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Abstract Many diagnostic entities traditionally viewed as
individual diseases are heterogeneous in molecular patho-
genesis and treatment responsiveness. This results in
treatment of many patients with ineffective drugs, the
conduct of large clinical trials to identify small average
treatment benefits for heterogeneous groups of patients. In
oncology, genomic technologies provide powerful tools for
identification of patients who require systemic treatment
and for selecting the most appropriate drug. Development
of drugs with companion diagnostics, however, increases
the complexity of clinical development and requires new
approaches to the design and analysis of clinical trials.
Adapting to the fundamental importance of tumor genomics
will require paradigm changes for clinical and statistical
investigators in academia, industry and government. In this
paper we attempt to address some of these issues and to
comment specifically on the design of clinical studies for
evaluating the clinical utility and robustness of prognostic
and predictive biomarkers.
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Introduction

The dominant themes in oncology therapeutics today are
the molecular heterogeneity of different tumors of the same
primary site, the development of drugs molecularly targeted

to de-regulated signaling pathways, and the personalization
of treatment planning. The development of molecularly
targeted drugs has accelerated the movement to personal-
ized therapeutics based on genomic characterization of
individual tumors. This is particularly true in breast cancer
where treatment selection is often based on estrogen
receptor status, HER2 amplification status, and gene
expression profile indicating the prognostic aggressiveness
of the disease.

Traditionally, the term “biomarker” referred to a mea-
surement that tracks the pace of a disease; increasing as the
disease progresses and decreasing as it regresses. Such
biomarkers are sometimes referred to as “surrogate”
endpoints, implying that they are surrogates for survival
or other measures of clinical outcome. However few
disease endpoint biomarkers in oncology have been
demonstrated to be more than just correlates of survival.
The distinction between a correlate and a surrogate is
causality. For example, tumor shrinkage after a standard
treatment may be correlated with survival because patients
with smaller tumors have better response rates and longer
survival. Increasing response rate, however, may not result
in extended survival. It is very difficult to establish that an
intermediate endpoint is a true surrogate of clinical outcome
[1–4]. Nevertheless, intermediate endpoint biomarkers can
be useful for early clinical development of a drug without
being established as valid surrogates of clinical outcome.
Pharmacodynamic biomarkers are used in for establishing
that the drug inhibits its intended target and intermediate
endpoint biomarkers such as KI67 or PSA can be used in
phase II studies for dose selection, predictive biomarker
development, and determination of whether to conduct a
phase III clinical trial. Such endpoints are often not,
however, acceptable as endpoints for phase III clinical
trials, at least not phase III registration trials.
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Our focus here will be on baseline biomarkers, not
endpoint biomarkers. Prognostic markers are baseline (pre-
treatment) measurements that provide information about the
patient’s likely long-term outcome either untreated or with
standard treatment. Prognostic markers can be used to
determine whether the patient requires any systematic
treatment or any beyond the standard treatment. Predictive
markers are baseline measurements that indicate whether
the patient is likely (or unlikely) to benefit from a specific
drug or regimen.

Technologies such as array based hybridization assays
and next generation DNA sequencing provide molecular
characterizations of individual tumors which have the
potential to improve therapeutic decision making. Devel-
opment of prognostic and predictive biomarkers based on
this information also has great potential value for cancer
drug development and for controlling medical costs by
reducing the treatment of cancer patients with regimens that
do not benefit them. Nevertheless, the translation of
molecular profiling data into meaningful molecular targets
and effective biomarkers is not straightforward. Co-
development of new drugs with companion diagnostics
increases the complexity of development and may not
generally provide a quicker and cheaper approach as
sometimes claimed. Diagnostics which are not reliably
evaluated can detract from proper patient management and
increase the cost of medical care. One of the greatest
challenges today is to develop and evaluate prognostic and
predictive biomarkers in a reliable but practical manner that
permits the translation of the genomic information read
from individual tumors into therapeutic strategies that
benefit patients.

We will use the term “biomarker” to include both single
and composite biological measurements. A single measure-
ment may be a protein level, a transcript abundance level, a
binary indicator of the presence or absence of a gene
mutation, e.t.c. Composite measurements combine the
values of multiple measurements into either a quantitative
score or a categorical classifier. The most common kinds of
composite classifiers today are based on expression levels
of multiple genes like the OncotypeDx recurrence score [5].
A composite biomarker score is characterized by its
components and the way the components are combined
into a single score. In many cases the score is a linear
combination of the components and in that case the weights
assigned to the components must be specified for the score
to be well defined and useable in a prospective manner.
Composite biomarker scores may be transformed to
composite biomarker classifiers by introducing one or more
cut-points. For example, OncotypeDx is sometimes used as
a classifier for low-risk, intermediate-risk and high-risk of
recurrence for patients with ER positive node negative
breast cancer receiving anti-estrogens as the only systemic

treatment after local therapy [6]. Currently, most composite
biomarkers are based on gene expression because hybrid-
izing fluorescently labeled transcripts to solid surface DNA
microarrays enabled genome-wide evaluation of transcript
abundance. Many of the issues described below concerning
the development and evaluation of single and composite
biomarkers also apply to markers based on mutation,
genome copy number variation, methylation, single protein
measurements and whole genome proteomics, as well as
post-translational modifications of proteins.

Prognostic biomarkers

There is a substantial gap between the vast literature of
prognostic markers and the limited use of prognostic
markers in clinical practice [7]. We will explore here some
of the reasons for this gap.

Developmental studies of prognostic biomarkers

The vast majority of reports of gene expression based
prognostic signatures are “developmental” studies in which
a signature is developed. In contrast, a “validation study”,
to be discussed below, utilizes a fully specified marker
developed in a previous developmental study.

There are many potential problems with developmental
studies of prognostic signatures based on gene expression
profiling [8, 9]. Subramanian and Simon [10] recently
reviewed prognostic biomarker signature development for
early stage lung cancer. They found several serious flaws in
the studies, but perhaps the most serious was the lack of
focus on an intended use of the prognostic classifier being
developed. In contrast, the OncotypeDx recurrence score
identifies women with node negative ER positive breast
cancer receiving Tamoxifen as their only systemic therapy
who have a risk of recurrence sufficiently small that they
may opt not to receive cytotoxic chemotherapy [5]. Early
definition of that intended use drove the planning of the
developmental studies of OncotypeDx. For a prognostic
marker to be useful for therapeutic decision-making, it must
be developed based on study of patients selected for that
intended use. In their review of lung cancer signatures,
Subramanian and Simon found that few if any studies
selected patients or sized their studies based on a defined
intended use.

Most prognostic marker studies are conducted using a
“convenience sample” of available specimens without focus
on an intended use. Unless the specimens are archived from
cases on a single clinical trial, they may be quite
heterogeneous with regard to clinico-pathological variables
that are a part of practice standards that determine
treatment, and even heterogeneous with regard to treatment.
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Often the publication develops a signature that is claimed to
be prognostic or more prognostic than the standard staging
system. Because the patients included are so heterogeneous,
however, it is often very difficult to determine whether the
signature has any potential value for therapeutic decision
making.

Showing that a signature separates a group of well
staged stage I lung cancer patients with negative margins
and no other high risk features into a subgroups with low
and high risk of recurrence, if performed effectively, can
establish a clinical validity of the signature, but not it’s
“medical utility.” “Clinical validation” means that the
signature correlates with clinical outcome. “Medical utili-
ty”, however, means that the signature is “actionable” and
can be used in therapeutic decision-making in a way that
results in benefit to patients. Establishing medical utility
requires that the classifier provides a therapeutic decision
tool that results in patient benefit compared to practice
standards based on current staging and clinical/histopatho-
logic prognostic factors. Establishing medical utility is the
objective of the validation study, but the developmental
study should be designed and analyzed in a manner that
provides a prognostic tool with promise of having medical
utility. For the stage I lung cancer example, the validation
study would probably involve randomizing stage I patients
to receive or not receive adjuvant chemotherapy, with
separate analysis of the patients predicted to be at low risk
of recurrence and those predicted to be at higher risk of
recurrence.

For developmental studies of prognostic signatures
based on gene expression data, the number of genes
examined is much greater than the number of cases
included. Consequently, it is not appropriate to use the full
set of data in the traditional manner for both developing the
model and for examining the predictive ability of the
model. For example, when the outcome is survival or
disease-free survival, it is quite misleading to show Kaplan
Meier curves based on classifying the same patients used
for developing the model. Simon et al. have shown that it is
almost always possible to have good apparent model fit
even when none of the genes have expression values
correlated with outcome [11]. This was also shown
graphically by Subramanian and Simon [10]. Unfortunately,
such misleading analyses are prevalent in prognostic
signature studies [8, 10].

Most developmental studies should include internal
validation based on either splitting the cases into training
and test sets or on complete cross-validation. Both the split-
sample method and cross-validation provide valid estimates
of prediction power when performed correctly. The most
common defect of using split-sample methods is having too
few cases in the test set [11]. The most common error in
using cross-validation is failure to use “complete” cross-

validation in which the genes for inclusion in the classifier
are re-selected for each loop of the cross-validation. Dupuy
and Simon [8] found in their review that approximately
33% of studies used cross-validation incorrectly. Subrama-
nian and Simon have developed a checklist of key features
that physicians should look for in reports of prognostic
gene expression signatures [9].

Split-sample validation or complete cross-validation are
important components for developmental studies, but they
represent internal validations that do not incorporate many
components of variability that will be found in a prospec-
tive validation study or in clinical practice. Prior to
conducting a validation study, an analytically validated
assay should be developed. Analytical validation means
that the assay measures what it is supposed to measure for
cases in which a gold-standard assay exists. For other
assays like gene expression classifiers, analytical validation
means that the assay is reproducible and robust.

Validation studies of prognostic biomarkers

Ideally a prognostic classifier will be validated in a
prospective clinical trial before it is accepted for broad
clinical use [12]. The marker strategy design, shown in
Fig. 1, is sometimes considered for evaluating the medical
utility of a diagnostic test. With this design patients are
randomized to be tested or not. For those who are not
tested, their treatment is determined based on practice
standards. For those patients randomized to be tested, the
results of the test can be used in conjunction with standard
prognostic factors to inform treatment decisions. The
marker strategy design is often a poor choice of design,
however. It is inefficient because many patients receive the
same treatment regardless of which group they are
randomized to [13–15]. In order to have reasonable
statistical power to detect differences in outcome among
the two randomization groups as a whole, a very large
number of patients may have to be randomized [16]. For
example, suppose the endpoint is survival disease-free
beyond 5 years and that a proportion π of the patients
receive the same treatment regardless of which arm they are
randomized to. If we want to detect a difference Δ in the
probability of 5-year DFS for patients receiving different
treatments, then we would have to power the study to detect
a difference of (1-π)Δ between the randomization groups.
Since the required sample size is generally inversely
proportional to the square of the difference to be detected
between the randomized groups, the required sample size
will be enormous if π is substantial. This inefficiency is
particularly problematic for prognostic markers for identi-
fying low risk patients for whom chemotherapy may be
withheld because the prospective study is a therapeutic
equivalence trial involving a small value of Δ. For example,
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to have 90% power (with 5% one-sided significance) for
detecting a 5 percentage point increase in the recurrence
rate (Δ=.05) from a baseline of 10% would require a
randomized trial of approximately 2,460 low risk patients if
all patients are tested and low risk patients selected for
randomization. The marker strategy design of Fig. 1,
however, would require approximately 9,320 randomized
patients to have 90% power for detecting the 2.5 percentage
point increase in recurrence rate expected if only half of the
patients are low risk based on the marker.

The marker strategy design may also be insufficiently
informative in cases where the test is not just binary and the
test based treatment strategy is complex. For example,
suppose that patients with a low value of the marker have
chemotherapy withheld, patients with intermediate values
receive standard chemotherapy, and patients with high
values receive intensified chemotherapy. Because the test
is not performed for patients in the control group, one
cannot examine results for the subsets of patients defined
by test result. One is limited to just comparing the
randomization groups overall.

The defects in the marker strategy design can be avoided
by testing all patients and only randomizing patients for
whom the treatment assignment is influenced by marker
result. This modified marker strategy design, shown in
Fig. 2, is currently being used in the MINDACT study to
evaluate a 70 gene prognostic signature for determining
whether to utilize chemotherapy for women with node
negative estrogen receptor positive breast cancer [17].

The TAILORx study is a prospective clinical trial for
evaluating the OncotypeDx gene expression recurrence

score for women with node negative estrogen receptor
positive breast cancer. The main objective of the trial is to
determine whether women with a low recurrence score can
have a low risk of disease recurrence even if chemotherapy
is withheld. In the trial, such women are not randomized
but just have chemotherapy withheld. If the recurrence
score is accurate, the relapse rate for these patients would
be very low and hence the potential benefit of chemother-
apy very small in absolute terms [6]. In the MINDACT
trial, women for whom the practice standard indicates
chemotherapy but who have a low risk of recurrence based
on the genomic signature are randomized between a
chemotherapy arm and a no-chemotherapy arm. Neverthe-
less, the signature will be considered validated if the
5-year distant metastasis-free survival rate is greater than
92% in the women randomized to having chemotherapy
withheld.

By validating these prognostic signatures in a fully
prospective manner rather than by using archived tissue
from a previously conducted series, one assures that an
adequate number of patients are studied, that assay results
are available on all patients, that the analysis is focused on
a single pre-specified hypotheses, and that assay results
reflect real-world tissue handling and laboratory variation.
Such studies are expensive and time consuming however.
In some cases effective validation of a classifier predictive
of low recurrence risk can be accomplished with specimens

Randomize patient

Measure marker Treatment based on 
standard prognostic 

factors

Treatment based on 
marker and standard 
prognostic factors

Fig. 1 The marker strategy design randomizes eligible patients
between two treatment assignment strategies [46]. The control arm
determines treatment using practice standards based on staging and
existing prognostic factors. The new biomarker is not measured for
patients randomized to the control arm. Patients randomized to the
experimental arm have the candidate biomarker measured and it is
used in conjunction with staging and other prognostic factors to
determine treatment. This design is very flexible, but often very
inefficient in the sense that the same objectives can be obtained with
many fewer patients with other designs

Measure marker

Is marker based
treatment the same as

standard of care?

No

Randomize patient

Marker-based
treatment

Standard of care
treatment

Yes

Patient off study

Fig. 2 The marker discordance design measures the candidate marker
on all eligible patients [46]. Before randomization the practice
standard determined treatment and the marker based treatment are
identified. Only patients for whom the two treatments differ are
randomized. This design is generally much more efficient than the
marker strategy design
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archived from an appropriate clinical trial that withheld
chemotherapy from such patients. Convincing results are
only possible, however, if the patients being analyzed are
participants in a clinical trial with a design that enables
unbiased evaluation of the test, if the number of patients is
sufficiently large, if the proportion with available speci-
mens adequate for testing is high, if careful analytical
validation provides assurance that assay results on archived
samples are accurate predictors of assay results on fresh tissue,
and if the assays are blinded to clinical data [18]. When there
are two or more such “prospective-retrospective studies” that
satisfy these optimal conditions, Simon et al. argue that the
evidence for medical utility of the prognostic biomarker
should be considered commensurate with that from a fully
prospective study [18]. These issues are also discussed by
Pepe et al. [19].

A prognostic biomarker can also be used to identify
patients whose outcome is very poor with standard
chemotherapy. Although such patients may be good
candidates for experimental regimens, unless there is a
viable therapeutic option, such prognostic biomarkers may
not be widely used in general practice.

Predictive biomarkers

Predictive biomarkers identify patients who are likely or
unlikely to benefit from a specific treatment. For
example, HER2 amplification is a predictive marker for
benefit from trastuzumab and perhaps also from doxoru-
bicin [20, 21] and taxanes [22]. A predictive biomarker
can also be used to identify patients who are poor
candidates for a particular drug; for example, advanced
colorectal cancer patients whose tumors have KRAS
mutations appear to be poor candidates for treatment with
EGFR antibodies [23, 24].

Predictive biomarkers may be based on single gene or
protein measurements, on gene expression classifiers, on
pathway activation indicators, or on disease sub-
classifications. Measurements based on single gene or
protein measurement are often closely linked to the
mechanism of action of the drug. In some cases, a specific
target of the drug is known but it is not clear how to best
measure whether the target is driving tumor growth and
invasion for an individual patient. For example, although
trastuzumab was initially developed using a test for protein
expression of HER2, subsequent classification has often
been based on a combination of protein expression and
gene amplification [25]. In the case of anti-EGFR anti-
bodies for treatment of advanced colorectal cancer, KRAS
mutation status rather than EGFR protein expression
proved to be the more important predictive biomarker. In
other cases, the drug has multiple molecular targets and

there will be more options for determining how best to
predict effectiveness of treatment. Ideally, the candidate
predicted biomarkers will be evaluated during phase II
clinical trials of a new drug so that a single analytically
validated candidate can be used in the prospective phase III
trial.

In recognition of the molecular heterogeneity of cancer,
many cancer drugs are being developed today with
companion diagnostics to be used as predictive biomarkers.
Sawyers has stated “One of the main barriers to further
progress is identifying the biological indicators, or bio-
markers, of cancer that predict who will benefit from a
particular targeted therapy [26].” This increases the com-
plexity of drug development, although it has potential
benefits for patients and for controlling medical expenses.
It requires, however, that an effective predictive biomark-
er be identified and a test for it analytically validated
prior to the launch of the phase III pivotal clinical trials
of the drug. The discovery and phase II refinement of
predictive biomarkers can be complex. It may require
larger phase II databases, require new approaches to
phase II trial design such as designs based on neo-
adjuvant treatment [7, 27, 28]

Establishing the medical utility of a companion diagnos-
tic predictive marker for a new drug will generally be based
on the phase III pivotal trials used to establish the
effectiveness of the drug. In the following sections we will
review some designs for phase III clinical trials that utilize
new drugs and companion diagnostics.

Enrichment Designs

With an enrichment design a diagnostic test, is used to
restrict eligibility for a randomized clinical trial comparing
a regimen containing a new drug to a control regimen. This
approach, shown in Fig. 3, was used for the development of
trastuzumab in which patients with metastatic breast cancer
whose tumors expressed HER2 in an immunohistochemis-
try test were eligible for randomization [29]. Simon and
Maitournam [30–32] studied the efficiency of this approach
relative to the standard approach of randomizing all patients
without using the test at all. They found that the efficiency
of the enrichment design depended on the prevalence of test
positive patients and on the effectiveness of the new
treatment in test negative patients. When fewer than half
of the patients are test positive and the new treatment is
relatively ineffective in test negative patients, the number of
randomized patients required for an enrichment design is
often dramatically smaller than the number of randomized
patients required for a standard design. For example, if the
treatment is completely ineffective in test negative patients,
then the ratio of number of patients required for random-
ization in the enrichment design relative to the number
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required for the standard design is approximately 1/γ2

where γ denotes the proportion of patients who are test
positive [30]. The treatment may have some effectiveness
for test negative patients either because the assay is
imperfect for measuring deregulation of the putative
molecular target or because the drug has anti-tumor off-
target effects. Even if the new treatment is half as effective
in test negative patients as in test positive patients,
however, the randomization ratio is approximately
4= g þ 1ð Þ2. This equals about 2.56 when γ = 0.25, i.e.
25% of the patients are test positive, indicating that the
enrichment design reduces the number of required patients
to randomize by a factor of 2.56.

Hoering et al. [14] concluded that a targeted enrichment
design is most efficient where there is an underlying true
predictive marker and the cut point for determining the
marker status is well established. Mandrekar and Sargent [13,
33] have also pointed out the efficiency of the enrichment
design and suggested that the enrichment design is appropri-
ate when (i) the new treatment has a modest absolute benefit
in unselected patients but causes significant toxicity; (ii)
an unselected design is ethically impossible based on
previous studies; (iii) there is compelling preliminary
evidence to suggest that patients without that marker
profile do not benefit from the treatment; and (iv) assay
reproducibility and accuracy is well established.

Zhao and Simon have made the methods of sample size
planning for the design of enrichment trials available on line at
http://brb.nci.nih.gov. The web-based programs are available
for binary and survival/disease-free survival endpoints. The

planning takes into account the performance characteristics of
the tests and specificity of the treatment effects. The programs
provide comparisons to standard non-enrichment designs
based on the number of randomized patients required and
the number of patients needed for screening to obtain the
required number of randomized patients.

The enrichment design was very effective for the
development of trastuzumab and the enrichment design is
particularly appropriate for contexts where there is such a
strong biological basis for believing that test negative
patients will not benefit from the new drug that including
them in would raise ethical concerns. The enrichment
design does not provide data on the effectiveness of the
new treatment compared to control for test negative
patients. Consequently, unless there is phase II data on the
clinical validity of the test for predicting response or
compelling biological evidence that the new drug is not
effective in test negative patients, the enrichment design
may not be adequate to support approval of the test.

Designs that include both test positive and test negative
patients

When a predictive classifier has been developed but there is
not compelling biological or phase II data that test negative
patients do not benefit from the new treatment, it is
generally best to include both classifier positive and
classifier negative in the phase III clinical trials comparing
the new treatment to the control regimen as shown in
Fig. 4. In this case it is essential that an analysis plan be

Measure marker 

Test positive

Randomize patient

Test negative

Patient off study

New treatment Control 

Fig. 3 The targeted enrichment design is used for evaluating a new
treatment in the population of patients who are identified using a
predictive biomarker as best candidates for potential benefit from the
new treatment [46]. It is primarily for settings where there is a
compelling basis for not expecting that “marker negative” patients can
benefit from the new treatment and an analytically accurate test is

available. The compelling basis is generally based on biology but
could be based on substantial prior evidence with the new treatment.
When the proportion of marker positive patients is less than one-half,
this design can require substantially fewer randomized patients than
the standard design
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pre-defined in the protocol for how the predictive classifier
will be used in the analysis. It is not sufficient to just
stratify, i.e. balance, the randomization with regard to the
classifier without specifying a complete analysis plan. The
main value of “stratifying” (i.e. balancing) the randomiza-
tion is that it assures that only patients with adequate test
results will enter the trial. Pre stratification of the
randomization is not necessary for the validity of inferences
to be made about treatment effects within the test positive
or test negative subsets. If an analytically validated test is
not available at the start of the trial but will be available by
the time of analysis, then it may be preferable not to pre-
stratify the randomization process. Similarly, if the predic-
tive biomarker to be used in the analysis is not completely
settled by the start of the trial but will be determined based
on external data by the time of analysis, then careful pre-
specification of the analysis plan will be necessary, but pre-
stratification of the randomization process will not be
appropriate.

Sargent et al. have compared the efficiency of the marker
stratified design described here and shown in Fig. 4 to the
marker-based strategy design shown in Fig. 1 [34]. In
general, the strategy design is very inefficient for the
reasons discussed above in the section on prognostic
markers. Pusztai and Hess have also discussed the stratified
design and the marker-based strategy [35].

The purpose of the phase III trial is to evaluate the new
treatment overall and in the subsets determined by the pre-
specified classifier. The purpose is not to modify or
optimize the classifier. If the classifier is a composite gene
expression based classifier, the purpose of the design is not

to re-examine the contributions of each gene. If one does
any of this, then an additional phase III trial may be needed
to evaluate treatment benefit in subsets determined by the
new classifier. Several primary analysis plans are presented
below to illustrate that the plan should stipulate in detail
how the predictive biomarker will be used in the analysis
and that there should be no exploratory aspect to the
treatment evaluation. These strategies are discussed in
greater detail by Simon [36, 37] and a web-based tool for
sample size planning with these analysis plans is available
at http://brb.nci.nih.gov.

Analysis plan for biomarker with strong credentials

If one does not expect the treatment to be effective in the
test negative patients unless it is effective in the test
positive patients, one might first compare treatment versus
control in test positive patients using a threshold of
significance of 5%. Only if the treatment versus control
comparison is significant at the 5% level in test positive
patients, will the new treatment be compared to the control
among test negative patients, again using a threshold of
statistical significance of 5%. This sequential approach
controls the overall type I error at 5%.

To have 90% power in the test positive patients for
detecting a 50% reduction in hazard for the new treatment
versus control at a two-sided 5% significance level requires
about 88 events of test positive patients. If at the time of
analysis the event rates in the test positive and test negative
strata are about equal, then when there are 88 events in the
test positive patients, there will be about 88(1-γ)/γ events

Measure marker 

Test positive 

Randomize patient 

Test negative 

Randomize patient 

New treatment Control New treatment Control 

Fig. 4 The marker stratification design is used for evaluating the
effectiveness of a new treatment versus a control in a population
prospectively characterized by a binary predictive biomarker [46]. A
detailed prospective plan should describe the primary comparison of
treatment to control overall and in the marker positive and marker
negative subsets. Several analysis plans are described in the text. With a

focused analysis plan, claims of treatment effectiveness in marker
positive patients need not be restricted to cases where the treatment is
effective overall for all patients. Ideally a single completely defined
analytically defined binary biomarker will be determined prior to the
randomized trial. Adaptive modifications of the stratified design in which
the biomarker is refined based on trial data are described in the text

EPMA Journal (2010) 1:377–387 383

http://brb.nci.nih.gov


in the test negative patients where γ denotes the proportion
of test positive patients. If 25% of the patients are test
positive, then there will be approximately 264 events in test
negative patients. This will provide approximately 90%
power for detecting a 33% reduction in hazard at a two-
sided significance level of 5%. In this case, the trial will not
be delayed compared to the enrichment design, but a large
number of test negative patients will be randomized, treated
and followed on the study rather than excluded as for the
enrichment design. This will be problematic if one does
not, a-priori, expect the new treatment to be effective for
test negative patients. In this case it will be important to
establish an interim monitoring plan to terminate accrual of
test negative patients when interim results and prior
evidence of lack of effectiveness makes it no longer viable
to enter them.

Fall-back analysis plan

In the situation where one has limited confidence in the
predictive marker it can be effectively used for a “fall-back”
analysis. Simon and Wang [38] proposed an analysis plan
in which the new treatment group is first compared to the
control group overall. If that difference is not significant at
a reduced significance level such as 0.03, then the new
treatment is compared to the control group just for test
positive patients. The latter comparison uses a threshold of
significance of 0.02, or whatever portion of the traditional
0.05 not used by the initial test.

If the trial is planned for having 90% power for detecting
a uniform 33% reduction in overall hazard using a two-
sided significance level of.03, then the overall analysis will
take place when there are 297 events. If the test is positive
in 25% of patients and the event rates in test positive and
test negative patients are about equal at the time of analysis,
then when there are 297 overall events there will be
approximately 75 events among the test positive patients. If
the overall test of treatment effect is not significant, then the
subset test will have power.75 for detecting a 50%
reduction in hazard at a two-sided.02 significance level.
By delaying the treatment evaluation in the test positive
patients power.80 can be achieved when there are 84 events
and power.90 can be achieved when there are 109 events in
the test positive subset.

Wang et al. have shown that the power of this approach
can be improved by taking into account the correlation
between the overall significance test and the significance
test comparing treatment groups in the subset of test
positive patients [39]. So if, for example a significance
threshold of.03 has been used for the overall test, the
significance threshold used for the subset can be somewhat
greater than.02 and still have the overall chance of a false
positive claim of any type limited to 5%.

Adaptive clinical trial designs using predictive biomarkers

Adaptively modifying types of patients accrued

Wang et al. [39] proposed a phase III design comparing a
new treatment to a control which starts with accruing both
test positive and test negative patients. An interim analysis
is performed evaluating the new treatment in the test
negative patients. If the observed efficacy for the control
group exceeds that for the new treatment group and the
difference exceeds a futility boundary, then accrual of test
negative patients terminates and accrual of additional
test positive patients are substituted for the un-accrued
test negative patients till the originally planned total
sample size is reached. Wang et al. show computer
simulations that indicate this design has greater statisti-
cal power than non adaptive approaches, but their design
involves many more test positive patients and may
require much longer trial duration.

Liu et al. proposed a two-stage design [40] in which only
marker positive patients are accrued during the initial stage.
At the end of the first stage an interim analysis is performed
comparing outcome for the new treatment versus control
for the marker positive patients. If the results are not
promising for the new treatment, then accrual stops and no
treatment benefit is claimed. If the results are promising for
the marker positive patients at the end of the first stage,
then accrual continues for marker positive patients and
accrual also commences for marker negative patients in the
second stage.

Adaptive threshold design

Jiang et al. [41] reported on a “Biomarker Adaptive
Threshold Design” for situations where a specific predictive
index, or biomarker score, is available at the start of the
trial, but a cut-point for converting the score to a binary
classifier is not established. With their design, tumor
specimens are collected from all patients at entry, but the
value of the predictive index is not used as an eligibility
criteria. Their analysis plan does not stipulate that the assay
for measuring the index needs to be performed at the time
of randomization. Jiang et al. [41] described two analysis
plans. Analysis plan A uses the two-stage fall-back strategy
described above. It begins with comparing outcomes for all
patients receiving the new treatment to those for all control
patients. If this difference in outcomes is significant at a
pre-specified significance level α1 then the new treatment is
considered effective for the eligible population as a whole.
Otherwise, a second stage test is performed using signifi-
cance threshold α2=.05–α1. The second stage test involves
finding the cut-point b* for which the treatment versus
control difference in outcome (i.e. the treatment effect) is
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maximized when the comparison is restricted to patients
with predictive index above that cut-point. The statistical
significance of that maximized treatment effect is deter-
mined by generating the null-distribution of the maximized
treatment effect under random permutations of the treat-
ment labels. If the maximized treatment effect is significant
at the 1–α2 ‘th percentile of this null distribution, then the
test treatment is considered effective for the subset of
patients with biomarker value above the cut-point at which
the maximum treatement effect occurred. This concept of
using a global test to account for the multiple target
populations examined can also be applied for evaluating
multiple binary predictive biomarker candidates B1, B2, …,
BK rather than for optimizing the cut-point for a single
biomarker.

Predictive analysis of clinical trials

Freidlin and Simon [42] proposed a very flexible design for
a phase III trial that can be used when no classifier is
available at the start of the trial. The design provides for
development of the classifier and evaluation of treatment
effects in a single trial while preserving the principle of
separating the data used for developing a classifier from the
data used for evaluating treatment in subsets determined by
the classifier. It provides for using the data from a single
randomized clinical trial for development and validation of
a model that predicts outcome for each treatment in a
randomized clinical trial based on clinical-histopathological
covariates as well as biomarker covariates.

At the conclusion of the trial the new treatment is
compared to the control overall using a threshold of
significance of α1 which is somewhat less than 0.05. A
finding of statistical significance at that level is taken as
support of a claim that the treatment is broadly effective. At
that point, no biomarkers have been tested on the patients,
although patients must have tumor specimens collected to
be eligible for the clinical trial.

If the overall treatment effect is not significant at the α1

level then a second stage of analysis takes place. The
patients are divided into a training set and testing set. The
data for patients in the training set is used to define a single
subset of patients who are expected to be most likely to
benefit from the new treatment compared to the control.
Freidlin and Simon [42] used a machine learning algorithm
based on screening thousands of genes for those with
expression values that interact with treatment effect but the
design can be used with other algorithms and even with
candidate classifiers that do not involve gene expression.
When that subset is explicitly defined, the new treatment is
compared to the control for patients in the test set who have
the characteristics defined by that subset. The comparison
of new treatment to control for the subset is restricted to

patients in the test set in order to preserve the principle of
separating the data used to develop a classifier from the
data used to test treatment effects in subsets defined by that
classifier. The comparison of treatment to control for the
subset uses a threshold of significance of α–α1 in order to
assure that the overall chance of a false positive conclusion
is no greater than 0.05.

Freidlin et al. [43] have recently shown how to improve
the statistical power of the approach by using k-fold cross-
validation instead of simple sample splitting in the
discovery and validation of the subset of patients who
benefit from the new treatment. This powerful analysis
strategy can be used more broadly than in the context of
identifying de-novo gene expression signatures. It can be
used with traditional clinico-histopathological prognostic
factors or with single gene/protein candidate markers [44].

To illustrate their approach they used publicly available
data for gene expression profiles and clinical outcome for
124 hormone receptor negative breast cancer patients
treated on a randomized phase III neo-adjuvant clinical
trial (EORTC 10994) that compared non-taxane regimen
FEC (5-fluorouracil, cyclophosphamide, epirubicin) with a
taxane regimen TET (epirubicin, docetaxel) [45]. The
cross-validated signature design (CVASD) analysis was
applied to these data and results are presented in Table 1.
Although there was no overall difference in cPR rates
between the TET and FEC arms (pCR rates 45% and 42%,
respectively p-value.79). The CVASD algorithm indicated
existence of a significant (p-value.006) subset where TET is
substantially more effective than FEC: The conservative
cross-validated estimate of the treatment effect was 83%
pCR (TET) vs. 29% pCR (FEC). They noted that two of the
probes in the signature (Hs.310359.0.A1_3p_at and
g4507484_3p_a_at) are related to the MAPK pathway that
has been reported to be associated with anthracycline
resistance in hormone receptor negative breast cancer.

Table 1 Results of CVASD application to Bonnefoi et al. EORTC
10994 Neoadjuvant breast cancer data [45]. Analysis described in
Freidlin et al. [43]

Overall comparison
p-value 0.79

Arm Observed pCR rate (%) (number of patients)

FEC 42% (66)

TET 45% (58)

Sensitive subset comparison

p-value 0.006

Arm Estimates of pCR rates in the sensitive subpopulation

Re-substitution CV

FEC 20% (15) 29% (14)

TET 100% (8) 83% (12)
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Conclusions

Developments in cancer genomics and biotechnology are
improving the opportunities for development of more
effective therapeutics and molecular diagnostics to guide
the use of those drugs. These opportunities have important
potential benefits for patients and for containing healthcare
costs. One of the greatest opportunities is developing
predictive biomarkers of the patients who require treatment
and are (or are not) likely to benefit from specific drugs.

Co-development of drugs and companion diagnostics
adds complexity to the development process however.
Traditional post-hoc correlative science paradigms do not
provide an adequate basis for reliable predictive medicine.
New paradigms are required for separating biomarker
development from therapeutic evaluation. Without rigorous
validation based on intended use, oncology could be
inundated with expensive tests of uncertain medical utility.
New clinical trial designs are required that incorporate
prospective analysis plans that provide flexibility in
identifying the appropriate target population in a manner
that preserves overall false positive error rates. Such
analysis plans must be constructed to provide information
about the specificity of treatment effects without requiring
such large sample sizes as to discourage development of
predictive biomarkers or to require physicians to expose
large numbers of patients to drugs from which they are not
expected to receive benefit.

We have tried to describe effective approaches for
reliable evaluation of prognostic and predictive biomarkers.
These approaches include targeted enrichment designs for
settings where biological evidence or phase II data destroy
the equipoise necessary to include test-negative patients in
the phase III clinical trial. We have emphasized that for
designs that do not use the predictive biomarker as an
exclusion criterion, it is essential to have a specific
prospectively defined analysis plan outlining exactly how
the new treatment will be evaluated with regard to the test.
Because of the complexity of the biology of chronic
diseases such as cancer, it is not always feasible to identify
a single appropriate candidate predictive biomarker and
develop an analytically validated test by the initiation of the
phase III pivotal trials of a new drug. We have described
several prospectively planned adaptive designs for utilizing
the trial data to refine the biomarker and provide valid
phase III level analyses of treatment effects.

Adapting to the fundamental heterogeneity of many
human diseases and achieving the benefits of personalized
predictive medicine for patients and for the economics of
healthcare will require paradigm changes for academic
clinical investigation, industry drug development, and for
regulatory evaluation. We have attempted to identify some
of the key issues involved and to provide some guidance on

the design of clinical trials for evaluating the clinical utility
of prognostic and predictive biomarkers.
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