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Abstract

The crystal structures of human placental aromatase in complex with the substrate androstenedione and exemestane have
revealed an androgen-specific active site and the structural basis for higher order organization. However, X-ray structures do
not provide accounts of movements due to short-range fluctuations, ligand binding and protein-protein association. In this
work, we conduct normal mode analysis (NMA) revealing the intrinsic fluctuations of aromatase, deduce the internal modes
in membrane-free and membrane-integrated monomers as well as the intermolecular modes in oligomers, and propose a
quaternary organization for the endoplasmic reticulum (ER) membrane integration. Dynamics of the crystallographic
oligomers from NMA is found to be in agreement with the isotropic thermal factors from the X-ray analysis. Calculations of
the root mean square fluctuations of the C-alpha atoms from their equilibrium positions confirm that the rigid-core
structure of aromatase is intrinsic regardless of the changes in steroid binding interactions, and that aromatase self-
association does not deteriorate the rigidity of the catalytic cleft. Furthermore, NMA on membrane-integrated aromatase
shows that the internal modes in all likelihood contribute to breathing of the active site access channel. The collective
intermolecular hinge bending and twisting modes provide the flexibility in the quaternary association necessary for
membrane integration of the aromatase oligomers. Taken together, fluctuations of the active site, the access channel, and
the heme-proximal cavity, and a dynamic quaternary organization could all be essential components of the functional
aromatase in its role as an ER membrane-embedded steroidogenic enzyme.
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Introduction

Cytochrome P450 aromatase catalyzes the biosynthesis of

estrogens from their androgenic precursors by converting the

partially unsaturated A-ring to an aromatic A-ring. Structure-

function relationships of aromatase have been studied for more

than thirty years, but many issues remain unresolved. The recent

crystal structure of human placental aromatase showing a compact

active site cleft [1] has shed new light on the decades old problems.

In the crystal, aromatase molecules are found to form head-to-tail

oligomers [2]. This association of monomers is probably driven by

electrostatic interactions between the ‘‘head’’ and ‘‘tail’’ segments

of two adjacent molecules. Mutagenesis results demonstrate the

functional implications of oligomerization of aromatase. Recently,

Praporski et al. also reported a high order organization of

aromatase in living cells using atomic force microscopy (AFM) and

fluorescence resonance energy transfer [3]. The high-resolution

AFM images support the formation of aromatase homodimer and

oligomers that are stabilized in the lipid bilayer membrane.

However, the dynamical properties of aromatase that may play

critical functional roles, such as membrane integration and active

site access channel opening, have not yet been addressed.

Availability of the crystal structure of aromatase has opened the

door for investigating the dynamics by high resolution atomic/

coarse-grained simulated models, such as molecular dynamics (MD)

simulations and normal mode analysis (NMA). NMA proves to be a

very powerful tool to gain insights into the protein dynamics at a

reasonable resolution (heavy atoms or Ca) at much less computa-

tional costs [4]. NMA in combination with elastic network (EN)

model [5] has been developed for studying protein flexibility and

dynamics [6,7,8,9,10,11,12,13,14,15,16,17]. Due to the simple

harmonic nature of the potential, the methodology is valid only in

proximity to equilibrium and unable to model energy barriers and

multiple energy minima. Nevertheless, it has been proven to yield

the slow normal modes just as effectively as those from complicated

forcefields with specific non-linear terms [12,13]. The collective

motions of a protein at the low-frequency spectrum are correctly

correlated with the observed protein conformational changes upon

ligand binding or protein-partner association [17].

In this paper, we present the results from EN-NMA on the

membrane-free and membrane-integrated monomers and the

crystallographic dimer and trimer of aromatase. We show that two

major intermolecular modes of motion are responsible for

alternations in the observed quaternary association of aromatase

that could be utilized for its endoplasmic reticulum (ER)

membrane integration. The two major intramolecular normal

modes in the monomer are likely to be responsible for the active

site access channel ‘‘breathing’’. The root mean square fluctuation

(RMSF) from EN-NMA provides a measure for the intrinsic

molecular flexibility and the analysis elucidates the rigid core

structure of aromatase, regardless of its self-association and

membrane integration.
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Results

EN-NMA of crystallographic aromatase oligomers
A tetramer is built using the crystallographic symmetry (Fig. 1A)

and then subjected to normal mode analysis. Within the tetramer,

the central green monomer is found to have the smallest amplitude

of displacement in the first two slowest modes, indicating that its

global mobility is constrained by the head-to-tail association and

crystal packing. Other three monomers display higher mobility

because they are devoid of the crystallographic constraints, or the

periodic boundary conditions. Taking mode 7 as an example, two

regions with distinctly different mobility are clearly visible. The

inner region of the central monomer and its vicinity are much less

mobile than the outer region of the blue, gold and gray monomers

(Fig. S1A, Supporting Information).

The B-factors of Ca (B-Ca) are computed from the mean square

fluctuation (MSF), for the green monomer and compared with the

X-ray B-factors (Fig. 1B). The two agree with each other for a wide

range of residues except for the termini. When compared with the

X-ray B-factors, the B-Ca factor profiles of the three outer

monomers are significantly larger and exhibit substantial varia-

tions, unlike the inner green monomer (Fig. S1B, Supporting

Information). The fluctuation patterns for the regions responsible

for crystal packing and head-to-tail binding for these three

monomers are dramatically different from the X-ray B-factors.

The variations in global mobility and change in residue-fluctuation

patterns are correlated well with the crystal contact interactions

(see details in Supporting Information).

A monomer with the N-terminal helix is shown in Fig. 2A and

the formation of large voids, the regions of lowest electron density,

is observed in the crystal where the N-terminal helices reside

(Fig. 2B). The monomers of the crystallographic tetramer are

packed in the same way as those in the absence of the N-terminal

helices (Fig. S2, Supporting Information). Interestingly, the motion

of the N-terminal helix is found to be consistent with the

crystallographic symmetry of the molecules in the crystal (Movie

Figure 1. The crystallographic tetramer of aromatase and validation of the Ca normal mode analysis against crystallographic B
factors. A, three aromatase monomers from one oligomer chain (ribbon diagram colored blue, green and orange) in contact through the H-I loops
with another monomer (gray) from the neighboring chain. B, the computed B-factors of Ca of the central monomer (green line), simulating the
closely packed aromatase in crystals, are compared well with those from X-ray data (black line). The substrate and heme group are represented by
stick drawings. The former is colored in magenta while the latter is rendered in element colors: cyan, C; red, O; blue, N; brown, Fe. The coloring code
and the atoms and bonds representations are the same in all figures unless otherwise noted.
doi:10.1371/journal.pone.0032565.g001
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S1, Supporting Information). The motion of the central monomer

is highlighted in Fig. 2C, showing that its N-terminal helix has the

largest eigenvectors among the entire monomer.

Collective motion in membrane-free and membrane-
integrated aromatase monomers

The EN-NMA for a membrane-free monomer reveals interest-

ing internal motions from the two slowest normal modes (Figs. 3A

and B). In mode 7, three moving parts of the structure are

identifiable: two in the lower half of the molecule librating in the

opposite directions and the third in the upper half rotating against

the lower half (Fig. 3A and Movie S2A, Supporting Information).

The membrane-integrating N terminus and its vicinity form the

first part, the C-terminal loop regions the second, and the

segments above the active site access channel the third. The access

channel residues are at the borders of these three moving parts.

The movements of each pair produce the so-called ‘‘hinge-

bending’’ motion [18,19] with the common hinge being at the

access channel. In mode 8, the front half of the molecule librates

against the back, forming an intramolecular twisting motion with,

again, the access channel at the interface (Fig. 3B and Movie S2B,

Supporting Information).

When the monomer is embedded in the lipid bilayer, motions

similar to those in the membrane-free monomer are observed

within the monomer but at a higher frequency. Due to interactions

at the membrane-protein interfaces, the hinge-bending motion

(the mode 19) has reduced amplitudes for the membrane

integrating regions (the helices A9 and A, and the C-terminal

b7–b8 and b9–b10 loops) (Fig. 3C and Movie S3A, Supporting

Information). Instead, the F-G loop and its vicinity have enhanced

amplitudes and the C-terminal loop regions librate against the

membrane, different from the movement in a membrane-free

monomer. The twisting motion (the mode 17; Fig. 3D and Movie

S3B, Supporting Information) exhibited is similar to that in the

membrane-free molecule. The N-terminal helix is associated with

the motions in the rear half of the molecule in Fig. 3D. It is

noteworthy that the C-terminal loops are relatively stationary in

both modes.

However, the three slowest modes, modes 7, 8 and 9, for the

membrane-embedded monomer are unique and different from the

above hinge bending and twisting motions. The former two are

back-forth and left-right bending oscillations, respectively, and the

latter is a twisting motion (Movie S4A, B, C, Supporting

Information). The two bending modes result in rocking of the

cytoplasmic domain of aromatase at the lipid interface in two

directions. Twisting appears to be a counterclockwise, winding

motion of the entire cytoplasmic domain about a vertical axis

while keeping the N-terminal trans-membrane segments relatively

stationary. As a result, the heme/active site region moves in and

out of the lipid interior.

Slow modes of crystallographic oligomers
The two slowest normal modes 7 and 8 are basically rigid body

rotations against each other when only the green-gold dimmer is

considered (Fig. S3, Movie S5A and B, Supporting Information).

In the process, the region above the D-E loop including helix J, b7,

b10, and the b7–b8 loop of the green monomer, and the heme-

proximal cavity region constituted by helices B9, C, H, H9 and J-K

loop of the gold monomer move back and forth to each other.

These movements lead to the simultaneous opening/closure of two

head-to-tail extended regions formed by the neighboring mono-

mer pairs.

These slowest normal modes are maintained within the

crystallographic blue-green-gold trimer (Fig. 4A). In mode 7, the

blue and gold monomers move away from/toward each other,

while the green monomer undergoes a small back and forth

translation (Movie S6A, Supporting Information). This movement

consists of two asymmetrical hinge-bending motions, one between

the blue and the green monomers and the other between the gold

and the green. In mode 8, two twisting motions are formed

through the rotation of either blue or gold monomer against the

nearly stationary green monomer. The rotation axes are roughly

the lines linking the centers of the mass with their respective head-

to-tail binding sites (a cross-section view in Movie S6BI and a plan

view in Movie S6BII, Supporting Information). Interestingly, these

two intermolecular motions are preserved in a trimeric aromatase

even in the presence of the fourth gray monomer, simulating the

crystal-packing environment (Movie S7A, BI and BII, Supporting

Information). Nevertheless, examination of the higher frequency

modes confirms the presence of bending and twisting modes

similar to the ones in a membrane-free monomer, only muffled

due to intermolecular association.

The electrostatic potentials of a dimer and a trimer are

calculated and mapped on their van der Waals surfaces (Fig. 4B).

In a dimer, two major groove sites form an electrostatic potential

gradient near the head-to-tail binding site, site ‘‘E’’ with negative

electrostatic potentials on the upper monomer and site ‘‘P’’ with

positive electrostatic potentials on the lower. Nine negatively

charged side chain residues, Asp 186, Asp197, Asp209, Asp222,

Asp482, Glu177, Glu210, Glu483 and Glu489, contribute to the

negative electrostatic potentials at the E site, and about six positive

charges from Lys 142, Lys352, Lys440, Lys448, Arg 145, Arg375

and the heme group form the positive electrostatic potentials at the

P site. In a trimer, a pair of such E and P sites is present at each

head-to-tail binding site (Fig. 4B). The electrostatic potential

Figure 2. Ribbon diagrams showing the structure of (A)
aromatase monomer with the N-terminal helix, (B) the
observed void in the crystal and (C) the large collective motion
of the N-terminal helix of the central monomer in the slowest
normal mode. The dotted circle in (B) indicates the region of lowest
electron density in the crystal, presumably a channel of solvent/
detergent that also encompasses the dynamically disordered N-
terminal helices. The eigenvectors were scaled by a factor of 200 for
visualization purposes. The eigenvector arrows in (C) represent the
relative amplitude and direction of the associated Ca atoms of the
central monomer. The same eigenvector representation has been
followed in Figs. 3 (A) to (D) and Fig. 4 (A).
doi:10.1371/journal.pone.0032565.g002
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Figure 3. Intramolecular modes of motion of a membrane-free monomer and a membrane-integrated monomer by normal mode
analysis. A, the three moving parts of a membrane-free monomer in the mode 7 producing the hinge-bending motions with the hinge at the active
site access channel. B, two moving parts in mode 8 contributing to a twisting motion with the access channel at the interface. C and D, two internal
normal modes (modes 19 and 17) show the intramolecular bending and twisting motions for a membrane-integrated monomer. The residues of the
access channel are represented by sticks and rendered in orange color. The residues include Arg192, Ile217, Gln218, Phe221, Asp222, Ala225, Pro308,
Asp309, Thr310, Ser312, Val313, Val369, Ile474, Ser478, Leu479, His480, Pro481, Asn482, Glu483 and Thr484. The eigenvector arrows are in the same
indication as in Fig. 2 (C) while the large arrows depict the direction of collective motions.
doi:10.1371/journal.pone.0032565.g003

Figure 4. Intermolecular motions of the aromatase trimers from normal mode analysis and their complementarity with electrostatic
interactions. A, two slowest normal modes in aromatase trimer. The dotted lines designate the rotational axes. B, electrostatic potentials mapped
on the van der Waals surfaces of a trimer in a color scale red to blue representing a potential scale from 27kT/e to 7kT/e. The P and E sites, adjacent
to the head-to-tail binding interfaces of the oligomers, correspond to the positively and negatively charged cavities, respectively. The arrow points
roughly along the electrostatic potential gradient from negative to positive potentials. The orientation of oligomer is roughly the same in both
panels. The inset shows the second dimer interface hidden from view.
doi:10.1371/journal.pone.0032565.g004
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gradient could be of interest here and could influence the

intermolecular motions. The direction of intermolecular motions

would be favorable along the gradient, but unfavorable against it.

We also probed by computational approaches other possible

oligomeric interfaces that aromatase monomers may utilize in

solution. An overwhelming majority of the models thus obtained

showed the crystallographically observed interface as the inter-

monomer interaction surface. Furthermore, the results also

suggested considerable flexibility in the D-E loop-to-heme

proximal cavity association within the interface (Text S1 and

Fig. S4, Supporting Information).

Fluctuation in aromatase
The Ca-RMSF of an aromatase monomer (Ca-RMSF) is

calculated and visualized in a rendered ribbon diagram where red

represents the lowest RMSF (at the heme group), and blue the

highest RMSF (at the H-I loop) (Fig. 5). The H-I, D-E (not shown),

G-H9 and F-G loops (including the short helix G9 and its

connecting loops to helixes G and F) are quite flexible, but the

inner core, defined as a spherical region within a radius of 15 Å

from the center of substrate, is very rigid. The catalytic cleft is at

the center of the core. The average RMSFs, either in the absence

or the presence of the substrate, are calculated over four distinct

regions: heme, the catalytic cleft, the heme-proximal cavity and

the active site access channel, and also over three layers of interest

within the aromatase molecule: the inner core (radius#15 Å),

middle-layer (15 Å,radius#20 Å) and outer layer (radius.20 Å)

(Fig. S5A, Supporting Information). Heme has the lowest RMSF,

0.47, followed by the catalytic site 0.52 and the inner core 0.65 in

the presence of the substrate. They are all well below the average

fluctuation (RMSF = 1) of the molecule. The putative access

channel has a higher RMSF of 0.74 when compared with heme,

the catalytic cleft and the inner core, probably due to some of its

constitutive residues, such as Pro481, Asp482, Glu483 and Thr484

from the b9–b10 loop, are either lining the channel or bordering

the lipid interface. A modest fluctuation, an RMSF of 0.92, has

been found in the proximal cavity, most of whose constitutive

residues are from the 21-residue long K0-L loop but stabilized by

the heme group through coordination with Arg435 and the

Cys437 ligation. The fluctuation of the middle layer is about 10%

below the average fluctuation of the molecule and that of the outer

layer is the largest (,35% above the average fluctuation).

Although the substrate is in direct contact with the catalytic cleft

residues [1], only a marginal increase of 0.04 in the RMSF is

found in the absence of substrate (Fig. S5A, B, Supporting

Information). It appears that removal of the substrate does not

significantly affect the rigidity of the catalytic cleft. Interestingly,

however, similar small but consistent increases in RMSF in the

heme-proximal cavity, the access channel and the inner core are

observed on substrate removal, but not in the middle or outer

layers. Therefore, the stabilizing effect of substrate binding on the

protein rigidity is rather small due to the compact nature of the

aromatase molecule, and is limited to the inner core, not

exceeding a 15 Å radius. Furthermore, the heme moiety could

primarily be responsible for the overall rigidity of the catalytic cleft

resulting from stabilization of the side chains, such that the

integrity of the functionally active enzyme is maintained even in

the absence of the substrate.

The Ca-RMSFs calculated for a membrane-integrated aroma-

tase monomer (Fig. S6A, Supporting Information) show that the

catalytic cleft has similar low fluctuations as the heme, followed by

the access channel and the proximal site. Notably, the fluctuations

of these four segments have an order similar to those of a

membrane-free monomer. The N-terminal helix has relatively

higher fluctuations due to its location away from the body of the

molecule. Thus, the rigid core structure of aromatase is intrinsic

and independent of its membrane integration.

To evaluate possible impact of the side chains on these results,

we compare the RMSFs of the catalytic cleft, the inner core, the

middle layer and the outer layer with those obtained from all-

heavy atom NMA (Fig. S6B, Supporting Information). The results

agree with each other within 0.09 RMSF, implicating that the side

chain mobility is correlated with the main chain flexibility in the

monomeric aromatase assuming that it does not undergo any large

structural transition.

In addition, calculations of the fluctuations of aromatase

oligomers show that the oligomerization does not deteriorate the

rigidity of the active site (Fig. S7 and Text S2, Supporting

Information).

Discussion

Model validation in crystal environment
The EN-NMA is attractive because it has the capability to

identify the slowest internal modes of protein that are important

for biological functions [12,17]. Our calculations on a tetramer

validate the applicability of NMA. The computed B factors of the

crystallographic central monomer agree well with the experimen-

tal X-ray B factor data. Moreover, the results show that the

method is sensitive to inter-monomer association and crystal

packing interactions. The RMSF peaks disappear at the tail (the

D-E loop and vicinity) and the head (the K helix, J9-K and K0-L

loops) regions upon head-to-tail association in which the helix,

loops and strands embed into the protein interior (Fig. S1,

Supporting Information). The D-E loop vicinity includes the b8

strand from sheet 3, and b7 and b10 from sheet 4. These results

also confirm that the shape of the tail of one monomer

compliments the proximal cavity of the next in an aromatase

oligomer and the self-association is stabilized by intermolecular

Figure 5. The flexibility of a membrane-free aromatase
monomer. A ribbon diagram rendered in the color scale red to dark
blue representing 0.4 to 2.7 in the relative root mean square fluctuation
(RMSF); the atoms and bonds of the catalytic cleft are rendered in
green; the solid arrow points to the heme-proximal cavity and the
dashed arrow roughly the location of the access channel. Three layers
are marked with dashed lines in a radius of r,15 Å, 15 Å#r,20 Å and
r$20 Å, starting from the center of the substrate.
doi:10.1371/journal.pone.0032565.g005

Motion in Human Aromatase

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e32565



interactions. It is conceivable that the heme moiety plays a major

role in the stability of the proximal cavity and hence influences the

oligomerization. The peaks at the H-I loop interface disappear due

to the crystal packing constraints.

Moreover, the NMA of crystallographic tetramer shows that the

N-terminal helices have large mobilities. These motions, however,

appear not to break the crystallographic symmetry or interfere

with intermolecular packing. This could explain why the N-

terminal region of the molecule appears dynamically disordered in

electron density maps.

Complexation-induced rigidity
Self-association decreases the flexibility of a monomer in the

oligomeric aromatase at the head-to-tail binding site and its vicinity.

The result is similar to the phenomenon reported in the analysis of

Ras-Raf using a molecular framework approach and MD

simulation [20]. As we have also observed in the aromatase trimer,

the regions distant from the binding sites become more flexible upon

aromatase self association, the perturbation generated from

aromatase self association can propagate from a binding site to

remote regions by alternating the dynamic network of interactions

in proteins. The translational and rotational degrees of freedom of

the monomers in an aromatase oligomer are reduced due to

monomer-monomer binding. The ‘‘freezing-out’’ of possible

multiple structures of an oligomer upon binding results in loss of

configurational entropy, but it could be compensated by the entropy

gain from the increase in flexibility of the distant regions away from

the binding site (Fig. S6A, Supporting Information) as proposed by

Steinberg et al. [21]. Entropic contribution from the increased

flexibility is believed to be a dominant factor in the free energy of

protein-protein association [22].

The fluctuations of both the access channel cavity and proximal

site relative to heme reduce on integration into the membrane.

The RMSF ratio decreases from 1.77 to 1.33 for the proximal site

and from 1.45 to 1.14 for the channel cavity, while the active cleft

remains roughly the same. This could be due to the fact that the

active site residues are located away from the membrane surface,

whereas some of the access channel resides and the loop residues

of the proximal site interact with the lipid bilayer. However, these

predictions need further validation by site-directed mutagenesis in

reconstituted membrane and/or cell-based activity assay on the

mutant enzymes.

Furthermore, the observed reduction in the mobility of the

membrane-associating C-terminal loops could result in enhanced

stability and optimal alignment of the active site access channel for

steroidal passage through the lipid bilayer.

Possible pathway for a crystallographic oligomer to
integrate into membrane

A valid aromatase oligomer topology should be amenable to

integration into the ER membrane. We have used two linear

trimer units (Fig. 6A) to model a membrane-integrated circular

hexamer (Figs. 6B and C) by a process described in the Materials

and Methods section (see below). A combination of the twisting

and hinge-bending motions shown in Fig. 4A could adjust the

quaternary association along the lowest energy landscape [18].

Electrostatic interaction between the ‘‘E’’ site of the ‘‘tail’’

monomer and the ‘‘P’’ site of the ‘‘head’’ is presumed to play a

role in driving the movements for the quaternary structural

changes. The modeling suggests that a circular oligomer thus

formed would use a similar loop-to-proximal cavity link as that

used by the polymeric chain in the crystal. The N-terminal helix of

each monomer penetrates into and across the lipid bilayer with its

end in the lumen side.

The size of a circular oligomer may vary depending on

aromatase concentration. An open passage in the membrane is just

created for each monomer after membrane insertion and each

passage is connected to the access channel of each molecule (same

as for a monomer in Fig. S6A, Supporting Information).

Organizations such as cyclic hexamers (size ,14 nm), octamers

(,18 nm) and even higher orders could be modeled in this way. In

the resting state, oligomerization could be a means of protection of

integrity of the proximal site and/or from undesirable effects at the

site, such as non-specific actions of redox agents, and phophoryla-

tion of Tyr 361 [23]. A likely scenario is that the monomers are

replaced by the CPR molecules for the electron transfer reaction

and aromatization to proceed.

Flexibility and dynamical motion: relevance to biological
function

The N-terminal helix, novel to the P450 structures elucidated

thus far, is the most mobile and flexible structural element

identified. The F-G loop is the next most flexible region in the

aromatase structure (Fig. 5) that is not significantly influenced by

self-association and membrane integration. The F-G loop

flexibility was previously reported to be one of the common

features of cytochrome P450s 2B4 and BM-3 with functional

relevance to enzymatic reactions [24]. The flexible loop undergoes

an open/close motion that allows the steroids to enter into or leave

Figure 6. Transformation of a linear to a circular hexamer that
has the correct membrane insertion topology. A, a linear
hexamer (a chain of two units of trimers) related by the crystallographic
32 screw symmetry. B and C, the plan and cross-section of a circular
hexamer inserted within a lipid bilayer.
doi:10.1371/journal.pone.0032565.g006
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from the active site through the access channel [1,25]. Our results

provide new support to this notion. Furthermore, the NMA of a

monomer reveals that the access channel could serve as a hinge for

intramolecular bending and an interface for twisting motions.

These motions, together with the intrinsic flexibility of the access

channel, are likely to contribute to channel ‘‘breathing’’, opening

and closing of the channel mouth and the cavity, perceived

necessary for entry and exit of steroids to and from the active site.

The hinge bending and twisting motions at the access channel

hinge/interface are also present in the lipid-embedded aromatase,

but at a higher frequency. The membrane penetrating areas, such

as helices A9 and A, have reduced amplitudes, owing perhaps to

dampening of the oscillation by surrounding lipid molecules.

However, the twisting motion is similar to the membrane free

molecule, which suggests that twisting could be more closely

related to a functional aromatase in vivo. Interestingly, the N-

terminal helix motion does not coordinate with either of these two

movements; instead, it is associated with the rear half of the

molecule, suggesting that membrane integration of the N-terminal

helix may have roles different from ‘‘breathing’’ or steroid passage,

perhaps in intramembrane stabilization or CPR coupling. One of

the slowest modes of the membrane-embedded aromatase suggests

a periodic movement of the active site region deeper toward the

lipid interior. Such a motion could be associated with the enzyme’s

substrate sequestration and/or product release phases of the

catalytic cycle.

Two slowest modes at the interface of the head-to-tail

association are intermolecular rigid-body hinge bending and

twisting motions. They provide the flexibility for the aromatase

molecules to reorganize themselves retaining the interface in order

to form an oligomeric structure. Our data suggests that such

reorganization and reorientation are necessary to position the

trans-membrane helices and regions on the same side of each

monomer for the oligomer as a whole to penetrate the lipid

bilayer. The driving force for this interfacial motion could be

drawn from the electrostatic potential gradient between the

electronegative ‘‘E’’ site of the D-E loop region of one monomer

and the electropositive ‘‘P’’ site of the heme-proximal region of the

other. The heme-proximal electropositive ‘‘P’’ site of aromatase

has been proposed to be critical for electron transfer by the FMN

moiety from CPR [26]. The observed flexibility of the intermo-

lecular interaction from this work suggests that the FMN moiety of

CPR could bind at the interface, either by flexing the head-to-tail

organization for a three-way binding or by competitively replacing

an aromatase monomer.

One of the most important biological implications of our

computational results is the corroboration that intermolecular

contacts and flexibility observed in the crystal structure could be

utilized into a higher order organization of aromatase that has the

correct topology for membrane integration. Aromatase molecules

function in the ER membrane and recent results suggest that the

enzyme is multimeric when embedded in the lipid bilayer [3]. Our

data derived from the crystal structure and flexibility calculations

show a mechanism by which this could be done, maintaining the

heme-proximal site orientation accessible for CPR coupling.

Furthermore, the computational result on free monomer to

monomer docking suggest that head-to-tail organization observed

in the crystalline aromatase is the most favored interface albeit with

a good deal of flexibility. Taken together, these results provide new

atomic level insights into the form, function and flexibility of an

oligomeric aromatase previously envisioned in the literature.

Lastly, the present aromatase atomic model for the first time

shows the N-terminal trans-membrane helix, based partly on weak

experimental electron density map not previously modeled, and

partly on the crystal packing constraints. Although other

microsomal P450’s are known to have similar trans-membrane

segments, aromatase in particular has longer and more pro-

nounced membrane-integrating regions, as the crystal structure

and sequence comparison suggest [1,26]. Modeling of this helix,

and its juxtaposition in relation to other membrane integrating A9

and A helices, as well the C-terminal membrane associating areas

all reaffirm the previously proposed notion that the opening to

active site access channel rests just inside the lipid bilayer enabling

easy passage of the highly hydrophobic steroidal substrate and

product. The N-terminal helix appears to project out into the

lipids via an extended peptide segment with residues Tyr41 to

Gly49 away from the main enzyme structure. This is suggestive

that the trans-membrane segment probably plays roles not directly

associated with the enzyme catalysis, but in the aromatase-CPR

interaction through the CPR’s transmembrane segments. Indi-

rectly, however, such ‘‘tethered’’ membrane anchoring may be

crucial for the added flexibility of the business end of the molecule,

as the slowest modes suggest. The observed dynamical disorder of

the N-terminus in the X-ray data is simply a reflection of the fact

that once separated from the membrane it dangles harmlessly

away from the main structure and without any interference with

the stability of the functional enzyme. The current modeling of the

N-terminal helix and its vibrational modes within the apparent

‘‘void’’ of the aromatase crystal (see ‘‘Calculations under crystal

packing conditions’’ in MATERIALS AND METHODS) is a

confirmation that its enhanced mobility persists and accommo-

dated in the crystalline state.

We show that the major normal modes in aromatase oligomers

are inter-monomeric rigid body motions with the D-E loop to

proximal site association as the interface and that this interface is

directly linked to catalytic function of the enzyme. It is, therefore,

likely that suitable small molecules binding at the interface would

interfere with the CPR coupling, oligomer formation and/or its

membrane integration. Such non-active site directed compounds

could constitute a new class of aromatase inhibitors.

Materials and Methods

EN-NMA
The detailed description and recent reviews of the Ca-NMA

method can be found in literature [7,12,13,15]. In this work, a single

parameter potential was used as proposed by Tirion [5]. The

building block approximation so called rotation-translation-block

(RTB) [8] method is employed to speed up our calculations and

reduce the computational limitation of a large system. As mentioned

by Bahar [10,12] and Tama [8], this approximation has very little

influence on slow modes, particularly for a large protein complex

where the functional domains are expected to be large.

The oligomer coordinates were generated by the crystallo-

graphic symmetry operations using Coot [27] and the crystal

structure of the human placental aromatase monomer [1], PDB

code: 3EQM. NMA was implemented using the elNémo web-

server [28]. The smallest system of study consisted of one

monomer (452 residues) and there were 1940 residues (including

the N-terminal helices) in the largest system consisting of a

tetramer. The connectivity cutoff distance, used in pairwise

Hookean potential between nodes, was tested in a range of

8,16 Å. A cutoff of 10 Å was selected for monomer and the

default of 8 Å for oligomers after scaling with the experimental B

factors. The block size was chosen by default, but could be varied

with the system size. For convenience of visualization, the

eigenvectors were scaled by a factor of 200. The eigenvector

arrows in Fig. 2(C) represent the relative amplitude and direction
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of the associated Ca atoms of the central monomer. The same

eigenvector representation has been followed in Figs. 3 (A) to (D),

Fig. 4 (A), and in Supporting Information (Fig. S1 and Fig. S3).

The normal mode models were computed with a given

perturbation amplitude in the direction of a single normal mode.

Here the perturbation range was from 2100 to 100 with a step

size of 20 [28]. The motion in supporting movies (Movies S1, S2,

S3, S4, S5, S6, S7) was generated under perturbation; it could,

therefore, be exaggerated when compared with equilibrium

fluctuation.

The N-terminal helix was not included in the calculations

except for the protein in complex with the membrane or wherever

noted. It is seen that the movement of the N-terminal helix are

predominant in the absence of membrane among the collective

motion modes that have a low frequency and large amplitude. The

usage of a truncated aromatase model is found more efficient than

that with the N-terminal helix in the dynamics study of oligomers.

The frequency was normalized relative to the lowest mode

frequency in all our calculations. The frequencies of modes 7 and

8 of a dimer were 1.00 and 1.09, and those of a free monomer

were 1.00 and 1.04. Taking the slowest frequency to be 2.5 cm21,

the frequencies of the first 20 slowest modes in the system of this

study are in the range 2.5–15 cm21. Therefore, the time scale for

the slowest modes range from a few picosecond to the order of 10

picosecond, in agreement with reported collective motion in

proteins [18].

Calculations under crystal packing conditions
In the space group P3221, the head-to-tail oligomers are formed

about the crystallographic three-fold screw axis and packed in the

crystal about a crystallographic 2-fold rotation axis perpendicular

to the 32 screw axis (Fig. 1A). A head-to-tail intermolecular

interaction among aromatase molecules is mediated via a surface

loop between helix D and helix E of one aromatase molecule

penetrating into the heme-proximal cavity of the next, thus

forming a polymeric aromatase chain (Fig. 1A). Two oligomer

chains form crystal contact through hydrogen bonding and salt

bridge interactions via the H-I loops. For the system of four

interconnected crystallographic monomers in Fig. 1A employed in

the calculation, the crystal-packing environment was preserved for

the central green monomer. However, the adjacent blue and gold

monomers from the same polymer chain and the gray from the

neighboring chain each had only one association, unlike the crystal

environment.

The calculations were repeated for the crystallographic tetramer

with the N-terminal helices (Fig. S2, Supporting Information). A

putative atomic model, consisting primarily of an a-helix, for the

N-terminal missing residues Asn12 to Thr44 is built using the

partially visible weak experimental electron density [1] (Fig. S8,

Supporting Information), and restrictions of the crystallographic 2-

fold rotation axis, which the two symmetry-related helices

approach. The modeling was also guided by the fact that a helix

between Ile13 and Tyr40 would traverse the lipid bilayer,

positioning Asn12, a potential glycosylation site, in the ER lumen.

Interestingly, N-terminal helices line up about the 32 symmetry

axis within the crystal in the space that constitutes the largest void

(a region of lowest electron density in the crystal), a channel of

dynamically disordered solvent and detergent, thereby providing

some rationale as to why the N terminus is disordered.

Modeling of aromatase monomer in lipid bilayer
It is known that phosphatidylcholine is the major lipid composition

in ER membrane [29,30,31]. For simplicity, a bilayer model of

1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) is employed to

represent the ER membrane. The coordinates of the phospholipids

were generated with the builder module in the VMD package [32]

and the membrane has a size of 80 Å|80 Å. The aromatase

molecule was then aligned against the membrane according to the

hydrophobic property of the protein and their topology, as described

earlier [1]. The N-terminal helices, up to helix A, traverse into the

bilayer with the Asn12 in the lumen side. The C-terminal loops, such

as b7–b8 and b9–b10 loops are embedded into the lipids. The

structures of protein and membrane were then merged with the VMD

package by eliminating the lipid molecules that overlap with the

protein. The complex were finally subjected to energy minimization

at the protein-membrane interface with fixed backbone of the protein

and lipid molecules in Molecular Operating Environment (MOE,

2009.10), Chemical Computing Group, Montreal Canada [33].

There are 160 lipid molecules and one aromatase molecule in a total

of about 12,000 heavy atoms in the system.

Characterization method of aromatase flexibility
Root mean square fluctuation (RMSF) was used to characterize

protein flexibility. The mean square fluctuation (MSF) of the ith

node, SxiT2, could be determined from the normal modes [13,16]

SxiT2~
kBt

mi

Xnv

j

U2
ij

v2
j

ð1Þ

where kB is the Boltzmann constant, T the system temperature, mi

the mass of the ith node, Uij the eigenvector of the ith node with

the frequency vj, and nv is the number of modes considered. An

accurate evaluation of MSF was achieved from the average of the

100 slowest normal modes. The B factor of each node was

calculated using the relationship of

B~ 8p2
�

3
� �

Sx2
i T ð2Þ

and further rescaled by an origin shift and a scale factor multiplier.

The former is necessary to account for the contribution from rigid

body motion implicit in the X-ray B-factors [14] and the latter is

used to match the X-ray data. NMA was carried out with variables

such as temperature, atomic mass and potential energy, in reduced

units, so that the unit of MSF was also reduced. Here, the flexibility

of a node was characterized by the relative RMSF of the node to the

mean value of the system, i.e. the computed RMSF was in reference

to system of study. For simplification, RMSF used in the paper

refers to the relative RMSF unless otherwise noted. The residue

RMSF was given as the average over the backbone atoms in all

heavy-atom NMA, and as the value for the Ca atoms in Ca-NMA.

Flexibility of a region of interest was depicted by the average of

residue-RMSFs over this region. Because MSF is in reduced unit,

the calculated B factors (from Eq. 2) were scaled to the experimental

B factor data. Prior to scaling, the calculated MSF of each node was

reasonably up shifted away from the origin to account for the

translational and rotational rigid body motions in the lattice cell.

Calculation of the electrostatic potentials of aromatase
oligomer

The software Adaptive Poisson-Boltzmann Solver (APBS) [34]

as a plug-in to Pymol [35], was used to calculate the electrostatic

potentials of the aromatase dimer and trimer. The coordinate files

of these crystallographic oligomers were prepared in the same way

as those in NMA. The electrostatic interactions between solutes in

solvent media were evaluated by solving the Poisson-Boltzmann

equation (PBE) [36], a popular continuum model. The parame-
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ters, such as grid dimension, length and spacing, etc. were setup in

default values as suggested by the program. The calculated

electrostatics were visualized with Pymol by mapping them on the

van der Waals surface of protein molecules rendered in a color

spectrum from red to blue representing the scale from 27kT/e to

7kT/e.

Modeling a hexamer on membrane
The atomic model of aromatase with the N-terminal helix was

used to build by collapsing a linear chain of two units of

crystallographically related trimers (Fig. 6A) into a circle in which

all N-terminal helices have similar orientations (Figs. 6B and C).

This was achieved primarily by rotating the each molecule pair

roughly 6120u with D-E loop-in-proximal-cavity as the fulcrum as

indicated in Fig. 7, such that the N-terminal helices all align on the

same side of the hexamer. Some hinge bending and translational

adjustments were made as well in order to form a symmetrical

hexagon to avoid any steric violation. At the end, however, similar

D-E-loop to proximal site contacts as observed in the crystal

structure was maintained in all six monomer-to-monomer

interfaces. Finally, the hexamer was built on a membrane

(20nm|20nm) by the process described above (modeling of

aromatase monomer in lipid bilayer).

Supporting Information

Figure S1 The slowest normal mode of crystallographic

tetramer of aromatase and the residue fluctuations against crystal

contact interactions.

(TIF)

Figure S2 Ribbon diagrams showing the structure of a

crystallographic tetramer.

(TIF)

Figure S3 Intermolecular motions of aromatase dimers from

normal mode analysis.

(TIF)

Figure S4 Monomer-to-monomer docking computation.

(TIF)

Figure S5 The flexibility of a membrane-free aromatase

monomer.

(TIF)

Figure S6 Membrane integration of aromatase and flexibility.

(TIF)

Figure S7 The flexibility of aromatase upon oligomerization.

(TIF)

Figure S8 Model for the N-terminal helix.

(TIF)

Text S1 Probing of other possible oligomeric structures by

protein-protein docking computation.

(DOCX)

Text S2 Fluctuations in an oligomeric aromatase.

(DOCX)

Movie S1 Mode 12 of a crystallographic tetramer shows the

motions of the N-terminal helices.

(MOV)

Movie S2 Two modes of intramolecular motion of a membrane-

free aromatase monomer deduced from normal mode analysis: (A)

hinge-bending mode and (B) twisting mode.

(MOV)

Movie S3 Two modes of intramolecular motion of a membrane-

embedded aromatase monomer deduced from normal mode

analysis: (A) hinge-bending mode and (B) twisting mode.

(MOV)

Movie S4 Three slowest modes of a membrane-embedded

aromatase monomer: (A) and (B) bending and (C) twisting modes.

(MOV)

Movie S5 Two modes of intermolecular motion of the green-

gold dimer deduced from normal mode analysis: (A) hinge-

bending mode and (B) twisting mode.

(MOV)

Movie S6 Two modes of intermolecular motion of the blue-

green-gold trimer deduced from normal mode analysis: (A) hinge-

bending mode and (B) twisting mode.

(MOV)

Movie S7 Two modes of intermolecular motion deduced from

normal mode analysis of the blue-green-gold trimer in the

presence of the fourth gray monomer, simulating crystal packing

conditions: (A) hinge-bending mode and (B) twisting mode.

(MOV)
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Figure 7. A proposed mode of utilization of intermolecular motions for membrane integration by a unit of crystallographically
related trimer. The indicated rotational motions about the dotted axes align the N-terminal helices. The orientation of the oligomer is roughly the
same as in all panels of Fig. 4.
doi:10.1371/journal.pone.0032565.g007
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