyzed on

the DEGs and DMPs among IMP cluster_2 and 3. We

found most DEGs (1638 out of 1910) were transregu-

lated by immune-related DMPs (Table S4).

3.4. Construction of an IMP-associated signature

scoring model

As the above results indicated that possible relationships

might be extrapolated between clinical outcomes and

immune phenotypes among IMPs, we sought to build a

signature scoring model to quantitatively evaluate the

IMPs and assess the prognosis of individual OS patients.

We included a total of 96 patients with matched RNA-

Seq data and clinical follow-up data from TARGET as

the training cohort, and used an independent OS dataset

from GEO (GSE21257, n = 53) as the testing cohort for

validation. We analyzed the 1910 immunologic DEGs

between IMPs cluster_2 and 3 by the univariate Cox

regression and identified the expression levels of 662

genes were associated with overall survival.

Moreover, a Lasso penalized Cox regression analysis

identified nine genes for constructing the prognostic risk

model. Based on the method of stepwise regression using

the Akaike’s information criterion (AIC) method, we

constructed a six-gene prognostic risk scoring model

with most optimal candidates (Fig. 3A,B and Table S5).

An IMP_Risk score = expression level of MYC *
0.4998 + expression level of COL13A1 * (0.2715) +
expression level ofUHRF2 * (0.3338) + expression level

of MT1A * (0.2558) + expression level of ACTB *
(�0.4997) + expression level of GBP1 * (�0.2012). The

concordance index (C-index) of the risk score model was

0.82 (P = 2.06e-10). As shown in the time-dependent

ROC curves (Fig. 3C), AUCs were 0.827, 0.822, 0.858

for the 1, 3, 5-year overall survival prediction by

IMP_Risk scores, respectively. For the overall median

survival time of the training cohort (3862 days,

Fig. S2C), the AUC was calculated to be 0.912 and we

defined 0.751 of the IMP_Risk score as the cutoff value

for dividing high- and low-IMP Risk groups. As shown

in Fig. 3D and Fig. S2D, Kaplan–Meier survival analy-

sis showed high-IMP_Risk patients had significantly

shorter overall survival (log-rank P = 1.19e-9). The dis-

tribution of the risk score, survival status, and the six-

gene expression profile between high- and low-risk score

groups is shown in Fig. S2E and Fig. 3E.

In order to confirm whether the IMP_Risk score

was independent with other clinical features, patients

with available clinicopathologic parameters were

Fig. 2. Characteristics of DNA methylation and gene expression of IMPs. (A) A heatmap of methylation levels (z-score) of differentially

methylated probes (immunologic signature gene sets) between cluster 3 and cluster 2 of IMP. (B) A volcano plot differentially expressed

genes (immunologic signature gene sets) between cluster 3 and cluster 2 of IMP (Wald test implemented in the DESEQ2, n = 52).
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included for a univariate Cox regression analysis.

We retained parameters with P-values less than 0.1

in a multivariate Cox regression analysis. As shown

in Table S5 and Fig. 3F, the IMP_Risk score, histo-

logic response, and metastasis at diagnosis were

identified as independent prognostic factors of over-

all survival. We also verified the good predictive

capacity on relapse-free survival of the IMP-

associated signature scoring model by using time-

dependent ROC analysis for the 1, 3, 5-year overall

survival and Kaplan–Meier survival analyses

(Fig. S2F).

A total of 53 OS patients from GSE21257 with

matched clinical follow up and microarray data were

used for validation of the IMP-associated signature

scoring model. The IMP_Risk score of each patient

was calculated using the same formula with normal-

ized gene expression data. Through the time-dependent

ROC analysis on overall median survival time

(5670 days, Fig. S2G), we determined 5.95 of the

Fig. 3. Construction and validation of an IMP-associated signature scoring model in osteosarcoma. (A) A total of nine candidates were

screened through Lasso cox regression analysis of genes identified by univariate cox regression analysis. Left: Variable and coefficient

profiles in the LASSO Cox regression model. Right: Tenfold cross-validation of the LASSO Cox regression model for the tuning parameter

selection. The horizontal axis represents the log (lambda) value, and the vertical axis represents partial likelihood deviance. The red dots

represent partial likelihood deviance for a tuning parameter, and error bars represent standard errors. (B) A forest plot of the six-gene model

determined by the stepwise regression model using the Akaike Information Criterion (AIC) method. The black dots represent hazard ratios

(HRs), and error bars represent 95% confidence intervals (CIs) (multivariate Cox regression). (C) Time-dependent ROC curve analysis of the

IMP-associated signature scoring model (IMP Risk scores) for predicting the overall survival probability of 1-, 3-, 5-year and median-survival

time of patients with OS in the TARGET cohort. (D) Kaplan–Meier analysis on overall survival of high- and low-IMP Risk groups divided by

the optimal cutoff point (log-rank test, n = 96). (E) A heatmap of the six-gene signature expression (z-score) of high- and low-IMP Risk

groups. (F) A forest plot of multivariate Cox regression analysis of IMP-associated signature scores and other four clinicopathological

characteristics. The black dots represent HRs, and error bars represent 95% CIs (multivariate Cox regression). (G, H) Valuation of the IMP-

associated signature scoring model on an external OS cohort: time-dependent ROC curve analysis of the IMP-associated signature scoring

model (IMP Risk scores) for predicting the survival probability of 1-, 3-, 5-year follow-up time and Kaplan–Meier analysis of high- and low-

IMP Risk groups (divided by optimal cutoff point) of patients in the GSE21257 cohort on overall survival (log-rank test, n = 53). (I) A nomo-

gram comprising IMP-associated signature scores, histologic response to chemotherapy, and metastasis state for predicting the overall sur-

vival probability of patients with OS.
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IMP_Risk score as the cutoff point for dividing high-

and low-IMP_Risk groups (Fig. S2H). As shown in

Fig. 3G,H and Fig. S2I, both time-dependent ROC

and Kaplan–Meier survival analyses were performed

likewise, and we found that the IMP-associated signa-

ture scoring model maintained excellent prognosis pre-

dictive capacity on both overall survival and

metastasis-free survival. Therefore, the results of both

the training and testing cohorts have demonstrated

that the IMP-associated signature scoring model can

function as an excellent model for predicting short-

term or long-term overall survival and relapse/

metastasis-free survival in OS patients, which would

benefit our decision-making on therapeutic strategies

and/or prediction on long-term prognosis/clinical out-

comes of OS patients.

For the TARGET-OS dataset, we further integrated

the IMP_Risk score, histologic response, and metasta-

sis at diagnosis to construct a nomogram, and the

results showed that the IMP_Risk score was a major

risk contributor (Fig. 3I). As shown in the calibration

curves, the nomogram offered an ideal predictive accu-

racy for OS patients’ overall survival (Fig. S2J). In

addition, we conducted a decision curve analysis

(DCA) and showed that the IMP_Risk score had an

evidently higher net benefit, compared to histologic

response and metastasis at diagnosis (Fig. S2K).

Taken together, these results indicated that the IMP-

associated signature scoring model and nomogram

provided excellent capacity and consistency for overall

survival prediction.

3.5. Molecular characteristics associated with

IMP-associated signature scores

Using the Pearson correlation analysis, either positive

or negative coexpression was analyzed among the six

genes included in the IMP-associated signature scoring

model (Fig. 4A). We found the expression levels of

MYC, COL13A1, UHRF2, and MT1A were negatively

correlated with methylation levels of specific promoter

CpG sites (Fig. 4B, Fig. S3A, and Table S6). A total

of 746 upregulated and 876 downregulated DEGs were

found between high- and low-IMP_Risk groups, in

which 474 upregulated and 579 downregulated genes

were associated with immunologic signature gene sets

(Fig. S3B). Through the preranked GSEA, we found

that several biological processes and pathways, such as

cytokine or chemokine signaling and humoral or cellu-

lar immune response, were significantly activated in

the low-IMP_Risk group, while hypoxia, MYC targets,

Wnt/b-catenin signaling, tyrosine metabolism, and

other tumorigenesis-related pathways were more

enriched in the high-IMP_Risk group (Fig. 4C,

Fig. S3C, and Table S6).

To gain more insight into molecular characteristics

associated with IMP-associated signature scores, 218

immune DEGs were identified as an IMP_Risk score

highly associating genes through Pearson correlation

analysis (absolute Pearson correlation coefficient ≥ 0.3

and FDR < 0.05, Table S6). A heatmap revealed that

the expression of 218 immune DEGs correlated with

IMP_Risk scores (Fig. 4D). Overrepresentation analy-

sis identified the enriched biological functions and

pathways of these genes, such as IFN-c signaling, T-

cell proliferation, and activation, cell–cell adhesion,

SLIT/ROBO regulation, and NOTCH1/3 signaling

pathways (Fig. 4E,F). In addition, we built a PPI net-

work via the STRING database and established

prospective protein–protein interactions among these

genes. As shown in Fig. 4G, we identified top-5 hub

genes and top-3 hub clusters of the global PPI network

through CYTOSCAPE MCODE and HUBBA plugins.

Furthermore, we evaluated the divergence of

somatic copy number alternations (SCNAs) between

high- and low-risk OS patients by using GISTIC 2.0,

and identified specific chromosome regions with signifi-

cant amplification or deletion between different

IMP_Risk groups (Table S6). As shown in Fig. 4H,

amplifications on chromosomes 1 and 8 accompanied

with deletions on chromosome 13 were enriched in the

high-risk group, while amplifications on chromosomes

14 and 17 accompanied with deletions on chromosome

3 were enriched in the low-risk group. Focal amplifica-

tion peaks, including the well-studied cancer-driven

gene MYC (8q.24.21) and several antiapoptotic genes

(MCL1, HORMAD1, and ECM1 on 1q21.2), were

identified in the high-risk patients, along with a focal

deletion peak at 13q14.2. It is noteworthy that focal

amplification peaks including multiple TCR-related

genes (14q11.2 and 17p11.2) were identified in the low-

IMP_Risk group.

3.6. IMP-associated signature scores involved in

pharmacogenomic interactions

To further understand the potential association of the

IMP_Risk score and drug response, we applied the

Spearman correlation analysis to identify significantly

correlated pairs between the IMP_Risk score and drug

sensitivity based on the Genomics of Drug Sensitivity

in Cancer (GDSC) database, which documented the

transcriptional profile and drug sensitivity data on

about 1000 cancer cell lines (Fig. 5A, Table S6). We

identified 34 pairs in which drug sensitivity was corre-

lated with the IMP_Risk score, including PI3K/
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MTOR inhibitor AZD8055 (RS = �0.20, P = 8.80e-10),

CDK inhibitor PHA-793887 (RS = �0.20, P = 2.27e-

09), and RTK inhibitor sunitinib (RS = �0.18,

P = 0.00035). We also identified four pairs in which drug

resistance was correlated with the IMP_Risk score,

including Src and Abl kinase inhibitor saracatinib

(RS = 0.13, P = 0.01) and EGFR inhibitor cetuximab

(RS = 0.10, P = 0.003). In addition, we interrogated

putative targets and signaling pathways of the drugs sen-

sitive to the IMP_Risk score, and found that most of

Fig. 4. Integrative analysis of molecular characteristics of osteosarcoma and IMP-associated signature scoring model. (A) Co-occurrence of

the six-gene signatures in IMP-associated signature scoring model. (B) Correlation analysis of gene expression level and DNA methylation

level at the promoter region of the genes in IMP-associated signature scoring model (Pearson correlation test, n = 83). Gray zone

represents the 95% CI for prediction from a linear model. (C) GSEA plots of altered hallmarks, GO biological processes, and KEGG

pathways gene sets between high- and low-IMP Risk subgroups. (D) A heatmap for the expression (z-score) of IMP Risk scores associated

immune genes. (E) A circular plot for the overrepresentative analysis in GO biological processes of the IMP Risk scores associated immune

genes. (F) A Sankey plot for overrepresentative analysis in Reactome pathways of the IMP Risk scores associated immune genes. (G) PPI

analysis of the IMP Risk scores associated immune genes. The three most correlated subclusters are highlighted by varied color and Top-5

hub genes are marked with a red circular border. (H) Recurrent somatic CNV identified by GISTIC 2.0 in high- and low-IMP Risk subgroups

(n = 42 and 42, respectively).
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them targeted JNK/p38, ERK/MAPK, PI3K/mTOR,

and cell cycle signaling pathways (Fig. 5B).

3.7. Association between IMP-associated

signature scores and TME patterns in OS

To investigate the complex role of TME in mediating

cancer progression and metastasis, Bagaev et al. [54]

defined four distinct pan-cancer TME subtypes,

namely, immune-enriched, fibrotic (IE/F); immune-

enriched, nonfibrotic (IE); fibrotic (F); and depleted

(D). Among the four TME patterns, patients of the

two immune-enriched patterns had relative better

prognosis, especially for those of the TME_IE pattern

in specific types of cancer. However, patients of the

TME_D pattern had consistently poor prognosis

across pan-cancer datasets. Similarly, we utilized an

unsupervised clustering method to assign the TAR-

GET OS patients into four groups by using robustly

standardized GSVA enrichment scores of the 29 func-

tional gene expression signatures (FGES) sets

(Fig. S4A and Fig. 6A, Table S7). As shown in

Fig. 6B, t-SNE analysis showed the apparent distribu-

tion of GSVA results among the four TME patterns.

Detailed standardized GSVA enrichment scores of

each OS sample, as shown in a heatmap, revealed dis-

tinct FGES characteristics among the four TME pat-

terns (Fig. 6C).

Collectively, three IMP clusters, high/low IMP-

associated signature scoring risk levels, and four TME

patterns displayed significant concordant relationships

among OS patients in TARGET (Fig. 6D–G). For

example, the high-IMP_Risk group contained most of

IMP cluster_3 and a higher proportion of the TME_D

pattern, whereas IMP cluster_2 and TME_IE pattern

were more enriched in the low-IMP_Risk group. Con-

sistent with previously published results, IMP cluster_2

represented 67% and 56% of the TME_IE and IE/F

pattern with better prognosis, while the TME_D pat-

tern with poor prognosis was more enriched in IMP

cluster_3, which was predominantly associated with

high-IMP_Risk scores.

3.8. Prediction of response to immunotherapy

using the IMP-associated signature scoring

model

As we demonstrated that IMP-associated signature

scores were associated with TME patterns in OS, we

sought to study whether the IMP-associated signature

scoring model could predict OS patients’ response to

immunotherapy. We utilized the Tumor Immune Dys-

function and Exclusion (TIDE) module to assess the

potential clinical efficacy of immunotherapy on

patients of different IMP_Risk groups. The TIDE

algorithm evaluates the expression signatures of T-cell

dysfunction and T-cell exclusion to assess tumor

immune evasion and integrate them into a total TIDE

score. A higher TIDE prediction score represents a

higher potential for immune evasion, indicating that

the patients are less likely to benefit from ICI therapy.

In addition, the TIDE module analyzes multiple fea-

tures to estimate tumor immune evasion, such as cor-

relation with the MDSC, TAM or CAF signatures.

Using the TARGET OS datasets, we did not find

any significant differences of overall TIDE scores

between high- and low-risk groups (Fig. S4B).

Nonetheless, we found relatively higher T-cell exclu-

sion scores, but lower T-cell dysfunction scores in the

high-risk group (Fig. 7A). To our knowledge, a lower

T-cell dysfunction score in the high-risk group could

result from depleted T cells infiltration. For other fea-

tures produced by TIDE, we found that the lower

expression of a IFNG signature was correlated with

Fig. 5. The relationship between IMP-associated signature scores and drug sensitivity. (A) The correlation between IMP Risk scores and

drug sensitivity (AUC values of GDSC) examined by the Spearman analysis (sensitivity data of 518 drugs and gene expression profiles of

1014 cell lines). Correlation to drug response is indicated by Spearman coefficient with RS > 0 for resistance and RS < 0 for sensitivity.

(B) Putative targets or functional pathways of the drugs that are sensitivity to the IMP Risk scores.
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M2 TAM, MDSCs, and CAFs signatures of the high-

risk group (Fig. 7B,C). A higher proportion of CTL was

associated with the low-risk group (Fig. S4C). More-

over, we evaluated the T-cell inflamed signature (TIS)

scores and found relatively lower TIS scores in the high-

risk group (Fig. 7D and Table S7). Taken together,

these results indicated that OS patients in the high-risk

group might have a higher potential of immunosuppres-

sive TME status and worse response to ICI therapy.

Lastly, we used the IMvigor210 cohort, PD-L1 ther-

apy follow-up datasets, to assess the capability of

IMP_Risk scores in predicting the ICI therapy response,

and found that patients of the low-IMP_Risk were

provided with significant clinical benefits, better thera-

peutic responses, and a markedly prolonged overall sur-

vival after PD-L1 therapy (Fig. S4D and Fig. 7E–H,

Table S7). Furthermore, we found the tumor mutation

burden (TMB) and tumor neoantigen burden (TNB)

were significantly higher in the low-IMP_Risk group

(Fig. 7I,J), which may at least partially explain the

advantage and the greater benefit of ICI therapy for the

low-IMP_Risk group.

Collectively, our results strongly suggest that the

established IMP-associated signature scoring model

may effectively predict the response to ICI therapy

and clinical outcomes of OS patients.

Fig. 6. IMP-associated signature scores reveal distinct tumor microenvironment patterns in osteosarcoma. (A) An unsupervised consensus

clustering (k = 4) of the robustly standardized GSVA enrichment scores of TME-pattern signature gene sets in TARGET OS cohort. (B) A 3D

t-sne distribution of OS patients corresponding to each TME pattern based on unsupervised consensus clustering. (C) A heatmap of the

robustly standardized GSVA enrichment scores for OS patients assigned into four distinct TME patterns based on unsupervised consensus

clustering. (D) A Sankey plot that displays the affiliation among IMPs, IMP Risk levels, and TME patterns. (E) The detailed proportions of

IMPs of each TME pattern (chi-square test, n = 83). (F, G) Boxplots showing the distribution of IMP Risk scores among different IMPs and

TME patterns, respectively (Kruskal–Wallis test, n = 83 and 96).
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4. Discussion

Epigenetic processes regulate gene expression without

altering the DNA sequence. As a heritable epigenetic

mark, DNA methylation is a biological process where

a methyl group is transferred to the C5 position of the

cytosine of DNA through DNA methyltransferases

(DNMTs) [7]. Broad alterations of the DNA methyla-

tion have been shown to accompany cancer initiation

and development, although certain DNA methylation

patterns are cancer-specific and conserved across indi-

viduals [10]. Accumulating studies in the past two

decades have revealed the important role of epigenetic

therapies in directly killing cancer cells, but also modu-

lating antitumor immune response [72]. In this study

we clustered OS patients into three immune methyla-

tion patterns (IMPs) based on methylation levels of

CpG sites related to immunologic gene sets, and

demonstrated distinct prognosis, clinicopathologic

characteristics, as well as the immune infiltration land-

scape in different IMPs.

Based on the relative robustness and tissue-specific

characteristics of DNA methylation, detection of DNA

methylation-related biomarkers has been developed to

Fig. 7. Predictive value of IMP-associated signature scoring model on response to immunotherapy. (A) Violin and boxplots showing T-cell

exclusion and dysfunction of high- and low-IMP Risk subgroups evaluated by TIDE (Wilcoxon test, n = 96). (B) Violin and boxplots showing

IFNG signature expression of high- and low-IMP Risk subgroups evaluated by TIDE (Wilcoxon test, n = 96). (C) Violin and boxplots showing

correlations to expressions of M2 TAM, MDSC, and CAF-associated signatures of high- and low-IMP Risk subgroups evaluated by TIDE

(Wilcoxon test, n = 96). (D) Violin and boxplots showing TIS (T-cell inflamed signature) scores of high- and low-IMP Risk subgroups

(Wilcoxon test, n = 96). (E) A time-dependent ROC curve analysis of the IMP-associated signature scoring model for predicting the overall

survival probability on median-survival time of the IMvigor210 cohort (n = 348). (F) Kaplan–Meier analysis on overall survival of high- and

low-IMP Risk groups divided by optimal cutoff point in the IMvigor210 cohort (log-rank test, n = 348). (G) Violin and boxplots showing

distribution of IMP Risk scores of different overall responsive subgroups in the IMvigor210 cohort (CR, complete response; PR, partial

response; SD, stable disease; PD, progressive disease) (Kruskal–Wallis test, n = 298). (H) Proportions of overall responsive subgroups

corresponding to high- and low-IMP Risk levels (chi-square test, n = 298). (I, J) Spearman correlation analysis and Wilcoxon test for tumor

mutation burden (TMB) and tumor neoantigen burden (TNB) on IMP Risk scores and levels in the IMvigor210 cohort. Data distribution

displayed by violin plots. Gray zone in the correlation plots represent the 95% CI for prediction from a linear model (n = 272 and 245,

respectively).
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aid in cancer diagnosis and prognosis prediction.

Rosenblum et al. [73] reported the significant correla-

tion between DNA methylation profiles and clinical

outcomes of OS patients. Tian et al. [74] identified sev-

eral methylated DEGs as OS survival-related genes,

which might be helpful in early diagnosis and precision

therapy. Deng et al. [9] established a four-methylated

lncRNA signature to predict OS patients’ survival.

Here, we constructed a robust IMP-associated signature

scoring model, which constitutes six genes: MYC,

COL13A1, UHRF2, MT1A, ACTB, and GBP1 to quan-

titatively evaluate IMPs and hence predict the prognosis

of individual OS patients. Our IMP-associated signa-

ture scoring model was validated as an independent

prognostic factor for OS patients. Furthermore, we

developed a nomogram by combining the IMP_Risk

score, histologic response to chemotherapy, and metas-

tasis at diagnosis for prognosis prediction, which can be

used as a valuable tool to aid our decision-making for

the clinical management of osteosarcoma.

The c-MYC proto-oncogene encodes a transcription

factor and plays a crucial role in tumorigenesis such as

proliferation, growth, apoptosis, metabolism, DNA

replication, and angiogenesis. Aberrant MYC DNA

methylations in multiple myeloma, prostate cancer, and

colon cancer are associated with more aggressive cancer

progression and metastasis [75–77]. Collagen type XIII

is a transmembrane protein localized in cell–cell and

cell–extracellular matrix (ECM) junctions, and was

implicated in a tumor suppressor in the development of

intestinal lymphomas [78], although Miyake et al. [79]

identified the association between COL13A1 overex-

pression and increased invasion capability in urothelial

cancer. The controversial roles of UHRF2 have been

reported in different cancers, as its oncogenic role was

reported in colorectal cancer through stabilizing TCF4

mediated Wnt/b-catenin signaling, while it acted as a

negative regulator of epithelial-mesenchymal transition

(EMT) in esophageal squamous cell carcinoma [80,81].

MT1A is a member of metallothionein genes, which are

implicated as emerging modulators in immune response

[82]. Aberrant MT1A gene methylation and expression

were associated with glioma progression [83]. Lastly,

the roles of guanylate-binding protein 1 (GBP1) in can-

cer are seemingly context-dependent, since its upregula-

tion was associated with decreased progression in breast

and colorectal cancer, but increased progression, metas-

tasis, and resistance in ovarian cancer and glioblastoma

[84]. Thus, except for C-MYC, the exact functions of

five of the six signature genes remain to be fully under-

stood.

To explore molecular characteristics associated with

IMPs, we performed multilevel analyses between high-

and low-IMP_Risk groups. Through the GSEA, we

showed that immune response-related signaling path-

ways were significantly activated in the low-IMP_Risk

group, while MYC targets, Wnt/b-catenin signaling,

and other tumorigenesis-related pathways were more

enriched in the high-IMP_Risk group. The overrepre-

sentation analysis identified IMP_Risk scores-

associated genes were enriched with IFN-c signaling,

T-cell proliferation and activation, and NOTCH1/3 sig-

naling pathways. Thus, we speculated that IMP_Risk-

related biomarkers may play a pivotal role in OS

tumorigenesis through the aforementioned biological

processes, while an intense immune response phenotype

may exist in patients of the low-IMP_Risk group.

The SCNA analysis revealed that high-IMP_Risk

patients had multiple recurrent focal amplification peaks

covering genomic regions ofMYC,MCL1,HORMAD1,

and ECM1, while several focal amplification peaks of

TCR-related genes were detected in low-IMP_Risk OS

patients. MCL-1 is an antiapoptotic BCL-2 family pro-

tein and prevents intrinsic apoptosis by binding and

sequestering proapoptotic BCL-2 family members such

as BIM, NOXA, BAX, or BAK. Although OS cell lines

remained insensitive to single inhibition of MCL-1, Kehr

et al. [85] reported that dual inhibition of BCL-XL and

MCL-1, either by inhibitors or siRNA transient silenc-

ing, induced potent and rapid apoptosis via the mito-

chondrial pathway in pediatric solid cancer.

Furthermore, based on pharmacogenetic data reported

by GDSC, we found that the IMP_Risk score was asso-

ciated with resistance to drugs targeting Src and Abl

kinase and EGFR signaling pathways, while sensitive to

drugs targeting JNK/p38, ERK/MAPK, PI3K/mTOR,

and cell cycle signaling pathways. These results imply

that high-IMP_Risk OS patients may benefit from

PI3K/MTOR inhibitor AZD8055, CDK inhibitor PHA-

793887, and RTK inhibitor sunitinib.

It has been recently highlighted that DNA methyla-

tion plays a vital role in reconfiguring the TME and

modulates the crosstalk between tumor and stromal,

immune cells. Accordingly, patients in IMP cluster_2

had a favorable prognosis and higher CD8+ T cells

infiltration, as well as an activated antitumor immune

response, while patients in IMP cluster_3 suffered

from extremely poor prognosis, had higher infiltrations

of potential immunosuppressive cells such as cdT cells,

higher infiltrations of naive CD4+ T cells, and lower

infiltrations of activated NK cells. The distribution of

certain immune cells among IMPs has controversial

results with previous studies. We considered that this

may be due to the impact of the IMP clustering, or

because of the potential limitation of bulk deconvolu-

tion estimation. The pan-cancer TME functional
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signature analysis revealed significant concordant rela-

tionships among the three IMP clusters, IMP_Risk

level, and four TME patterns in OS patients. IMP

cluster_2 represented 67% and 56% of TME_IE and

IE/F pattern with better prognosis, respectively, which

were more enriched in the low-IMP_Risk score group;

while the high-IMP_Risk group contained most of the

IMP cluster_3 and higher proportion of TME_D pat-

tern with poor prognosis.

Through the TIDE algorithm and T-cell inflamed

signature (TIS) analyses, we also evaluated the pre-

dictability of the IMP_Risk score in response to

immunotherapy. Although there was no significant dif-

ference of overall TIDE scores between high- and low-

IMP_Risk groups, higher T-cell exclusion scores, lower

expression of the IFNG signature, and higher correla-

tion with M2 TAM, MDSCs, and CAFs signatures,

along with lower TIS scores, were found in the high-

risk group. Thus, the IMP_Risk score was compatible

with a TME pattern to determine the immune cells

infiltrations and functions, suggesting that the poor

prognosis of the high-risk group may result from the

stronger immunosuppressive TME, and thus high-risk

patients may not benefit from ICI therapy. Nonethe-

less, even though our study should show new insights

into the epigenomic microenvironment and possible

IMP-related therapies, many of our findings were

based on retrospective studies. It is important to carry

out prospective studies to validate and/or optimize the

IMP-associated signature scoring model. Ultimately,

detailed functional and mechanistic studies of the sig-

nature genes in our risk model are highly warranted in

order to support their clinical diagnostic and prognos-

tic applications.

5. Conclusions

Our integrated analysis of immune-related DNA

methylomic and transcriptomic profiles revealed an

extensive regulatory interconnection underlying the

effects of TME and its relationship with OS prognosis.

We constructed and validated an IMP-associated sig-

nature scoring model, documented the crosstalk and

regulatory roles of the signature genes in transcription

and somatic copy number alteration, and identified

their potential utilities in targeted therapy and

immunotherapy. To the best of our knowledge, our

study represents the first of its kind by focusing on a

prognostic model incorporating IMP and TME pat-

terns in OS. Our work also highlights the crucial clini-

cal implications of DNA methylation in the crosstalk

between tumor cells and TME, and should aid our

efforts on developing personalized immune therapeutic

strategies for OS patients.
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Fig. S1. Supplementary plots for the analysis of

immune-related DNA methylation patterns in

osteosarcoma. (a & b). Process of the unsupervised

consensus clustering of Methylation beta value matrix

of the immune-related CpG sites in TARGET OS

cohort and silhouette analysis. (c). Age, gender and

race distributions of OS patients among three IMPs.

(d, e & f). Validation of the IMP in E-MTAB-9875

cohort and silhouette analysis. (g, h & i). Validation of

the IMP in E-MTAB-7263 cohort and silhouette anal-

ysis. (j). Relative proportion of immune infiltrating

cells patients with OS of three IMPs and infiltrating

scores of each type of immune infiltrating cells ana-

lyzed by quanTIseq. (k). Overall tumor microenviron-

mental infiltration scores (including stromal and

immune) of patients with OS of three IMPs analyzed

by xCell. (l). Kaplan-Meier survival analysis of TME

cells infiltration levels.

Fig. S2. Supplementary plots for construction and vali-

dation of an IMP-associated signature scoring model

in osteosarcoma. (a). A heatmap of methylation levels

(z-score) of differentially methylated probes between

cluster 3 and cluster 2 of IMP. (b). A volcano plot dif-

ferentially expressed genes between cluster 3 and clus-

ter 2 of IMP. (c). a plot of median-survival time of the

TARGET OS cohort. (d). Kaplan-Meier survival anal-

ysis using median IMP_Risk scores as the cutoff value

displayed high-risk OS patients with shorter overall

survival. (e). distribution of IMP Risk scores and

patients’ survival status between IMP Risk subgroups.

(f). time-dependent ROC curve and Kaplan-Meier

analyses of the IMP-associated signature scoring

model (IMP Risk scores) on relapse-free survival for

TARGET OS cohort. (g). a plot of median-survival

time of the GSE21257 osteosarcoma cohort. (h & i).

Validation of IMP-associated signature scoring model

on overall survival and metastasis-free survival of

GSE21257 osteosarcoma cohort through time-depen-

dent ROC curve and Kaplan-Meier analyses. (j). Eval-

uation of the nomogram by calibration plots. (k).

Decision curve analysis for the evaluation of prognos-

tic predictors, including histologic response to

chemotherapy, metastasis state, IMP-associated signa-

ture scoring model.

Fig. S3. Supplementary plots for integrative analysis of

molecular characteristics of osteosarcoma and IMP-as-

sociated signature scoring model. (a). correlation anal-

ysis of gene expression level and DNA methylation

level at the promoter region of the genes in IMP-asso-

ciated signature scoring model (supplementary infor-

mation of MT1A and MYC). (b). A volcano plot

differentially expressed genes between IMP Risk sub-

groups. (c). GSEA of altered hallmark, GO biological

process, KEGG and Reactome pathway gene sets

between IMP Risk subgroups.

Fig. S4. Supplementary plots for analysis of TME pat-

terns in osteosarcoma and predictive value of the

IMP-associated signature scoring model on

immunotherapy. (a). Process of the unsupervised con-

sensus clustering of the robustly standardized GSVA

enrichment scores of TME-pattern signature gene sets.

(b). The tumor immune dysfunction and exclusion

(TIDE) scores of high- and low-IMP Risk subgroups

evaluated by TIDE algorithm. (c). Levels of cytotoxic

tumor lymphocytes of high- and low-IMP Risk sub-

groups evaluated by TIDE algorithm. (d). a plot of

median-survival time of the IMvigor210 cohort.

Table S1. Clinical information of patients included in

the present study and the Immunologic signature.

(Sheet 1-4). Clinical information of patients included

in the present study from TARGET osteosarcoma

dataset, GSE21257, E-MTAB-9875, and E-MTAB-

7263 cohorts. (Sheet 5). Immunologic signature gene

sets.

Table S2. Univariate cox regression analysis of overall

survival based on CpG probes and the result of con-

sensus clustering. (Sheet 1). Univariate cox regression

analysis on methylation levels (Beta value) of CpG

sites. (Sheet 2). Annotation of immunologic signature-

related CpG sites. (Sheet 3). Result of consensus clus-

tering.

Table S3. Estimation of TME-infiltrating cells and the

GSVA results. (Sheet 1-3.) Quantitative results of

CIBERSORTx, quanTIseq and xCell on TME-infil-

trating cells and overall TME/stromal/immune infiltra-

tion scores. (Sheet 4-6.) Enrichment scores of GSVA

of each patient of the three IMPs.

Table S4. Analysis of DMP, DEG, and cis-/trans- reg-

ulation. (Sheet 1-2.) Results of DEG and DMP analy-

ses (IMP cluster_3 vs cluster_2). (Sheet 3-4.) Pearson

analyses on cis- and trans- regulation for gene expres-

sion and DNA methylation of CpG sites.

Table S5. Statistical results for the construction and

validation of the IMP-associated signature scoring

model.

Table S6. Analysis of molecular characteristics and

pharmacogenomic data associated with IMP-associ-

ated signature scores. (Sheet 1-2.) CpG sites relevant

to the six genes that comprise the IMP-associated sig-

nature scoring model (cis- or trans- regulation). (Sheet

3-8.) Results of DEG and preranked GSEA analyses

of high- and low-IMP_Risk groups. (Sheet 9-13.) Iden-

tification of IMP_Risk score highly associating genes

through Pearson correlation analysis. Results of over-

representation analysis and PPI network analy-

sis.(Sheet 14-17.) Results of GISTIC 2.0 on SCNA of
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high- and low-IMP_Risk groups.(Sheet 18.) Spearman

correlation analysis on drug response (AUC values)

and IMP scores based on GDSC datasets.

Table S7. Analysis of TME pattern and prediction of

immunotherapy response. (Sheet 1-3.) GSVA of the

pan-cancer TME functional signatures and consensus

clustering of four TME patterns. (Sheet 4-6.) Gene

symbols of T-cell inflamed signature (TIS), results of

TIDE analysis, and information of the IMvigor210

cohort including the IMP_Risk scores.
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