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A Bivariate Hypothesis Testing 
Approach for Mapping the  
Trait-Influential Gene
Garrett Saunders1, Guifang Fu2 & John R. Stevens2

The linkage disequilibrium (LD) based quantitative trait loci (QTL) model involves two indispensable 
hypothesis tests: the test of whether or not a QTL exists, and the test of the LD strength between the 
QTaL and the observed marker. The advantage of this two-test framework is to test whether there is 
an influential QTL around the observed marker instead of just having a QTL by random chance. There 
exist unsolved, open statistical questions about the inaccurate asymptotic distributions of the test 
statistics. We propose a bivariate null kernel (BNK) hypothesis testing method, which characterizes 
the joint distribution of the two test statistics in two-dimensional space. The power of this BNK 
approach is verified by three different simulation designs and one whole genome dataset. It solves a few 
challenging open statistical questions, closely separates the confounding between ‘linkage’ and ‘QTL 
effect’, makes a fine genome division, provides a comprehensive understanding of the entire genome, 
overcomes limitations of traditional QTL approaches, and connects traditional QTL mapping with the 
newest genotyping technologies. The proposed approach contributes to both the genetics literature 
and the statistics literature, and has a potential to be extended to broader fields where a bivariate test 
is needed.

Quantitative trait loci (QTL) mapping, an approach to identify and map genetic loci that have significant effects 
on a quantitative phenotype, has received considerable attention for many years because it can provide close 
insights about how genetic variants act on phenotypic variation, increase accuracy of estimating genomic posi-
tion, improve understanding of biological processes, and help prepare for the eventual cloning of the locus1–3. 
With the rapid development of high-density genotyping technology, the demands on QTL research come to a 
new level3.

There are three possible genotypes (AA,Aa, and aa) for a bi-allelic QTL with alleles A and a. To detect the 
existence of a QTL, a common strategy tests to see if the phenotypic means among the three genotypes are sig-
nificantly different from one another. Based on the possible linkage of the QTL with an observed genetic marker, 
three scenarios (‘no QTL’, ‘unlinked QTL’, and ‘linked QTL’) were defined by Churchill et al.1,4. Although the lit-
erature widely found these three scenarios to have dramatic differences in genetic interpretations and likelihood 
structures, traditional QTL approaches have failed to truly separate the differences of ‘linkage’ and ‘QTL effect’.

Traditional QTL models perform only one hypothesis test related to the existence of a QTL, while using a 
recombination fraction r to model but not simultaneously test the linkage between the observed marker and the 
QTL1,3–5. The one-test models have a few limitations, however, which are summarized in the following points: 1) 
They fail to distinguish between a case of ‘large QTL effect but loose linkage with the marker’ and a case of ‘small 
QTL effect but tight linkage with the marker’. Only estimating the recombination parameter r without testing it 
does not allow inspecting the significance of linkage strength between the QTL and the marker being tested1,5. 2) 
They require that genetic maps are known (a fundamental prerequisite to estimate the recombination fraction r), 
which is generally only possible for classic cross design like F2 intercrosses or backcrosses or well-studied domes-
ticated species. Natural populations, complex designs, and rarely-studied new species require new QTL models6. 
3) They can not accurately conclude if there is an influential QTL around the observed marker or if an influential 
QTL is called just by random chance. 4) They were designed for a small to moderate number of genetic markers. 
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Contemporary genomic research, however, demands modern QTL methodologies that are capable of analyzing 
the entire genome dataset with more than half a million markers.

Besides the general QTL existence test, another linkage disequilibrium (LD) strength test can be used to 
examine if the QTL and the observed genetic marker are linked7–12. The LD based QTL mapping model involves 
two indispensable hypothesis tests, having the same aim as the traditional r-based QTL model but with fewer 
restrictions and more capabilities. Being consistent with the literature that unanimously consider ‘linked QTL’ 
as the alternative hypothesis1,4, the QTL existence null and the LD strength null must be jointly rejected to con-
clude the same alternative statement. The two-test structure tests not only how strong a genetic effect is but also 
where the gene is located; and whether there is a QTL around the observed marker instead of just having a QTL 
by random chance. However, in some preliminary work the type I error rate of this two-test structure was found 
to be unexpectedly high due to some open statistical issues involving inaccurate asymptotic distribution s of the 
test statistics involved.

In this article, we propose a bivariate null kernel (BNK) hypothesis testing method to characterize the joint 
distribution of the two test statistics in two dimensional space. The novel contributions of the proposed BNK 
approach are: (1) proposes an important bivariate hypothesis testing approach in two dimensional space, which 
is not only new to the genetics literature but also important to the statistics hypothesis testing field, and has the 
potential to be extended to a general setting where a bivariate test is needed. (2) closely divides the genome into 
several categories by closely separating the confounding between ‘linkage’ and ‘QTL effect’, and provide a clearer 
picture for the entire genome. (3) solves a few open statistical questions that were noticed and discussed but 
never solved before, without requiring the distribution of the test statistics to be known. (4) overcomes the limi-
tation of traditional QTL approaches and serves as a bridge connecting QTL research with the newest genotyping 
technologies. The proposed BNK approach is verified to perform well in three dramatically different simulation 
designs. The BNK approach performs nicely not only in the LD-based QTL model from which it was developed, 
but also in a simulation that was designed specifically for traditional recombination based one-test QTL methods. 
Additionally, the BNK approach performs well not only in genetic data, which is how this approach is motivated, 
but also in general bivariate normal data with broader applications. We also demonstrate in a real mouse study 
that the BNK approach selects two genes previously reported to be highly associated with the HDL trait being 
analyzed. In addition, the BNK approach detects six other genes that were found important for homeostasis/
metabolism expression, but that had not previously been detected from the same dataset.

Key Statistical Issues
Two-test structure in LD-based QTL model.  In light of possible relations of a QTL with the observed 
marker, the corresponding likelihoods for three possible scenarios (‘linked QTL’, ‘unlinked QTL’, and ‘no QTL’) 
can be most appropriately summarized in the following (same three scenarios as Churchill et al.1,4):

•	 HA: linked QTL
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Here, the phenotypic measurement for individual i, Yi, = …i n1, , , is a random variable resulting from genotype 
g of the hidden QTL (having allele A or a with frequency q or 1-q), where g {1,2,3}∈ , with g = 1 representing aa, g = 2 
representing Aa, and g = 3 representing AA. f Y( , )i gμ σ|  denotes the corresponding density functions for the distinct 
QTL genotypes with mean μg and variance σ2, which is generally assumed to be normal for a quantitative trait. Let M 
(with allele frequency p) and m denote the two alleles of an observed marker. Together, the marker and the QTL form 
four haplotypes (MA, Ma, mA, and ma) with corresponding frequencies = +p pq D11 , p p q D(1 )10 = - - , 

= - -p p q D(1 )01 , and = - - +p p q D(1 )(1 )00 , respectively12. Here, D is the linkage disequilibrium parame-
ter between the marker and the QTL, which can be estimated as = - = -D p pq p p p p11 11 00 01 10. The mixing pro-
portions ωg Mi

 in likelihood (1) denote the conditional probabilities of individual i having QTL genotype g given their 
marker genotype Mi, which are functions of p, q, and D and were given in Table 1 of Saunders et al.12. The mixing 
proportions q( )gω  in likelihood (2) can be computed as ω = -q q( ) (1 )1

2, q q q( ) (1 )2ω = - , and ω =q q( )3
2 because 

the marker and QTL are not linked. Note that likelihood (1) differs from likelihood (2) as the mixture proportions 
ωg Mi

 are conditional upon the marker information of each individual, thus making the mixture subject-specific.
The first test, concerning the existence of a QTL, is proposed as1,4,5,11,12
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H L
1 : one of the equalities above does not hold.

It can be seen that under H L
0  the likelihood is given by that of H0

1, i.e., l ikelihood (3). This follows from the fact 
that under H L

0 , μ σ μ σ| = |f Y f Y( , ) ( , )i g i  for g = 1, 2, 3 which then eliminates the parameters p, q, and D from the 
full model, as p q D( , , ) 1g g M1

3
i

ω∑ == . The alternative H L
1 , which suggests the heterogeneity model, corresponds 

to HA with l ikelihood (1). Thus, in the first test, as is traditionally done, H0
1 is tested against HA, where the likeli-

hood ratio test is used as the test statistic1,3–5:
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Under traditional likelihood theory13, TL would be distributed asymptotically as a χ5
2 random variable because 

the difference in the number of free parameters between the null (μ σ, ) and alternative models 
( p q D, , , , , ,1 2 3μ μ μ σ ) is five.

The second test, concerning the LD strength of the QTL and the observable marker7–12, is proposed as

H D H D: 0 vs : 0D D
0 1= ≠ .

The case of D = 0 corresponds to no linkage between the marker and QTL, in which case the conditional prob-
ability ωg Mi

 reduces to gω , eliminating marker and subject-related subscripts. Then the test H D
0  allows to step back 

to H0
2 (with l ikelihood (2)) before officially concluding HA. The alternative H D

1 , which suggests the ‘linked QTL’ 
model, corresponds to HA with l ikelihood (1). Churchill and Doerge stated more details about this null hypoth-
esis H0

2 for the recombination-based QTL model under a back-cross design4, “Under the null hypothesis H0
2, the 

trait should follow a normal mixture distribution with mixing proportions equal to 1/2. Again any associations 
between the trait values and markers unlinked to the QTL are due to chance.” The LD-based QTL model has very 
similar interpretations and contexts for H0

2 as in the more traditional recombination-based QTL model, with two 
key differences: 1) a clear hypothesis test about linkage strength (i.e., H D

0 ) is performed rather than only examin-
ing (but not testing) the recombination rate r; 2) the mixing proportions gω  are a function of q (the allele fre-
quency of the QTL) rather than being treated as fixed constant s. These two differences enable the LD-based QTL 
model to have advantages over recombination - based QTL models, which are described previously in the 
Introduction section.

While originally developed for evaluating the linkage between two observed markers14–19, the test statistic

ˆ
ˆ ˆ ˆ ˆ

=
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can also evaluate the linkage between the unobserved QTL and the observed marker. Here p̂, q̂, and D̂ are the 
estimated allele frequencies of marker, QTL, and the LD between them, respectively. TD is equivalent to the log 
likelihood ratio test statistic of H0

2 against HA. TD estimated from two observable markers was previously claimed 
to asymptotically follow the 2χ  distribution with one degree of freedom14–16,19.

The bivariate testing structure of the LD-based QTL model is (H H,L D
0 0 ). To be consistent with the biological 

interpretations and unanimous aim of QTL research, a significant QTL associated with the phenotype is not 
detected unless the bivariate test H H( , )L D

0 0  jointly rejects, i.e., the ‘linked QTL’ is detected.

Unidentifiability issue of a parameter.  The parameter D contained in the alternative model (1) for ‘linked QTL’ is 
not defined in the null model. This causes an ‘unidentifiability’ issue, as mentioned by Davies20,21. As a result, the 
distribution of test statistic TD will not be clear.

Inaccurate asymptotic distributions of the two marginal test statistics.  For the first QTL existence test (H L
0 ): Lander 

and Botstein assumed an asymptotic χ2 distribution for its test statistic TL
5. Their use of the asymptotic χ2 distri-

bution has been criticized by Churchill and Doerge, who stated the following: “In most cases, the regularity con-
ditions that ensure an asymptotic χ2 distribution for the likelihood ratio test statistic are not satisfied”3,4. A 
simulation study by Knott and Haley generated an F2 intercross, based on the recombination -based QTL model, 
to assess the goodness of fit of the empirical distribution to the corresponding theoretical asymptotic distribution 
of the log likelihood ratio test statistic TL

1. Their results suggest that the 2χ  approximation to the distribution of 
likelihood ratio test statistics is not reliable in many cases4. Additionally, the challenges of the likelihood ratio test 

n = 100 n = 300 n = 500

Power 0.36 0.79 0.98

Type I Error Rate 0.03 0.03 0.03

Table 1.  Type I error rate and power for the BNK approach obtained under the LD-based QTL mapping 
framework (simulation 1).
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for the normal mixture models have also been confirmed in other settings in the statistics literature22,23. To over-
come such inaccurate assumptions about the distribution of test statistics TL:, Churchill and Doerge (1994) pro-
posed using permutations to obtain a critical threshold, rather than employing an asymptotic 2χ  distribution.

For the second linkage strength test (H D
0 ): Although the 1

2χ  distribution of the test statistic TD worked well, it 
was claimed for two observable markers11,14–16,19. As a matter of fact, the linkage of one hidden QTL and one 
observable marker is a different scenario. The simulation study of Knott and Haley found overwhelming evidence 
that the log likelihood ratio test statistic of H0

2 against HA, using the r-based QTL model, was not distributed as a 
1
2χ  1. These results were also confirmed later on by Luo et al. using the LD-based QTL model7. As suggested in Luo 

et al.7, who studied the likelihood ratio test statistic (an equivalent statistic to that of TD), it is not clear what the 
distribution of the test statistic in the context of an observed marker and a hidden QTL is, but it is not a 1

2χ . The 
distribution of test statistic TD for H D

0  with one hidden QTL and another observable marker is still an open statis-
tical question. Consequently, the type I error rate is inflated, which was observed, but no one has yet solved the 
issue.

Confirming the inaccurate distributions of two marginal test statistics via simulation.  As discussed above, the 
asymptotic distribution of univariate test statistics, either TL or TD, has been found problematic in various models. 
In this sub section, we empirically confirm the same inaccuracy for the two marginal test statistics, TL and TD, via 
simulation on the two-test structure in the LD based QTL model, which is the motivating setting of this article.

As a simulation example, we reimplemented the F2 intercross simulation study of Knott and Haley1. A pheno-
type ~Y N(0,1) and single marker M with allele frequency of p = 0.5 were generated independently, 1,000 times 
under a sample size of n = 500 (i.e., generated data under H0

1). For each replication pair of Y and M, the test of H L
0  

was performed to compute TL and the test of H D
0  was also performed to compute TD. Additionally, a separate 

simulation was conducted where the marker and an observed QTL generated by random chance were simulated 
independently (i.e., generated data under H0

2), and only a test of H D
0  was performed to explore the distribution of 

TD imitating the original setting of two observable markers where this test was claimed to follow a χ1
2 

distribution14.
The empirical cumulative density function for TL obtained from the simulation are shown in Fig. 1 (panel a) 

overlaid on several 2χν  cumulative density functions for 1, , 10ν = … . Our study produces similar results to those 
of Knott and Haley1, but with more pronounced evidence that the distribution of the TL statistic corresponding to 
the data simulated under the null hypothesis H0

1 differs from the theoretical asymptotic result (χ5
2) of Wilks13. For 

example, the mean, variance, and 95th quantile of the 1,000 TL statistic obtained from the simulation were respec-
tively 6.9, 28.6, and 17.8. Those summaries of the χ5

2 distribution are roughly 5, 10, and 11.1, respectively. 
Therefore, far more than 5% of the TL statistic would be in the critical region (roughly 16.5%) when using the 5

2χ  
distribution to obtain the threshold. In other words, the type I error rate would not be well controlled.

As for the test of H D
0  (navy curve of the panel b of Fig. 1), our simulations confirm that the χ2 assumption of 

current literature appears to be correct only in the case that both the marker and QTL genotypes are observable 
when the data is generated under H0

2. However, the distribution of TD is extremely poorly behaved (light blue 
curve of the panel b of Fig. 1) when the data is generated under H0

1. This poorly behaved distribution emphasizes 
why inventing a new hypothesis testing approach is necessary, and also restates the open statistical questions that 
we discussed in previous subsections. Note that the QTL is not observed in real data analysis, so H0

2 cannot rep-
resent the true situation of the null in any real data analysis, but only H0

1 can.
In summary, two marginal distributions of the test statistics TL and TD in the LD-based QTL model both fail 

to follow the previously suggested asymptotic χ2 distributions. Additionally, the challenges will be even larger if 
performing a bivariate test statistic (TL, TD) instead of two individual marginal tests because the situation in two 
dimensional space is generally harder than that of one dimensional space; and the joint distribution of the bivar-
iate test statistic (with strong correlation structure) is completely unknown.

Methods
In this section, we describe our proposed approach. It considers the joint distribution of the two aforementioned 
test statistics (TL,TD) in the bivariate sense, using a simulation-based bivariate null kernel to determine appropri-
ate joint significance thresholds for the bivariate test structure in two dimensional space, which we call the BNK 
(bivariate null kernel) approach.

BNK scheme for one marker.  Let (T, U) denote the bivariate test statistics of interest, whose components 
are not necessarily independent, for the bivariate null hypothesis H H( , )T U

0 0 . (The bivariate null hypothesis for the 

Figure 1.  panel a: Empirical cdf of the TL for data simulated under H0
1. panel b: The empirical cdf of the TD for 

data simulated under H0
2 (navy curve), and data simulated under H0

1 (light blue curve).
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LD-based QTL model is H H( , )L D
0 0  with bivariate test statistics (TL, TD)).  Here, we use a general version of nota-

tions to enable the BNK approach to easily extend to general contexts without being restricted by the QTL field. 
The approach is performed with the following steps.

•	 Step 1: Randomly simulate k null data sets, each of sample size n, following the model structure under bivar-
iate null H H( , )T U

0 0 .
The corresponding bivariate null model for the LD-based QTL context is likelihood (3), and phenotype ⁎Y  
is simulated from the normal distribution with sample mean Y  and sample variance σ̂2, as estimated from 
the observed phenotype data. Marker M⁎ is simulated from the multinomial distribution with allele 
frequency p̂, as estimated from the observed marker data. Marker and phenotype should be simulated 
independently.

•	 Step 2: Calculate test statistics (ti, ui) for each simulated null dataset, i = 1, …, k.
For the LD - based QTL context, the maximum likelihood estimates of all unknown parameters are 
produced from the EM algorithm11,12, and then the bivariate test statistics t t i k( , ), 1 ,Li Di = …  are 
computed accordingly from equations (4) and (5), using simulated marker-phenotype data Y M( , )i i

⁎ ⁎ .
•	 Step 3: The resulting k pairs of test statistics (ti, ui) computed from the second step will be used as the basis for 

estimating a bivariate null kernel distribution. That is, estimate the bivariate joint density function, f T U( , )ˆ , 
using a null kernel density estimation technique based on (ti, ui), i = 1, …, k (see, for example, the bivariate.
density function of the sparr package24 in R). The bandwidth should be selected so that the size of the bivariate 
test is maximized while still being less than or equal to α = .0 05 (or any desired significance threshold). In 
simulation studies, we will demonstrate that the type I error rate is controlled well when choosing the band-
width in this way.

•	 Step 4: Compute the cdf F̂ of f̂  by ˆ ˆF c f( )
A c( )∫= , where = ≥ˆA c t u f t u c( ) {( , ) ( , ) }.

•	 Step 5: The bivariate test H H( , )T U
0 0  is rejected only if the value of the computed test statistics t u( , )⁎ ⁎  for 

observed data falls beyond the acceptance region in the two-dimensional space. Let Cα be the non-negative 
value such that f t u dtdu1 ( , )

A C( )
ˆ∫ ∫α- =

α
. Then the acceptance and rejection regions are separated by the 

αC  level contour of the estimated joint density function f̂ , under significance level α. The joint P-value for 
⁎ ⁎t u( , ) can then be obtained by the formula p F f t u1 ( ( , ))= - ˆ ˆ ⁎ ⁎ . The P-value obtained in this manner thus 

represents the probability under H H( , )T U
0 0 , as estimated by f̂ , that joint test statistic (T,U) would be more 

extreme than, or less likely to occur than, the observed joint test statistic t u( , )⁎ ⁎ . While two tests are involved, 
only one single P-value for each pair of tests is the output of this bivariate test structure, which enables it to 
connect with multiple correction approaches. For example, the P-values for all genetic markers can be passed 
to Holm’s procedure25 to strongly control the family-wise error rate.

When applying the BNK approach to the LD-based QTL model, only the normality assumption for pheno-
type is crucial; these are actually the default assumptions for any quantitative traits. The most crucial part of BNK 
approach described in Step 3 is a nonparametric approach without making any assumptions or requiring the 
asymptotic or theoretical distribution s of test statistics to be known. The number of simulated null data sets (i.e. 
k in the first step; also the basis used to fit the null kernel density in the third step) will not change results much, 
once it is large enough; larger k certainly provides a more accurate result but also carries a heavier computational 
burden. One should make a decision on k considering the balance of speed and resolution, exactly as is done 
when choosing how many permutations to perform in permutation testing.

BNK scheme for genome-wide data.  Besides the aforementioned challenges that exist for one marker, 
there are more challenges for the entire genome-wide data. The allele frequencies of markers in the whole genome 
can vary dramatically between zero and one. In order to overcome these challenges and make our approach 
extendable to whole genome data, we grouped the markers into several packets according to their allele frequen-
cies and perform BNK for each packet separately.

Let P denote the total number of markers along the entire genome. The key steps of BNK for the entire 
genome-wide data are outlined as follows.

•	 Step 1: Group the P markers into 20 packets, according to their estimated allele frequencies, p̂, as 
(0, 0 05], (0 05, 1], ,. . …  .(0 95, 1], which gives a meticulous division.

•	 Step 2: For each packet, simulate the null marker data ⁎M  using p̂ , the mean of each packet’s estimated marker 
allele frequencies. Perform one BNK procedure (i.e. obtain one f̂  and F̂) for each packet, and then compute a 
P-value for each of the markers belonging to each packet. Repeating this step for all 20 packets will result in 
P-values for all markers along the entire genome.

•	 Step 3: Adjust the resulting marker P-values using Holm’s procedure25 to strongly control the family-wise 
error rate at 0 05α = . .

While choosing more than 20 packets would theoretically improve precision, in actual practice we have 
found excellent agreement in results using this computationally convenient approach and results from the 
computationally-expensive per-marker BNK implementation.
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Results
To assess the performance of our newly proposed BNK approach, we work on one real genome wide association 
study (GWAS) dataset and three quite different simulation settings to give a comprehensive evaluation.

Real GWAS data analysis.  We applied BNK to a publicly available mouse high density lipoprotein (HDL) 
GWAS dataset26. The data (http://cbd.jax.org/datasets/datasets.shtml) contain 44,428 distinct markers spanning 
the entire mouse genome for n = 0.288 individual outbred mice. Measurements of HDL cholesterol were obtained 
for each mouse with the intention of mapping QTL responsible for HDL. The bottom panel of Fig. 2 shows the 
bivariate view of the two test statistics, (TL,TD), for each of the 44,428 markers analyzed. The top panel of Fig. 2 is 
the Manhattan plot with negative log of adjusted P-values across all markers and chromosomes. The most attrac-
tive property of this BNK approach is that the vast majority of markers are shown to have no direct effect on the 
trait, and their P-values fade away when they should, and only five influential peaks stand out dramatically (Fig. 2, 
top panel). The colors of the bottom and top panel are consistent.

The points in blue (‘linked with the marker and strong QTL effect’), orange triangle (‘strongly linked with the 
marker but medium QTL effect’) and red cross (‘strongly linked with the marker but weak QTL’) demonstrate 
those markers which were found significant after the Holm adjustment on the raw P-values obtained from the 
BNK approach. Four standard QTL approaches in current existing literature, the trend test, ANOVA test, linear 
mixed model, and the two univariate tests (not the bivariate version) assuming χ2 for QTL existence test and 
linkage test between marker and the QTL, have been implemented to analyze the same dataset12,26. They all 
reported exactly the same positions as those ‘linked with the marker and strong QTLs’ (in blue) points detected 
by BNK. These ‘linked with the marker and strong QTLs’ points correspond to two strong blue signals on 
Chromosome 1 at the 173 Mb position (172.9–173.2 Mb) with p-value 10–12 and on Chromosome 5 at the 125 Mb 
position (124.7–125.6 Mb) with p-value 0. The QTL at Mb125 of Chromosome 5 is named Hdlq1, and the causal 
gene underlying it is Scarb1 (a well–known gene involved in HDL metabolism), confirmed by haplotype analysis, 
gene sequencing, expression studies, and a spontaneous mutation26,27. Additionally, numerous mouse crosses 
have linked HDL to Chr 1’s locus at Mb173, underlying which the Apoa2 gene has been highlighted in Flint and 
Eskin’s research26,28.

Besides the unanimously ‘linked with the marker and strong QTL effect’ in blue, the BNK approach is also able 
to report a few extra findings beyond the limits of traditional approaches, as follows:

First, in traditional univariate QTL existence test, a TL value around 20 yields a p-value close to ⁎ -5 10 5, which 
fails to be rejected by any univariate test approach after multiple correction of 44,428 markers (i.e., 

Figure 2.  Top panel: the Manhattan plot with negative log of the Holm adjusted P-values for the BNK approach 
across all of the 44,428 markers from the mice HDL GWAS data. Bottom panel: The bivariate plot of the 
observed test statistics (TL, TD) for the same dataset. Blue points (linked with the marker and strong QTL effect), 
red crosses (strongly linked but weak QTL), and orange triangles (strongly linked but medium QTL) denote 
markers that were found significant under the BNK approach.

http://cbd.jax.org/datasets/datasets.shtml
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. = ∗ -0 05/44428 5 10 6). As a result, the orange triangles in Fig. 2 in the vicinity of the aforementioned peaks of 
Chr1 and Chr 5 have been missed by previous traditional approaches. However, their P-values obtained from the 
BNK approach are 0s and their test statistics clearly stand out in the two dimensional space. In particular, we 
found that the marker located at 173.3 Mb of Chr 1 lies within the Aim2 gene (173.3–173.4 Mb) and the marker 
located at 122.1 Mb of Chr 5 lies within the Ccdc63 gene (122.10–122.14 Mb). If only performing one hypothesis 
test (H L

0 ) as traditional r-based QTL models did (i.e. only looking at the vertical direction in the bottom panel of 
Fig. 2), the P-values of orange triangles would be larger than any of those blue points because their TL values are 
smaller. However, considering the joint distribution of (TL,TD) for the bivariate test H H( , )L D

0 0  from the two 
dimensional aspect, it is possible that the P-value of a marker with moderate QTL effect would be smaller than 
that of a marker with strong QTL effect if its joint effect is stronger. In the genetics literature, it is very important 
but harder to allow detection of multiple medium-effect linked QTLs3.

Second, we detect a few significant markers (in Fig. 2, red crosses), whose TL values are extremely small but 
TD values are extremely large. These red points correspond to three new (red) peaks that are not reported by 
existing literature for the same dataset yet are found to have a few genes reported to be important for the homeo-
stasis/metabolism expression underlying them. Specifically, the markers located at 793.7–796.7 Mb of Chr 5 lies 
within the Dshv2 gene (751.5–978.7 Mb); marker located at 207.6 Mb of Chr 6 lies within the Dbts1 gene (182.3–
733.8 Mb); and the marker located at 783.7 Mb of Chr 15 lies in the Cocia2 gene (725.0–800.1 Mb) and Scfq2 gene 
(346.0–787.1 Mb). We understand that researchers who have extensively used traditional QTL approaches may 
be initially reluctant to conclude significance when they see a TL value close to 0, if they typically only perform 
one test and would be inclined to only consider the vertical direction in the bottom panel of Fig. 2. However, 
after close inspection, we noticed that these markers have extremely small minor allele frequencies (MAF; called 
“low-frequency variants” if 0.5%< MAF <5% and “rare variants” if MAF <0.5%). These low-frequency vari-
ants and rare variants have been emphasized as the frontier of future studies in the genetic basis of human dis-
eases29–31. Therefore, we believe that the red points in Fig. 2 require further molecular genetics studies before any 
definitive interpretations can be made.

Note that the new genes are recognized from the Mouse Genome Informatics (MGI) webpage on February 11, 
2017 (http://www.informatics.jax.org/marker).

Simulation setting 1.  In this subsection, we assess the type I error rate and power of BNK via simulation 
based on the LD based QTL model, from which the BNK is motivated. The type I error rate was evaluated via 
simulations generated under the null hypothesis of “no QTL”. Specifically, phenotypic data Y was simulated from 
a single normal distribution with a mean of 10 and unit standard deviation. In each simulation, a marker M was 
generated independent of Y with allele frequency 0.5. Additionally, we also performed a separate power assess-
ment via simulations generated under the alternative hypothesis of “linked QTL”. The true QTL (q = 0.7) was 
generated under a conditional probability given the simulated marker M (p = 0.5) and linkage disequilibrium 
(D = 0.08) between marker and QTL. Then phenotype Yi was generated from a mixture normal distribution 
taking into account the information of the true QTL.

One hundred simulations were repeated in their entirety with varied sample sizes of n = 100, 300, and 500. 
P-values less than 0 05α = .  were called significant. The results of these 100 simulations are included in Table 1. 
These results demonstrate that the BNK approach is indeed a conservative level α test, with type I error rate less 
than 0.05 under various sample sizes even when n = 100. The power of BNK is able to achieve 98% for an adequate 
sample size.

Simulation setting 2.  Since the traditional r-based QTL models are so widely used, we want to make sure 
that BNK also works well on exactly the same interval mapping of F2 design that was purposely designed for the 
traditional r-based one-test QTL model4. A simulation was performed using the sim.map and sim.cross functions 
of the R/qtl package32. Similar to Churchill and Doerge4, four chromosomes were simulated under a sample size 
of n = 100 individuals, with the first and third chromosomes having 50 markers each and the second and fourth 
having 10 markers each. All chromosomes were assigned a length of 100 cM. Two QTLs were simulated, one on 
the first chromosome at 44.4 cM (from the left end) and the other on the second chromosome at 61.6 cM (from 
the left end). The first QTL was given an additive effect of 0.75 (σ = 1) and the second an additive effect of 1 
(σ = 1).

The resulting P-values obtained from the BNK approach are adjusted using Holm’s procedure25 to control 
(strongly) the family-wise error rate. Figure 3 demonstrates the results of this simulation by plotting the negative 
log10 of the Holm-adjusted P-values obtained from the BNK approach across each marker and each chromosome. 
As is seen, BNK successfully find s the most significant QTL on chromosome 2. For the other QTL that was pur-
posely designed to be weak on Chromosome 1, BNK just moderately passes the threshold as expected. The most 
important point is that BNK detects successfully the only two true QTLs and at the same time pushes all non-QTL 
regions to clear non-significance (flatline of 0 in Fig. 3). In short, the BNK P-values stand out when they should 
(to guarantee power), and fade away when they should (to control the type I error rate).

Simulation setting 3.  To demonstrate proof-of-concept of a general application of BNK, we compare the 
BNK approach with the well–established Hotelling’s T2 statistic under a more general scenario outside of the 
genetics context. We consider a very general example of testing equality of bivariate mean vectors, 
H H( , ): ( , ) ( , )T U

0 0 1 2 01 02μ μ μ μ= , in two dimensional space. Hotelling’s T2 statistic is the multivariate generaliza-
tion of the univariate t test33, with strict bivariate normality assumptions on the data set. Hotelling’s T2 statistic is 
calculated by

http://www.informatics.jax.org/marker
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μ μ= - ′ --T n SX X( ) ( )2
0

1
0

where = X XX ( , )1 2  is the bivariate normally distributed random vector with mean vector = X XX ( , )1 2 , 
μ μ μ= ( , )0 01 02  represents the hypothesized mean, and S denotes the sample covariance matrix. The main contri-
bution of Hotelling is in demonstrating that the distribution of T2 follows - - -n n F2( 1)/( 2) n2, 2 under 
H H( , )T U

0 0 . This provides the corresponding P-value as p P T n n F( 2( 1)/( 2) )n
2

2, 2= > - - -
33. For demonstration 

purposes, we computed two marginal t-test statistics T n X S U n X S( ( )/ , ( )/ )1 01 11 2 02 22μ μ= - = - , and then 
applied the general BNK approach. Here S11 and S22 are diagonal components of matrix S.

To compare the Hotelling and BNK methods, each of the 100 replications of sample size n = 20 was simulated 
to perform the test μ μ =H H( , ): ( , ) (0,0)T U

0 0 1 2 . The data were generated from a bivariate normal distribution with 
mean u u( , )1 2μ =  (u u,1 2~ Unif(0,1) for a power simulation; in a separate type I error rate simulation, u1 = u2 = 0) 
and with covariance matrix ((1,0 3) , (0 3,1) )∑ = . ′ . ′ . An example of the estimated null kernel density f̂  estimated 
by BNK for one replication, together with contours corresponding to various significance levels, are plotted in 
Fig. 4.

Figure 5 shows how the 100 P-values from both the Hotelling and BNK approaches compare to one another. 
The horizontal and vertical lines are drawn at the critical threshold -log10(0.05). The panel a of Fig. 5 demon-
strates the results of the power simulation. Quadrant I identifies tests declared significant by both approaches 
(power), and contains 79 of the 100 points. Quadrant III identifies those tests in which the null hypothesis is 
retained by both approaches (type II errors), and contains 19 of the 100 points. Thus, in 98 of the 100 simulated 
tests the two methods arrive at the same conclusions. Quadrant II and IV depict regions of discord, with one point 

Figure 3.  The resulting adjusted −log10 P-values obtained from the BNK approach for the simulated QTL 
interval mapping example. The dash line is the cutoff threshold for significance level 0.05. The rug plot shows 
the locations of the simulated markers, with triangles indicating true QTL.

Figure 4.  Visualization of the αC  level (or P-value) contours of f̂  estimated by BNK from 1,000 (T, U) statistics 
for a bivariate normal simulation example with zero mean, unit variances, and covariance of 0.3.

Figure 5.  Power (panel a) and type I error rate (panel b) comparison of the −log10 of the P-values obtained 
from the BNK and Hotelling’s T2 approaches for the general bivariate normal simulation that is outside of the 
genetics context.
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located in each quadrant. The panel b of Fig. 5 depicts the results generated from the type I error rate simulation. 
The two approaches again agree for these simulations, with very similar trends shown in Quadrants I (the type I 
error area) and III (the correct area). Thus, both the BNK and Hotelling T2 approach properly control the type I 
error rates, with less than 5% of the simulations resulting in type I errors. Specifically, the BNK approach reports 
a 4% type I error rate while the Hotelling T2 approach reports a rate of 3%.

Although these two methods show good agreement in this bivariate normality simulation, the BNK approach 
still has some advantages over Hotelling’s T2. The BNK approach not only works well for the Bivariate normal 
data that Hotelling’s T2 is restricted to (e.g., simulation setting 3), but also works well for genetics context, where 
the phenotype data are normally distributed but marker data are categorical (e.g., simulation settings 1 and 2). 
For situations where the sampling distribution of test statistics cannot be obtained accurately, as in the case of the 
QTL model, BNK may work well but Hotelling’s T2 would be not applicable.

Discussion
As reviewed in Doerge3, early successes in QTL mapping in experimental populations ranged from the location of 
the cystic fibrosis gene in humans, to the identification of a gene affecting horn development in cattle, and further 
studies have continued to reveal findings as diverse as QTL impacting fruit texture in apples. Despite great success 
in the past, traditional QTL approaches have limitations that prevent them from being directly applied to new 
genotyping technologies. This manuscript presents an innovative data-driven statistical approach, BNK (bivariate 
null kernel), that overcomes several limitations of traditional QTL approaches.

•	 First, BNK provides a comprehensive understanding of the entire genome by closely and visually displaying 
the relationship of ‘linkage’ and ‘QTL effect’ in two-dimensional space. As demonstrated in bottom panel of 
Fig. 2, the genomic regions are roughly categorized as ‘weakly linked but strong QTL’, ‘strongly linked and 
strong QTL’, ‘strongly linked and medium QTL’, or ‘strongly linked but weak QTL’ to provide a comprehensive 
understanding of the entire genome. This information will guide researchers in molecular genetics, plant 
genetics, agriculture and other fields to greatly increase their experiments’ efficiency7.

•	 Second, the new findings discussed in the “Real GWAS data analysis” subsection demonstrate the great 
potential of the BNK approach. The low-frequency or rare variants, and multiple variants having moderate 
effects which have been beyond the detection ability of the majority of traditional QTL approaches, have been 
reported as functional contributors to complex disease risk, and are crucial for finding the missing heritability 
of complex diseases29–31.

•	 Third, the BNK approach works not only for experimental and domesticated species, but also for natural 
populations and rarely-studied new species. It works for the data collected not only from simple classic cross 
designs such as F2 intercrosses or backcrosses, but also collected from complex cross designs such as inbred 
or outbred lines.
Besides contributing to the genetics literature, this manuscript also contributes to the statistics literature.

•	 First, this article proposes an important statistical bivariate hypothesis testing method, driven by an applied 
genetics problem. No available statistical approach in existing literature is directly relevant to the motivating 
two-test genetics problem. Permutation testing has become the gold standard in hypothesis testing in the 
QTL field whenever the distribution of test statistics is unknown or inaccurate4. However, the permutation 
testing approach was designed purely for a univariate test statistic structure (TL) and is not applicable to a 
two-test-statistics structure (TL, TD). The BNK approach is advantaged in the strict dichotomy between sig-
nificance and non-significance in the resulting adjusted P-values. BNK P-values stand out when they should 
(to guarantee power), and fade away when they should (to control the type I error rate). As demonstrated in 
Fig. 3, the only loci for which any significance is found in the adjusted P-values relate very well to the true 
(simulated) QTLs. Every other loci was identically 0 in the adjusted -log10 P-value. This strict dichotomy 
property is crucial to guarantee the nice performance for a hypothesis testing approach.

•	 Second, this article resolves two open statistical issues – the unidentifiability of one parameter under testing, 
and the inaccurate theoretical sampling distributions when dealing with one hidden QTL and one observable 
marker. Both of these issues inflate the type I error rate and increase the difficulties of the hypothesis testing 
process. The BNK approach characterizes the joint distribution of the bivariate test statistics non-parametri-
cally without requiring the marginal distributions of test statistics to be accurate or known, controls the type 
I error rate well below α, and hence resolves these open issues.

•	 Third, the comparison of BNK and Hotelling’s T2 approaches in the third simulation setting demonstrate the 
further general application ability of BNK. By testing equality of any general bivariate mean vectors when the 
data follow a bivariate normal distribution, the BNK approach has the potential to be applied to finance, biol-
ogy, pharmaceutics, nutrition, and so on. Although it is motivated by a genetics problem, it shows potential to 
other fields outside of the genetics field. While the BNK approach could be compared to existing multivariate 
tests of location besides Hotelling’s T2 test34,35, such a comparison is outside the scope of this manuscript. 
Instead, the comparison with Hotelling’s T2 is presented in this manuscript only as a proof-of-concept (as 
stated at the beginning of the ‘Simulation setting 3’ section) to establish the general viability of the BNK 
approach, and we emphasize its application in the QTL context with bivariate hypothesis testing.

•	 Fourth, this article touches on quite a few interesting statistics topics such as bivariate hypothesis test ing, null 
kernel density estimation, mixture model, hidden variable, unidentifiability, and the correlation between one 
hidden variable and one observable variable.
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