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Abstract

Protecting a nation’s primary production sector and natural estate is heavily dependent on the ability to determine the risk
presented by incursions of exotic insect species. Identifying the geographic origin of such biosecurity breaches can be
crucial in determining this risk and directing the appropriate operational responses and eradication campaigns, as well as
ascertaining incursion pathways. Reading natural abundance biogeochemical markers using mass spectrometry is a
powerful tool for tracing ecological pathways as well as provenance determination of commercial products and items of
forensic interest. However, application of these methods to trace insects has been underutilised to date and our
understanding in this field is still in a phase of basic development. In addition, biogeochemical markers have never been
considered in the atypical situation of a biosecurity incursion, where sample sizes are often small, and of unknown
geographic origin and plant host. These constraints effectively confound the interpretation of the one or two isotope geo-
location markers systems that are currently used, which are therefore unlikely to achieve the level of provenance resolution
required in biosecurity interceptions. Here, a novel approach is taken to evaluate the potential for provenance resolution of
insect samples through multiple biogeochemical markers. The international pest, Helicoverpa armigera, has been used as a
model species to assess the validity of using naturally occurring d2H, 87Sr/86Sr, 207Pb/206Pb and 208Pb/206Pb isotope ratios
and trace element concentration signatures from single moth specimens for regional assignment to natal origin. None of
the biogeochemical markers selected were individually able to separate moths from the different experimental regions
(150–3000 km apart). Conversely, using multivariate analysis, the region of origin was correctly identified for approximately
75% of individual H. armigera samples. The geographic resolution demonstrated with this approach has considerable
potential for biosecurity as well as other disciplines including forensics, ecology and pest management.
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Introduction

Biosecurity encompasses the provision of services that minimise

the impact of exotic pest species on a nation’s economy,

environment and public health. In agriculturally based economies,

such as that of New Zealand, biosecurity systems protect industries

worth billions of dollars against constant risk of exotic pest

introduction [1], which have large direct and indirect financial

costs [2]. As biosecurity risks escalate with the increased

international mobility of people and trade products [3], these

systems need to become more efficient. This includes an emerging

requirement to ascertain the natal geographic origin of intercepted

exotic pests, as this is commonly unknown for organisms that are

detected in surveillance networks. Such a capability could be used

to differentiate between non-established individuals and members

of established (locally breeding) populations. This information

would direct appropriate response actions in post-border investi-

gations and eradication campaigns, as an unestablished exotic pest

requires a much lower scale response than an established

population. Similarly, knowing immediate prior origins can help

verify a region’s pest free status for specific high impact pests, and

so maintain trade access [4] by confirming intercepted individuals

as vagrant rather than locally established. Point-of-origin data

could also be used to identify biosecurity risk pathways and so

inform biosecurity policy for pre-border protection.

Although tracing the geographical origins and dispersal of

insects are important components within many aspects of

entomological science, there are currently no suitable methods
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available that can determine the immediate origin of biosecurity

interceptions. Tracing the dispersal of insects by classical methods,

such as mark and recapture, is clearly unavailable for biosecurity

investigation, where it is necessary to interpret naturally occurring,

unlabelled specimens – as is also the case for many other ecological

and pest management studies [5]. Likewise, genetic methods that

use the similarity of heritable DNA markers to infer invasion

histories or original sources of an introduction are inappropriate

for resolving such recent and dynamic relationships [6]. DNA

markers can help to assign an individual to a likely population, and

therefore by inference the geographic place at which that genetic

population is known to occur [7,8]; however, they cannot

discriminate a new invader from a less recent one given the

intergenerational time necessary for DNA mutations to be

acquired. Consequently the DNA signature of an insect that had

just arrived (F0, i.e. of exotic origin and non-established) would

look the same as one that could putatively have arrived from the

same place one or more generations prior (.F1, i.e. of local

origin); therefore an intercept could not be distinguished as having

just arrived or not.

On the other hand, stable isotope ratio and trace element

concentration signatures (‘biogeochemical markers’) can be direct

indicators of provenance. These markers are not heritable, but are

intrinsically incorporated into the tissues of all members of a

population via their food and water sources as the organisms

develop [9]. Hence, the markers that vary spatially due to

differences in geology [10], elevation and climate [11], such as
87Sr/86Sr and d2H, may provide the desired understanding of the

immediate origin of intercepted samples and distinguish an insect

as either F0 or $F1 with respect to establishment status. Various

natural abundance biogeochemical markers have been successfully

applied to track a wide range of dispersing organisms and items of

commercial or forensic interest [12]. However, to date, such

markers have been underutilised for provenance determination in

entomology, and our understanding in this field is still in a phase of

basic development. Early investigations considered concentrations

of the small series of common elements able to be analysed with

the spectrometry techniques available at the time, (e.g., P, S, Cl,

K, Ca, Fe, Cu, Zn) [13–16]. However, these elements are

biologically active [17] and thus their concentrations are subject to

variation linked to physiological differences between individual

insects. Consquently, these markers were confounded by polyph-

agy, adult feeding and gender differences affecting elemental

expression, which masked the point-of-origin signals [18,19]. More

recently, stable isotopes have been considered and spatial

separation of insect populations across continental d2H and d13C

contours has been demonstrated [20,21]. However, the scale of

resolution from these light elements can be too coarse for confident

provenance determination [22,23], with often insufficient differ-

ence between study areas and/or the within-region environmen-

tally driven variation in signal being greater than the between-

region differences [24]. This is of particular consequence in

forensic or biosecurity applications, where the typically small

sample sizes impede statistically confident provenance assignment

[25]. The specific impetus for the current study was the inability to

determine the origin of two important biosecurity pests collected

post-border in Auckland, New Zealand in 2005 and 2006 –

painted apple moth (Teia anartoides, Lymantriidae) and fall web

worm (Hyphantria cunea, Arctiidae). Based on the successful

elucidation of monarch butterfly migration routes [26], prove-

nance assignment for these Auckland incursions using d2H and

d13C was attempted [27]. However, interpretation of the results

was inconclusive, as the accuracy and limitations of this

methodology were unknown in a biosecurity context. In contrast

to the Hobson et al. [26] study, that used a single host-plant system

within a pre-defined time and space, the Auckland specimens

belong to polyphagous species and were accidentally introduced;

as is typical with biosecurity interceptions. Therefore, these insects

were from an unknown and unpredictable host, place and point in

time, which impeded isoscape-to-insect corrections.

A number of reviews have proposed that provenance discrim-

ination may be enhanced by multivariate analyses of several

markers [12,28–31], although few studies have empirically tested

this, e.g., [32–34]. Consequently, the research hypothesis for this

study was that the level of spatial resolution and confidence in

provenance assignment for biosecurity samples could be improved

by combining the continental scale, temperature-linked distribu-

tion patterns of d2H, with the finer spatial scale of geological

markers such as the isotopes of Sr and Pb and trace element

concentrations. In testing this hypothesis, we also assess both the

practical feasibility of such a method, and whether the regional

spatial resolution achieved is sufficient for biosecurity applications.

Methods

Model insect and host plant system
Helicoverpa armigera (Hübner 1805) [Lepidoptera: Noctuidae:

Heliothinae] (tomato fruit worm) was used as an experimental

model of an invasive pest. The fundamental biological parameters

of this species are well understood, it is readily field collectable and

its pan-global distribution facilitated geographically extensive

sample collection in locations appropriate to the research

objectives. Further, H. armigera is a major pest of food, fibre, oil

and ornamental crop plants [35]. There is an ongoing interest in

elucidating this species migratory patterns and population

dynamics, with view to improving the effectiveness of pest

management strategies against it [36,37]. Zea mays (‘corn’) was

selected as the most suitable model plant for the inter-regional

comparison. It is grown extensively in the areas of research interest

and is a productive H. armigera host, on which this insect has

comparatively low levels of parasitism. Further, Zea mays does not

support the morphologically similar species Helicoverpa punctigera

(Wallengren), facilitating the field collection of the correct species.

Study design and sample collection
The bio-geographical regions of Mid-Canterbury (MC), Bay of

Plenty (BP), and Auckland (AK) in New Zealand, and the corn

growing areas around Toowoomba (Queensland – QLD) and

Wagga Wagga (New South Wales – NSW) in Australia were used

for comparison (Figure 1). These regions were selected because

they represent geological and climatic contrasts and similarities,

the model insect-host system occurs in them all, and they are

important areas with regard to New Zealand biosecurity [38,39].

Sample collection was carried out over January – May (southern

hemisphere late summer) in two consecutive years, 2008 and 2009,

in order to also examine inter-year variation. The collection dates

were adjusted between the years so as to occur at the same

development phase of both the corn crop (beginning of Kernel

Dent Stage) and H. armigera phenology (pre-diapause late instar

larvae and pupae) in the two summers. Helicoverpa armigera were

collected from a minimum of 12 separate sites (paddocks) at each

of the five different regions, however, some sites did not yield any

adult moth samples, and others provided several (Table 1).

To ensure the specimens were from known locations, and to

avoid the potential influence of multiple host plant sources, late

instar H. armigera larvae were collected from corn cobs for

subsequent rearing, and/or pupae were excavated from under the

host plants at each site. The larvae were reared on their original
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cob, until pupation. These and the excavated pupae were held and

emerged under a constant 25uC, 16:8 h light: dark regime.

Emerged moths were held without food or water for four days, to

avoid the influence of adult feeding and to allow the wings to

complete sclerotization, then euthanized and stored frozen

(220uC), dry, for later identification and analysis.

Insect identification
The identification of the collected moths was confirmed as H.

armigera by screening to genus using fore-wing patterns and to

species or species group using hind-wing markings [40]. For

specimens where species determination was not possible using

exterior morphological examination the identification was con-

firmed using characteristics of the genitalia [41] and DNA bar-

coding [42] (GenBank accession numbers KF661352 –

KF661389).

Ethics statement
No animal care approval was required for the collection and

handling of H. armigera. The specimens were collected on

commercial properties with the permission of the land owners.

Live samples from Australia were transferred to New Zealand

quarantine facilities under a ‘Permit to Import Live Animals’ from

Biosecurity New Zealand (Ministry of Primary Industries) (Permit

numbers 2008033670, 2009036197).

Sample preparation and chemical analyses
Each moth was partitioned to provide samples for the various

analyses. A set of wings was dissected for d2H analysis and the

remainder of the moth bodies were used for Sr and Pb isotope and

trace element concentration analyses.

Samples used for d2H measurement were washed three times

with a solution of 2:1 chloroform: methanol to remove oils and

then air dried for 12 h. Six, <200 mg pieces (three replicate pairs)

were dissected from the distal costal section of the wing and loosely

crimped into 365 mm silver elemental analyzer cups (OEA

Laboratories, UK). Samples were then equilibrated in a pair of

static, sealable chambers with one of two water vapours (2258.0%
or +60.0% VSMOW) at 110 uC for 1 hour with vacuum drying at

110uC before and after equilibration, modified from [43]. d2H

measurements were conducted using a vacuum purged Costech

Zero Blank autosampler on a Thermo TC/EA coupled to a

Thermo Delta V IRMS in continuous flow mode, at Otago

University, New Zealand. The raw d2H values were corrected to

the nine IAEA-CH-7 reference standards (d2HVSMOW 2100.3%)

measured at intervals during each batch. Paired results from the

equilibrations with the two waters were used to calculate the non-

exchangeable hydrogen isotope ratio using equation 3 of

Schimmelmann et al. [44]. KHS (254.160.6%) [45] was used

as the quality assurance standard. Average precision of measure-

ment over the three months that the analyses were carried out was

60.8 %.

In preparation for the solution chemistry used for trace element

and Sr–Pb isotope analyses, individual moths were ‘washed’ by

passing two 30 second 250 kPa+ streams of high purity N2 over

them in a filtered chamber, as described by Font et al.[46]. All

subsequent specimen handling, chemistry and drying was conduct-

ed under ultra-clean conditions, within PicoTrace Class 10 laminar

flow workstations. Samples were digested using three Seastar 15 M

HNO3+30% H2O2 closed digestion – evaporation cycles in Savillex

Teflon beakers at 120uC; then cooled and taken up into solution in

1 M HNO3. A weighed aliquot, comprising approximately 20% of

this solution, was then subject to trace element analysis, using an

Agilent 7500cs ICPMS via a Cetac ASX-520 autosampler and a

100 ml/min Microflow nebuliser spray chamber (Victoria Univer-

sity of Wellington Geochemistry Laboratory, New Zealand) (Tables

S1 & S2, Figure S1). Element concentrations were determined by

bracketing each set of five samples with a multi-element calibration

standard solution made up from mono-elemental standard solutions

(BDH Laboratory Supplies, England). The remaining portion of the

solutions were dried down for Sr and Pb separation column

procedures, as described by Pin & Bassin [47] and Baker et al. [48]

respectively, using 1 ml pipette tips fitted with pre-cleaned 30 mm

pore-size polypropylene frits and pre-cleaned Sr Spec (Eichrom

Technologies, IL. USA) and AG1-X8 (Bio-Rad Laboratories, CA.

USA) resins. Sr isotope ratios were measured on a Thermo-

Finnegan Triton TIMS at the Laboratoire Magmas et Volcans,

Clermont-Ferrand, France. The Sr samples were taken up in 1 M

Figure 1. Australasian regions used to test biogeochemical
markers for provenance assignment of H. armigera. These regions
represent biogeochemical contrasts and similarities, and they are
important areas with regard to biosecurity for both Australia and New
Zealand. MC = Mid Canterbury, BP = Bay of Plenty, AK = Auckland,
New Zealand; NSW = Wagga Wagga, QLD = Toowoomba, Australia.
doi:10.1371/journal.pone.0092384.g001

Table 1. Number of H. armigera adult moths reared (n) and number of sites represented.

MC BP AK NSW QLD

2008 n 17 8 24 22 26

sites 9 6 11 7 9

2009 n 44 38 61 58 36

sites 8 13 12 11 9

doi:10.1371/journal.pone.0092384.t001
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H3PO4 mixed with tantalum salt as an activator, loaded onto single

Re filaments that were previously outgassed at 4.0 ampere (A) for

30 min and then dried down slowly at 1 A. The filaments were then

heated up to a temperature of 1400 to1500uC, until a high enough

ion beam was reached. Measurements were made in multidynamic

mode with two cycles, ion beams being shifted one collector down

during the 2nd cycle and samples run until the signal started to drop

off in order to maximise internal error. Instrument mass bias was

corrected for using a 86Sr/88Sr ratio of 0.1194 and an exponential

mass fractionation law. The accuracy of the 87Sr/86Sr data was

assessed by repeated analyses of <30 ng Sr from BHVO-2, which

reflected the amount of Sr available for analysis from each moth.

This gave an average value of 0.70350860.000035 (2SD, n = 4).

The average internal precision of all moth 87Sr/86Sr analyses was

0.000143 (2SE). Pb isotope ratios were determined with a Nu

Instruments MC ICPMS at Victoria University of Wellington. The

Pb samples, dissolved in 0.5 wt% Seastar HNO3, were introduced to

the MS via a DSN-100 desolvating nebulizer (Table S3). Data was

acquired using two blocks of 25 integrations of 5 seconds each. NBS

981 calibration standards bracketed each three samples. Repeated

analysis of <4 ng Pb (to match the average moth sample Pb

abundance) JB-2 rock standard gave an average of

2.0871860.00012 (2SD) for 208Pb/206Pb and

0.84859360.000056 for 207Pb/206Pb (n = 7). The average internal

precisions for the actual moth sample Pb isotopes analyses were

60.00098 2SE for 208Pb/206Pb and 60.00049 for 207Pb/206Pb.

Total procedural Pb blanks in this study yielded ,15 pg Pb, which

represents ,0.55% of the average moth sample Pb abundance and

required an insignificant blank correction, given the internal

precision of the analyses.

All insects were subjected to H isotope analyses. However,

logistical constraints necessitated that just six moth samples per

region per year were processed for the other biogeochemical

markers. Further, due to analytical error, trace element results for

the 2008 season was acquired for only four moths from MC, AK,

NSW and QLD and two for BP. The markers obtained from the

2008 samples were d2H, 207Pb/206Pb and 208Pb/206Pb and

elemental concentrations for Li, Al, Sc, Cr, Mn, Ni, Zn, Ga, As,

Rb, Sr, Cd, Cs, Ba, W and Pb. To improve the discrimination

between the regions, the selection of variables was refined for the

2009 material, and Li, Al, Ca, Sc, Ti, Cr, Co, Ni, Cu, Zn, As, Rb,

Sr, Cd, Cs, Ba, La, Ce, W and Pb concentrations were obtained,

as well as d2H, 87Sr/86Sr and 207Pb/206Pb and 208Pb/206Pb.

Statistical analyses
The multivariate datasets from the moth bodies were assessed

for regional discrimination for both the 2008 and 2009 data sets. It

was necessary to use non-parametric methods, as experimental

constraints resulted in fewer samples than the number of variables.

Furthermore, with parametric methods, statistical assumptions

regarding normally distributed data in multivariate space would

have been potentially violated [49] and outlying data points may

have led to over-emphasised groups [50]. As such, the datasets

were assessed for overall regional difference using PERMA-

NOVA+ (version 1.0.3) (PRIMER-E version 6.1.13) permutation-

al multivariate analysis of variance main test (i.e., overall Pseudo-

F); and differences between the individual regions were evaluated

using post-hoc PERMANOVA pair-wise tests. The data were log

(x+1) transformed, normalised and the analyses carried out using a

Euclidean distance resemblance matrix. Both tests used 9999

permutations. The moth multivariate datasets were then assessed

for regional grouping and discrimination using a canonical

analysis of principal coordinates (PERMANOVA+ CAP analysis).

A dimension reduction process was assessed for the potential to

achieve a combination of isotope and trace element values that

maximised the separation between the regions by removing non-

informative variables. This was accomplished by first ranking the

variables according to their relative contribution to the original

CAP regional grouping (assessed using the linear correlations

between the variables and the CAP ordination axes) for CAP axes

1–3. The least informative variables were eliminated by nominally

selecting and discounting those that had a correlation coefficient

less than half the largest correlation coefficient on all three CAP

axes [51]. The CAP analysis was then re-run with both years’

datasets, without the least informative variables. Regional assign-

ment of the moth samples was then tested by ‘Leave-one-out

Allocation of Observations to Groups’ cross-validation and re-run

pair-wise PERMANOVA tests.

The level of spatial resolution of the multivariate analyses was

compared to that of individual variables, after we had identified

the most informative individual variables as those having the

highest correlaion with the multivariate CAP ordination axes. The

regional discrimination potential of these individual variables was

assessed using the same cross-validation processes as described

above, and further analysed using univariate ANOVA and pair-

wise Fishers unrestricted LSD tests (a= 0.05) (GenStat 14.1). Moth

d2H sample sizes were uneven at each site and region, and

therefore unbalanced ANOVA were employed for this assessment.

Regression analyses were also conducted on the un-grouped (i.e.,

not-mean values) data to test goodness of fit versus latitude.

Retrospective power analyses for the d2H, 87Sr/86Sr, 207Pb/206Pb

(univariate) datasets was also conducted. This was carried out by

calculating the differences between the means of the regions and

then determining the minimum sample size required for each

comparison to be 5% significantly different, using a two-sided,

two-sample t-test, with a power of 90% (GenStat 14.1). (The

power of a statistical test is defined as the probability that the test

will correctly reject the null hypothesis when the null hypothesis is

false – i.e. the probability of not committing a Type II error). A

standard deviation pooled over all regions was used.

Results and Discussion

The sample preparation and analytical methodology presented

here has enabled the analyses of multiple biogeochemical markers

from single insect samples, despite the low concentrations of many

of the elements. The regional discrimination potential of the

multivariate data was examined initially. This assessment

concomitantly identified the most informative individual variables

and thus allowed the subsequent comparison of the regional

differentiation potential of multivariate vs univariate analyses,

which are considered below.

A multivariate test of provenance differentiation
PERMANOVA analyses identified an overall regional differ-

ence for both 2008 and 2009 moth multivariate biogeochemical

marker datasets (2008 Pseudo-F4, 13 = 2.4051, p(perm) = 0.0033;

2009 Pseudo-F4, 25 = 2.79, p(perm) = 0.0001). The geographical

resolution achieved between individual study areas is illustrated in

Figure 2 (animated in Movie S1 & S2) and the associated pair-wise

tests (Table S4). In the 2008 dataset, BP moths were not

significantly different from moths from any of the other regions,

possibly due to the small number of samples from BP in that year

(n = 2) affecting the comparison with the other regions. The NSW

and QLD 2008 moths were also not significantly different from

each other. However, the AK and MC moths were distinguishable

both from the Australian moths and each other. In contrast, for

Helicoverpa armigera Natal Origin Biogeochemical Markers

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e92384



the 2009 moth dataset, the pair-wise regional comparisons were all

significantly different, except for the BP versus MC, and BP versus

AK comparisons.

The more powerful geographical separation in the 2009 dataset

was primarily due to the addition of 87Sr/86Sr data. This marker

provided robust separation of the moths from the two Australian

regions, as well as a lesser but still significant difference between

the Australian and New Zealand regions (Figure 3). In addition,

the 2009 dataset incorporated a greater number of informative

trace elements, including Co, Ce and La, all of which contributed

to the improved regional separation (Table S5).

The CAP regional assignment cross-validation tests gave

misclassification errors of 22.2% with the 2008 dataset and of

26.7% with the larger 2009 dataset (Table 2). Leaving out the least

informative markers (i.e., dimension reduction) was beneficial with

the 2009 regional comparison, with the misclassification error

being reduced from 36.7%. In contrast, attempts at ‘optimisation’

with the 2008 data in this way increased misclassification error.

This indicates that successful provenance determination requires a

balanced appraisal of all available markers. It is necessary to

consider the potential for the signal to be confounded by biological

processes, the degree of overlap between the potential source

regions, and the variation within the regions [12,52].

A significant finding regarding provenance assignment for

biosecurity is that all the moths from the New Zealand regions are

distinguished from the Australian moths using the 2009 dataset. As

with the regional pair-wise tests above, the superior inter-country

allocation achieved with the latter dataset is attributed primarily to

the inclusion of 87Sr/86Sr as a variable. This result, along with the

73.3% cross-validation success rate, suggests that determining

whether a suspect sample has originated from its collection point,

or not – i.e., in a biosecurity scenario – is more likely to be

successful than not. However, 100% accurate re-allocation was

achieved in only one in five regions with the 2009 dataset and two

out of five regions with the smaller 2008 dataset. Misclassification

between the regions is attributed to the similarities in the mean

values and over-lapping ranges of several of the variables. Hence,

single insect samples (n = 1) may be difficult to reliably assign to

place of origin in such circumstances, although discrimination

between regions is expected to be more reliable when the sample-

sizes are larger.

The most informative variables in the 2008 dataset were:
207Pb/206Pb,208Pb/206Pb, d2H, the elemental ratios Pb/Sr, Rb/

Sr, Ba/Sr, and the concentrations of Rb and Sr, and Li, Cr, Ga,

Ba and Pb (Table S5). In the 2009 dataset, the most informative

variables were: 87Sr/86Sr, d2H, concentrations of Pb, As, Sr, Ba,

Cs, all the elemental ratios considered, Pb isotopes, and the

variables with significant correlation to the 3rd CAP ordination

axes, Ti, Co, Ni, La and Ce. To understand the impact that these

Figure 2. The geographical resolution achieved between the experimental regions using multiple biogeochemical markers.
Canonical analysis of principle co-ordinates plots of d2H, trace element concentration (ng/g) and 206Pb/208Pb, 207Pb/208Pb data from H. armigera adult
specimens, reared from Australian and New Zealand sites: (A) March – May 2008 and (B) Jan – March 2009. The 2009 moth data was optimised to
remove non-informative variables and also includes 87Sr/86Sr values. Black = MC, yellow = BP, dark blue = AK, light blue = NSW, red = QLD.
doi:10.1371/journal.pone.0092384.g002

Figure 3. H. armigera 87Sr/86Sr distribution, relative to degress
latitude south. Error bars = analytical 2SD.
doi:10.1371/journal.pone.0092384.g003

Helicoverpa armigera Natal Origin Biogeochemical Markers
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might have on the ability to assign origins, and to test the

hypothesis that provenance discrimination using multivariate

analyses is superior to univariate analysis, these most informative

markers individually are considered below.

Provenance differentiation using d2HM

The plot of H. armigera wing d2H values (d2HMOTH) against

latitude confirms a latitudinal continental scale cline in both 2008

and 2009 (Figure 4). The ‘d2HM per degree latitude’ regression is

1.6 and 1.5% per degree in the 2008 and 2009 datasets

respectively, which is slightly less than the <2% per degree

described by Hobson & Wassenaar et al. [26] for monarch

butterflies over eastern North America. Further, the regional

d2HM means are significantly different in both years (2008 F4,

92 = 33.67; p,0.001; 2009 F4, 210 56.93, p,0.001). However, the

d2HM versus latitude R2 indicates that at only 46% of the variation

was due to latitude for the 2008 dataset, and 35% for the 2009

data. This suggests that biological and/or localized environmental

variation within regions is of equal or greater influence than

latitude.

Pair-wise comparisons of the d2HM means reveal that, on a

population level, the moths from the most southern region, MC,

were able to be distinguished from the moths from the more

northerly regions, being significantly ‘‘lighter’’ (having lower d2H

values) than all the other regions in both years (a= 5%). Beyond

this however, d2HM values of the other regions were too similar

(Table S6) and/or have too much overlap to be reliably

distinguished. The often large sample sizes required to achieve

significant differences between the regional d2HM means (calcu-

lated retrospectively, Table S7) reiterates the broad scale of spatial

resolution and inconsistent individual sample provenance assign-

ment achieved by d2H. Where the d2HM means are distinctly

different, there is strong potential for d2H to discriminate moths

from different regions. Hence MC can be distinguished from all

the other regions by sample sizes of 12 or fewer moths and some

comparisons required n of only 3 or 4. Conversely, where the

d2HM means are close and/or variation is high, the required

sample sizes are impractically large, and more than typically

collected in biosecurity incursions (commonly 2–6 insects).

Further, small sample sizes have high misallocation errors ( =

low power). For example, with n = 2 moths, MC, the most distinct

region, contrasted to the other regions gave power values ranging

from 0.13–0.41 (calculated using a GenStat 14.1, 2-sided, 2-

sample t-Test, significance 0.05).

The provenance discrimination achieved with the d2HM

univariate analyses for individual samples is compared to that

achieved with the multivariate analysis in Table 3. Overall, the

total misclassification error for the d2HM univariate analyses was

around 55%, which is approximately twice that of the multivariate

analysis.

This limited geographical resolution is attributed to the large

degree of both intra-region and intra-site variation in the d2H

moth values. The intra-region d2HM variation spanned 24.8–

44.6% (for both years), with the average variation being 38% in

2008 and 38.9% in the 2009 dataset. This is higher than the

differences between all the region’s means. The intra-site variation

comprises the largest component of the within-region variability,

being 29.0% in the 2008 dataset and 27.8% in 2009. This degree

of variation is greater than the <26% (interpolated) intra-region

heterogeneity of monarch butterflies [26] and the intra-site

variation of <28% reported in Inachis io (Lepidoptera: Nympha-

lidae) [23]. However, the results herein have similar variability to

the intra-site variation that has been observed in Arhopalus ferus

beetles (Cerambycidae) (up to 31.1%) [53] and an unidentified
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insect species (possibly beetle, 40%) [54]. These results confirm the

that quantifying within-population d2H heterogeneity is as

necessary for insects as it is for birds [55,56]. Such within-

population heterogeneity needs to be taken into account when

using insect d2H information in geographical assignment and is

required to propagate error in predictive geographical assignment

modelling [57]. It also needs to be taken into account when using

insect d2H information in paleoclimate reconstruction, cf. [58].

Furthermore, the relative differences between the regions were

inconsistent for the two years, with the d2HM values for the 2009

dataset being significantly ‘‘heavier’’ (having higher d2H values)

than the 2008 dataset (F1,4 = 27.87, p = 0.006). Although it is

important to appreciate that the collections were made at different

weeks in each year, the inter-annual variation in d2HM observed

indicates that applications using insect d2H need to correct or

specifically calibrate the data for each period of interest [59].

While this spatial and temporal heterogeneity of d2H expression

makes it difficult to rely upon this as a single marker, it clearly still

provides a level of spatial discrimination that can be informative.

Provenance differentiation using 87Sr/86SrM

The H. armigera 87Sr/86Sr values (87Sr/86SrM) from the five

regions (Figure 3) were significantly different overall (F4,

25 = 14.04, p,0.001). The NSW moths had the highest 87Sr/86Sr

(mean 87Sr/86Sr = 0.71278), and QLD the lowest (mean
87Sr/86Sr = 0.70673) (a significant difference (a= 5%), Table

S8). The New Zealand moth 87Sr/86Sr values were intermediate

to the Australian regions, with all the New Zealand regional means

having values of approximately 0.709. Pair-wise comparisons

confirmed that the New Zealand moth specimens are significantly

different from both NSW and QLD moths (a= 5%). However, the

New Zealand regions were not significantly different from each

other, with median 87Sr/86Sr values being separated by only

0.0003.

The capacity of 87Sr/86Sr data to separate vulnerable

biosecurity regions in New Zealand from the relevant risk regions

in Australia indicates that, on a population level, Sr isotopes are a

potentially powerful tool for provenance determination of

intercepted specimens. The minimum sample size required to

achieve significant differences between the Australian and New

Zealand regions with 87Sr/86Sr alone was 12 or fewer insects

(Table S9). However, the power associated with sample sizes n = 2

Figure 4. Relationship between H. armigera wing d2H values and latitude.
doi:10.1371/journal.pone.0092384.g004

Table 3. A comparison of the regional discrimation achieved by multivariate and univariate analyses.

Original Group
Multivariate
assignment Univariate assignment

d2H d2H 87Sr/86Sr 207Pb/206Pb

n used for test 30 30 214 30 30

% correctly allocated
to original group

MC 66.7% 16.7% 62.8% 33.3% 50%

BP 66.7% 33.3% 32% 33.3% 0%

AK 50% 66.7% 39% 33.3% 16.7%

NSW 100% 50% 29.6% 100% 16.7%

QLD 83.3% 66.7% 66.7% 83.3% 16.7%

Total misclassification error 26.7% 53.3% 55.1% 43.3% 80.0%

The assignement of individual H. armigera samples to their original region; generated by CAP ‘Leave-one-out Allocation of Observations to Groups’ method. Uses the
2009 data only; for d2HMOTH both the sub-sample used in the multivariate analysis and full d2HM dataset are given.
doi:10.1371/journal.pone.0092384.t003
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(a realistic interception sample size) for AK, the highest biosecurity

risk centre in New Zealand, versus NSW and QLD is only 0.46

and 0.14 respectively. Further, the New Zealand moths were not

able to be assigned to region using 87Sr/86Sr without impractically

large sample sizes. Correspondingly, the total error when using
87Sr/86SrM in the univariate reassignment test was 43.3% of

individual moths misclassified, as compared to 26.7% misclassi-

fication error in the multivariate test (Table 3). Therefore, the

regional discrimination potential of strontium isotopes as a single

variable cannot be assumed, even for places that are geologically

distinct and geographically widely separated.

A prominent characteristic of the 87Sr/86SrM data is the within

region heterogeneity. MC had the most diverse range, possibly

reflecting the geological heterogeneity of the alluvial flood plain.

Values varied from 0.7136, which is similar to both Canterbury’s

rhyolite volcanic [60] and metasiltstone metamorphic rocks [61],

to 0.7074 which is consistent with the values reported for Miocene

volcanic rocks on the adjacent Banks Peninsular [62]. The AK
87Sr/86SrM heterogeneity is also consistent with the geological

diversity of the region; a single ‘‘low’’ value (0.7056) lying within

the range of values reported for nearby greywacke [63] and the

other five values from divergent parts of the Auckland isthmus

clustered around 0.7091, possibly reflecting metapelite metamor-

phic rocks [63] and/or input from marine aerosols [64] (both

around 0.709). With regard to the QLD, no geographically close

rock or soil 87Sr/86Sr values have been found in the literature,

although the 87Sr/86SrM from this region may reflect local

trachyte (approximately 0.706) or rhyolite rocks (0.7077) [65].

BP and NSW had the lowest 87Sr/86Sr dispersion, with ranges of

0.0019 and 0.002 respectively. The degree of within-population
87Sr/86Sr variation found in the H. armigera populations is

consistent with that reported in other terrestrial ecology references.

For example, within population 87Sr/86Sr ranges up to 0.0018

have been observed in black-throated blue warblers (but n only 2)

[66], 0.0025 in snail (Pulmonata, family not given) populations

[67] and 1SD values up to 0.00113 reported in tree swallow [68].

In species of Geometridae and Notodontidae (Lepidoptera, species

not given) caterpillars at single forest sites, Blum et al. [69] found a
87Sr/86Sr range of 0.00252, and Blum et al. [70] 0.00307, which

are both similar to the within-site 87Sr/86Sr variance shown here

for H. armigera (0.00039–0.00203).

As with d2H, therefore, insect 87Sr/86Sr is also very heteroge-

neous and has limited utility as a single marker for provenancing.

However, the geologically linked expression observed in
87Sr/86SrM, along with its contribution to the regional differen-

tiation achieved in the multivariate test above, indicates that a

combination of geological and climate markers can provide

confident regional provenance assignment.

Provenance differentiation using Pb isotope ratios
In the 2008 data, there was significant overall difference

between the regional 207Pb/206PbM means (F4, 23 = 9.94,

p = 0.000), but not for 208Pb/206PbM (F4, 23 = 1.80, p = 0.163),

although a pairwise comparison of the 2008 means revealed that

NSW 208Pb/206PbM was significantly different to all other regions

(a= 5%) (Figure 5). Five out of the seven 2008 NSW moths had Pb

isotope ratios very significantly shifted from the expected NSW

mixing line (207Pb/206Pb approximately 0.895, 208Pb/206Pb

2.148), to an ‘exotic value group’ cluster with the median values

of 207Pb/206Pb 0.757 and 208Pb/206Pb 2.195. No site bias was

detected, with the exotic value group being from sites evenly

spread over the entire NSW collection region (over a distance of

approximately 100km i.e., Ganmain to Coleambally, NSW) and

one site yielded both exotic value and non- exotic value samples.

To verify that these exotic values were not the result of systematic

error, another pair of 2008 NSW moths were subject to separate

analytical preparation run and mass spectrometry. These had

similar exotic and non-exotic values, which confirm the validity of

the earlier analyses. It appears that the affected moths have acquired

Pb from sources in addition to the host plant, as their Pb isotope

ratios are comprehensively different to that of the associated soils

and host plants (average 207Pb/206PbSOIL 0.835, 208Pb/206PbSOIL

2.073; 207Pb/206Pb PLANT 0.895, 208Pb/206PbPLANT 2.148). The

additional source path may be respiratory inhalation, with the

exotic Pb source being aerosols or dust particulates. Invertebrate

acquisition of Pb by inhalation and accumulation of low concen-

tration Pb contamination has previously been shown in snails

(Cepaea nemoralis) [71]. The origin of the exotic signal in the present

study is theorised to be particulate dust from within few a hundred

kilometres west of the collection area. The H. armigera exotic value

group described here had 207Pb/206PbM values similar to the range

known for soils at Lake Frome, central South Australia

(207Pb/206Pb, 0.7720, 208Pb/206Pb, 2.066) [72] and near Adelaide,

South Australia [73]. These locations align with the general pattern

of dust storms in this region of Australia moving in a southeast

direction [74]. In contrast, there was no significant difference

between the regional Pb isotope ratio means in the 2009 data

(207Pb/206PbM F4, 25 = 0.54, p = 0.709; 208Pb/206PbM F4, 25 = 0.83,

p = 0.520).

The moth Pb isotope values for 2008 and 2009 were not

statistically different, despite the group of exotic values in the 2008

NSW moth dataset (207Pb/206Pb F1, 4 0.0, p = 0.949; 208Pb/206Pb

F1, 4 2.79, p = 0.17). This is likely to be a consequence of both

years’ data being widely dispersed, with the 2009 values clustered

centrally within the more scattered 2008 data range (Figure 5).

The CAP regional grouping procedure showed that lead

isotopes can provide information regarding geographical origin

(Table S5). However, lead isotopes appear to be less informative

than d2H and 87Sr/86Sr (Tables S7 & S9 versus Table S10), and

had 80% univariate reassignment miscalculation error, which is

more than three times that of the multivariate analysis. On-the-

other-hand, this work has shown lead isotope data can be obtained

from single insect samples, and that the sensitive fine scale

resolution available from lead isotope analyses holds considerable

promise for tracing ecological linkages and pollution sources which

are hitherto not able to be elucidated in entomological science.

Provenance differentiation using trace element
concentrations

The essential elements, which are those linked to common

metabolic processes [17], were not geo-location informative, with

the elements of atomic number # Arsenic being generally less

informative than the elements $ atomic number of Rb. Trace

element variables that gave the best regional separation across

both years are Sr, Cs, Ba and Pb, as well as the Pb/Sr elemental

ratio (Table S5). Except for Ba, all of these were univariately

significantly different between the regions (Figure 6). However, the

values and the relative contributions of the elemental concentra-

tions were not consistent between years. Further, none of the trace

elements alone reliably discriminated moths from all of the

different geographic regions, as the statistical differences were

between only two or three of the five regions. For example, the BP

and AK moths had the highest mean Rb and Cs concentrations in

both years, and the MC moths the highest Cd values, yet the other

regions were not significantly or consistently different (please note

however, the results for 2008 BP may not be representative of the

entire region, given the n = 2 sample size). The lack of a single

geographical trace element marker is consistent with other
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ecological provenance determination studies, despite the signifi-

cant differences in regional mean values, e.g., [75]. Nevertheless,

elemental concentrations clearly contribute to geographical

resolution.

In the 2008 moth trace element data set, the Australian regions

had significantly higher Sr concentrations than the AK and MC

moths. In contrast, Sr concentrations in the 2009 moth dataset

were not significantly different overall (F4,25 = 1.69, p = 0.183),

although BP and QLD were significantly different from each other

Figure 5. Pb isotope scatter plots from H. armigera. Error bars = analytical 2SD. Note: the axes for the 2008 dataset is larger scale than 2009.
doi:10.1371/journal.pone.0092384.g005

Figure 6. Trace element concentration data for H. armigera. Only the most informative elements are shown. Data is displayed as median,
quartiles and the minimum/maximum value within 1.5 inter-quartile range; values outside 1.5 IQR are designated by a circle. Regions assigned a
different lower case italic letters are significantly different (Fishers unrestricted LSD = 5%). ‘Data not available’ = information for that element was not
recorded or lost due to analytical error.
doi:10.1371/journal.pone.0092384.g006
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in a pair wise test (a= 0.05). The geographical resolution potential

of Sr identified here, agrees with the pistachio provenance study of

Anderson & Smith [33], with Sr giving the largest source region

discrimination potential of all the elements they analysed.

New Zealand moth samples had higher average Cd levels than

Australian samples, consistent with studies regarding the elevated

levels of Cd in New Zealand agricultural soils [76]. However,

despite some regional means being significantly different, moth Cd

concentration was not a strong driver in the regional separation

CAP analysis. This is due to the large degree of intra-region

variation in moth Cd concentration values in all the regions, which

results in poor allocation power on an individual moth basis.

Moth average Cs concentrations were also consistently higher in

the New Zealand compared to Australian samples, although the

statistical distribution of the Cs values may limit the potential of Cs

as a biosecurity marker – when sample sizes are typically ,6

insects. Most moths had Cs values ,10 ng/g, although the larger

mean values in both years were skewed by 2–5 moths with Cs

values of .50 ng/g. However, all the Cs values .30 ng/g

occurred in New Zealand samples and the highest values were

most common in BP and AK moths. Thus Cs may be a useful

geographical marker for New Zealand with larger sample sizes.

These trace element results are consistent with the avian studies

of Norris et al. [77] and Szep et al. [32]. They reported a similar

suite of elements (Mg, Cd, Sr, Ba, Rb, Cd, Pb) to be the most

informative, and similar degrees of intra-regional heterogeneity –

resulting from between site differences (cf. within site variation).

This intra-regional variation facilitates better near-distance

discrimination than light element stable isotopes, which typically

separate populations on continental scales. However, the findings

of Torres-Dowdall et al. [78] urge a cautionary interpretation of

trace element data. They reported poor re-allocation accuracy for

red knot shorebirds (Calidris canutus), due to both the lack of trace

element marker resolution and because several elemental concen-

trations, including Sr and Pb, changed as the adult birds aged. The

chemical profiles of feathers are believed to be affected by direct

absorption from contaminants [79], preening behaviour and

chemical leaching [80,81]. Therefore, although the biochemical

processes and age-related changes will be different between birds

and insects, as elemental profiles have been shown to also change

during the moths’ adult stadia [82], trace element profiles from

whole moths may not be a reliable indicator of point-of-origin.

Conclusion

This study is the first evaluation of multiple isotope and trace

element markers as a means of insect provenance assignment, as

well as the first use of Sr isotopes for this purpose in entomological

science. It is also believed to be the first study that has considered

Pb isotopic information from insects.

The provenance assignment achieved demonstrates that, with

the small samples sizes typical of biosecurity interceptions, none of

the biogeochemical markers assessed can individually separate

insects reared in different regions of biosecurity importance in

New Zealand and Australia. In contrast, a multivariate combina-

tion of d2H, 87Sr/86Sr, 208Pb/206Pb, 208Pb/207Pb and selected

element concentrations was able to distinguish the region of origin

of H. armigera for 73.3% of individual moths. This supports the

hypothesis that provenance discrimination achievable from

multivariate analyses is superior to that of univariate analysis,

e.g., [12]. In addition, the value of using multiple independent

variables has been highlighted. Specifically, d2H, is a proxy for

climate and therefore approximations of latitude, whereas the Sr

and Pb isotopic ratios of the moths appear to be primarily that of

the source point soils and underlying geology and are independent

of climate.

However, it is well recognised that all natural abundance

markers have their weaknesses [28]. As such, the advances

described above need to be considered in light of various biotic

and abiotic limiting factors that are yet to be specifically defined.

Identifying and accounting for these limitations is recommended

as future research priorities. However, that should not detract

from the ongoing use and further development of biogeochemical

markers in entomological applications, which could be improved

by considering some overarching issues revealed in this study.

Firstly, because of within-region heterogeneity in marker

expression there is a strong relationship between confidence of

provenance assignment, sample size and the degree of isotopic

difference in the potential sources [57]. Similar multifarious

marker expression has been observed elsewhere for single or

paired isotope systems [67], and needs to be also taken into

account in multivariate tracing.

Secondly, the relative discriminating power of the individual

variables was inconsistent between the two years that were

sampled. In particular, the insect d2H data needs to be calibrated

by reference to precipitation d2H data for each period of interest.

However, if emphasis is given to those variables that gave

significant regional discrimination in both years, as well as those

less likely to be affected by inconsistent biological and environ-

mental parameters, which is assumed to include 87Sr/86Sr [10],

temporal discrepancies can likely be minimised.

Lastly, our understanding of how soil and precipitation

biogeochemical signals are expressed in insects is limited to the

few studies that have actually quantified this relationship.

Specifically, such information is available for H. armigera [82]

and for d2H only, the hoverfly Episyrphus balteatus [Diptera] [83],

monarch butterflies [26] and several dragon fly species [21].

Therefore, provenance assignment of other insect species currently

requires reference populations of the same species from the

candidate areas, e.g., [53]. Quantifying these ‘transmission factors’

(e.g., 2H fractionation) for a wider range of plant-insect systems

will facilitate wider entomological application of this technology in

areas such as ecology, forensics and pest management, as well as

paleo-climatic reconstruction.

Supporting Information

Figure S1 An assessment of the linearity of ICPMS
measurement using a dilution series. Ratios of selected

elements’ concentrations in diluted solutions (1:2–1:4) of an in-

house moth body standard over the long term averages of the non-

diluted PH-armig moth standard (1:1). The average distortion on

the analytical values, comparing the non-diluted moth standard

averages to the most heavily diluted (1:4) was 3.5%. This indicates

that there were minimal matrix effects suffered in the ICP-MS

analysis.

(PNG)

Table S1 ICP-MS instrument settings, conditions and
method used for trace element analysis of insect
samples.

(DOCX)

Table S2 ICPMS trace element measurement precision.
The averages of dilute (10%) calibration standard, in-house moth

body standard and NBS 1575 Pine needle external standard from

each analytical run. All concentrations are ng/g calculated using

sample and dilution weights. %CV = coefficient of variation. The

average recovery of elements for NBS 1575 is versus the following
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published values: A = Certificate of Analysis (Reed, 1993); B =

(Freitas et al., 2008); C = (Saitoh et al., 2002); D = (Asfaw &

Wibetoe, 2006); E = (Taylor et al., 2007).

(DOCX)

Table S3 Typical instrument operating conditions of
the Victoria University Nu MC-ICP-MS and the DSN-100
parameters used for Pb isotope analysis.

(DOCX)

Table S4 Pair-wise tests of regional differences for H.
armigera populations, showing significant differences
between the collection regions. Generated by PERMA-

NOVA analyses of the multivariate datasets (using Euclidean

distance resemblance matrices). { = p,0.10; * = p,0.05; ** =

p,0.01.

(DOCX)

Table S5 Relative contribution of the individual mark-
ers to the CAP regional grouping. Expressed as Pearson’s

correlation coefficient (i.e., linear measure of assocaition) between

the individual markers (ignoring all others) and the CAP

ordination axes within the mulitvariate data cloud. 2-sided

significance test expressed as { = 10%; * = 5%; ** = 1%.; 2008

data df = 16, 2009 df = 18. 2009 data is an optimized suite.

(DOCX)

Table S6 H. armigera wing d2H summary table. Showing

regional d2HM averages 6 1SD; values within a row that are

followed by a different letter are significantly different (Fishers

unrestricted LSD = 5%).

(DOCX)

Table S7 Retrospective power analyses for H. armigera
d2H. To detect significant differences between the regional means

(D%), at a two-sided significance level of 0.05 with a power of 0.90

using a two-sample t-test, the calculated sample size (n) would be

required for each sample. A standard deviation pooled across all

regions was used in each power analysis.

(DOCX)

Table S8 H. armigera 87Sr/86Sr summary table. Showing

regional 87Sr/86Sr averages 6 1SD; values within a row that are

followed by a different letter are significantly different (Fishers

unrestricted LSD = 5%). n = 6 for each region.

(DOCX)

Table S9 Retrospective power analysis for the H.
armigera 87Sr/86Sr data. To detect significant differences

between the regional means (D), at a two-sided significance level of

0.05 with a power of 0.90 using a two-sample t-test, replication of

the calculated n for each sample is required.

(DOCX)

Table S10 Retrospective power analysis for the H.
armigera 207Pb/206Pb data. To detect significant differences

between the regional means (D), at a two-sided significance level of

0.05 with a power of 0.90 using a two-sample t-test, replication of

the calculated n for each sample is required.

(DOCX)

Movie S1 Animation of the geographical resolution
achieved between the experimental regions using mul-
tiple biogeochemical markers, 2008. Canonical analysis of

principle co-ordinates plots of d2H, trace element concentration

(ng/g) and 206Pb/208Pb, 207Pb/208Pb data from H. armigera adult

specimens, reared from Australian and New Zealand sites, March

– May 2008. Black = MC, yellow = BP, dark blue = AK, light

blue = NSW, red = QLD.

(MP4)

Movie S2 Animation of the geographical resolution
achieved between the experimental regions using mul-
tiple biogeochemical markers, 2009. Canonical analysis of

principle co-ordinates plots of d2H, trace element concentration

(ng/g) and 206Pb/208Pb, 207Pb/208Pb data from H. armigera adult

specimens, reared from Australian and New Zealand sites, Jan –

March 2009. The 2009 moth data was optimised to remove non-

informative variables and also includes 87Sr/86Sr values. Black =

MC, yellow = BP, dark blue = AK, light blue = NSW, red =

QLD.
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