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Abstract

A majority of the studies examining the molecular regulation of human labor have been conducted using single gene
approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of
such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms
governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene
regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to
human amnion mesenchymal cells (AMCs) stimulated with interleukin-1b, and differentially expressed transcripts were
subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was
constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of
spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with
promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the
fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation
gene expression signature. Binding motifs for nuclear factor-kB were prominent in the gene interaction and regulatory
networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular
pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The
approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in
cellular responses to labor-associated signals.
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Introduction

The last three decades have seen prodigious growth in our

knowledge of the basic principles of parturition in women. Indeed,

we now understand that human labor in both the term and

preterm settings is fundamentally an inflammatory process typified

by the sudden, robust expression of pro-inflammatory cytokines

(IL-1, IL-6, TNF-a) and chemokines (IL-8/CXCL-8, MCP-1/

CCL-2) that elicit a panoply of downstream biological conse-

quences culminating in expulsion of a viable offspring [1–3].

Matrix metalloproteinases (MMPs) are released locally by

infiltrating leukocytes (neutrophils and monocytes/macrophages)

that modify the extracellular milieu within the cervix and at the

maternal-fetal interface [4]. Furthermore, cytokines secreted into

the intrauterine microenvironment through the induction of

prostaglandin synthase-2 (PTGS2) provoke the precipitous pro-

duction of prostaglandins (PGE2 and PGF2a) that then stimulate

myometrial contractility and cervical changes that must take place

in order to deliver the fetus [2,5–7]. A collection of coordinately

regulated genes (contraction-associated proteins, CAPS), including

the oxytocin receptor (OXTR), connexin-43 (CX-43), the

prostaglandin F receptor (FP), and PTGS2 (also known as

cyclooxygenase-2, COX-2) are dramatically increased during the

early stages of labor [8].

Some of the molecular mechanisms that regulate these genes

have been investigated, and we now understand that the

inflammatory response during parturition is controlled, at least

in part, by the master transcription factor nuclear factor-kappaB

(NF-kB) [9,10]. For example, we and others have shown that

cytokines elicit the up-regulation of (PTGS2) for the synthesis of
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PGE2 and PGF2a through the activation of heterodimeric (p65/

p50) NF-kB and its inhibitor IkB-a in a variety of in vitro culture

preparations of intrauterine cell types [11–15]. Furthermore, the

genes encoding many cytokines (e.g., IL-1b and TNF-a),

chemokines (e.g., IL-8) and MMPs (e.g., MMP-2, MMP-9) are

themselves driven from NF-kB-binding promoters [16,17]. Most

of this information has been obtained by studying one or a few

biomolecules in any given body of work.

Experimental reductionism has yielded many important and

interesting insights into how a given gene (or gene product) might

participate in mammalian parturition. Indeed, today we know far

more about the underlying cellular and molecular participants that

mediate uterine contraction and the biochemical events of cervical

dilatation and effacement in humans than we did just a few years

ago. The endocrine signaling of parturition that takes place via the

hypothalamic-pituitary-adrenal-placental axis in the sheep [18],

and the role of the corpus luteum in sustaining rodent pregnancy

and the consequences of its regression on birth [8] are now

understood in significant detail. Yet, collectively, this information

has not substantively improved our ability to prevent, diagnose or

arrest preterm labor in women to any significant degree. Nor do

we yet fully appreciate the molecular nuances that distinguish term

and preterm labor and birth.

A reductionist approach permits the intricacies of a given

biochemical process to be unraveled, but the inherent quest for

simplicity precludes an assessment of potential complex interac-

tions that may exist between several molecular pathways.

Increasingly, networks of interacting pathways are evaluated by

examining a myriad of individual genes expressed under a given

set of experimental or clinical contexts. In this regard, Romero

and colleagues recently reported that mRNAs isolated from cells of

the fetal membranes in women in spontaneous parturition at term

manifest a characteristic ‘‘inflammatory gene signature’’ when

compared to a cohort of women prior to the onset of active clinical

signs of labor [19]. A similar pattern of gene expression was

unveiled by this group in the uterine cervix in association with

labor [20]. These studies offer the intriguing opportunity to

investigate the complex molecular interactions that occur as the

uterus and cervix transition from quiescence to active labor.

However, we know clearly that the onset of labor is not a binary

switch that is suddenly unleashed; rather, it is a series of subtle

biochemical and physiological epochs that arise in the last several

weeks of gestation [21–23]. Therefore, the inability to assess this

protracted time-course in women due to ethical realities renders this

transcriptomic approach in women scientifically very challenging.

Thus, in the present work, we have assembled a reductionist strategy

using monolayer cultures of human amnion mesenchymal cells as a

means to model the inflammatory gene expression signature

previously reported by Haddad et al. [19]. Using a systems

approach, we have examined the complex interactions that occur

between networks of genes expressed preferentially following

cytokine challenge in amnion cells. In addition, we have used

computational methods to investigate the control of many of these

genes by transcription factor binding motif analysis. The results

from this simple cell culture preparation when compared to the data

reported by Romero and colleagues offer a novel translational

strategy for a more thorough molecular appreciation of human

parturition in the term and preterm settings.

Methods

Cell Culture
Primary cultures of human amnion mesenchymal cells were

prepared from amnion membranes obtained prior to labor at

term, as previously described [12]. Cells were cultured in DMEM

(25 mM glucose) supplemented with 10% fetal bovine serum,

2 mM L-glutamine, 1 mM sodium pyruvate, 50 mg/ml of

gentamicin sulfate, and 0.5 mg/ml of amphotericin B at 37uC in

a 5% CO2 atmosphere. Cell culture media, supplements and sera

were purchased from Invitrogen (Carlsbad, CA).

Treatment and RNA Extraction
Recombinant human interleukin-1b (IL-1b) was obtained from

R&D Systems (Minneapolis, MN). Early passage cells at

confluence were treated with IL-1b (10 ng/ml) for 1 or 8 h,

whereas control cells were treated with medium only. Total RNA

from control and experimental groups were extracted using Trizol

reagent (Invitrogen, Carlsbad, CA) and the RNeasy Mini Kit

(Qiagen, Valencia, CA) as previously described [12,24]. Experi-

ments were repeated three times for a total of nine samples used

for microarray analysis. Three biological replicates were used to

ensure that any results were not biased by day-to-day variation in

RNA extraction.

Microarray Analysis and Data Processing
Quantification and quality of total RNA samples were evaluated

with the 2100 Bioanalyzer (Agilent Technologies, Foster City,

CA). Three sets of RNA samples including vehicle control, 1 h and

8 h post IL-1b treatment were hybridized to GeneChip Human

Genome U133A 2.0 Array (Affymetrix, Inc., Santa Clara, CA). All

arrays were processed using the GeneChip System (Affymetrix,

Inc., Santa Clara, CA) at the OSU Comprehensive Cancer Center

Microarray Shared Resource facility following the manufacturer’s

protocol. The R statistics package version 2.7.1 [25] was employed

for microarray data analysis. First, background correction and

quartile normalization were performed to remove technical bias,

and gene expression levels were summarized over probe set using

the Robust Multichip Average (RMA) method [26]. These data

have been deposited in NCBI’s Gene Expression Omnibus [27]

and are accessible through GEO Series accession number

GSE26315 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc

=GSE26315). A filtering method based on percentage (7 out of 9

chips) of arrays below noise cutoff (log2 scale of 6 expression level)

was applied to filter out probes whose expressions are not

detectable. Analysis of variance (ANOVA) modeling was per-

formed and t-test was used to detect differentially expressed genes.

To improve estimates of variability and statistical tests for

differential expression, variance shrinkage methods were employed

for this study [28]. The significance level was adjusted by

controlling the expected number of false positives for all

comparisons [29]. After these statistical analyses, significant genes

were filtered from the three sets of RNA samples using the criteria

of a 62.0 fold change and a p-value of #0.05 for comparisons

among the vehicle, 1 h and 8 h time points. A final list of genes

was generated by eliminating duplicate probe sets and averaging

the expression values of genes with multiple probe sets. The final

lists of genes were subjected to subsequent clustering, time series,

and transcription factor binding motif enrichment analyses as

described in their respective sections below. For functional

pathway and network analysis, the fold change (62.0) and

p-value (#0.05) cut off, and probeset averaging for genes were

completed directly with the Ingenuity Pathway Software. A

heatmap representing the gene lists was generated with hierarchi-

cal clustering (Euclidean distance and complete linkage) using the

MultiExperiment Viewer (MeV) software, part of the TM4

microarray software suite [30]. Short Time-series Expression

Miner (STEM) [31] was used to identify temporal expression

profiles, ranked by the number of genes fitted to each profile.

A Systems Approach to Modeling Human Parturition
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Transcription Factor Binding Motif Enrichment Analysis
NCBI reference sequence mRNA accession numbers for each

unique, significantly expressed probeset from our microarray

analysis, as well as the published full-thickness fetal membrane

data [19], were curated by conversion from Entrez Gene IDs and/

or Human Genome Organisation (HUGO) gene symbols using

g:Profiler (http://biit.cs.ut.ee/gprofiler/) [32]. Multiple probesets

mapping to identical genes were consolidated based on unique

gene symbol. Genes with multiple reference mRNA sequences

were resolved by using the accession number for the longest or

most frequently appearing transcript. The RefSeq mRNA

accession numbers were then subjected to transcription factor

binding motif analysis using the web-based software Pscan (http://

159.149.109.9/pscan/) [33]. The JASPAR [34] database of

transcription binding factor sequences was utilized for the analysis

on position 2950 to +50 of the 59 upstream promoters. The range

of 2950 to +50 was selected out of the available range options in

Pscan to best cover the range of interest of 21000 to +50 bp.

Hypothetical proteins, pseudogenes, and expressed sequence tags

lacking reference sequences were not included in the transcription

factor binding motif analysis. Similar conditions and exclusions

were used to perform promoter scanning analysis with the dataset

of Haddad et al. [19]. MATLAB 2009 (MathWorks, Inc., Natick,

MA) was used to generate a colormap showing the frequency of

transcription factor motif occurrences, while Graphviz Editor

version 2.26.3 [35] was used to generate a gene regulatory network

map based on results of the transcription factor binding motif

analysis.

Functional and Pathway Analyses
Network pathway analyses were generated using Ingenuity

Pathways Analysis (version 8.5, Ingenuity Systems, www.ingenuity.

com). A full list of the normalized, filtered data set from the 9

microarray chips were uploaded into Ingenuity for analysis. For

the Haddad et al. dataset, the microarray data taken from the

published data were uploaded into Ingenuity for analysis. The

genes from each dataset were set as molecules of interest which

interact with other molecules in the Ingenuity Knowledge Base

(identified as ‘‘Network Eligible molecules’’). For network

generation, the molecules from the normalized, filtered microarray

dataset were each mapped to their corresponding object in

Ingenuity’s Knowledge Base. A fold change cutoff of $2 (log2-fold

change cutoff of 1.0) was set to identify molecules whose

expression was significantly differentially regulated. Multiple

probesets that map to the same gene were averaged (preliminary

analyses of individual probesets compared to multiple probesets

representing the same gene demonstrated the validity of this

approach). Network eligible molecules were mapped onto a global

molecular network developed from information contained in

Ingenuity’s Knowledge Base. Networks of Network Eligible

Molecules were then algorithmically generated based on logical

connectivity. In the graphical representation of networks,

molecules are represented as nodes (filled shapes), and the

biological relationship between two nodes is represented as an

edge (line). All edges are supported by at least 1 reference from the

literature, from a textbook, or from canonical information stored

in the Ingenuity Pathways Knowledge Base. Human, mouse, and

rat orthologs of a gene are stored as separate objects in the

Ingenuity Pathways Knowledge Base, but are represented as a

single node in the network. The intensity of the node color

indicates the degree of up- or down-regulation (red and green,

respectively). Nodes are displayed using various shapes that

represent the functional class of the gene product. Canonical

pathways analysis identified the pathways from the Ingenuity

Pathways Analysis library of canonical pathways that were most

significant to the data set. The significance of the association

between the data set and the canonical pathway was measured in 2

ways: (1) A ratio of the number of molecules from the data set that

map to the pathway divided by the total number of molecules that

map to the canonical pathway is displayed; and (2) the Benjamini-

Hochberg method used to focus on the most significant biological

functions associated with the dataset by adjusting calculated p-

values that determine the probability that the association between

the genes in the dataset and the canonical pathway is explained by

chance alone.

Biological functional analysis identified the biological functions

and/or diseases that were most significant to the dataset.

Molecules from the dataset that met the fold change cutoff of 2

and were associated with biological functions and/or diseases in

Ingenuity’s Knowledge Base were considered for the analysis.

Benjamini Hochberg method was used to calculate a p-value

determining the probability that each biological function and/or

disease assigned to that data set is due to chance alone.

Quantitative Real Time PCR Analysis
Reverse transcription was carried out with 2 mg of total RNA

using oligo primers and Superscript III reverse transcriptase

(Invitrogen, Carlsbad, CA). TaqMan Universal PCR Master Mix

and TaqMan Gene Expression Assays (Applied Biosystems, Foster

City, CA) were used for quantitative real time PCR (qRT-PCR)

with b-actin (ACTB) as a control. The following Applied Biosystems

(ABI) primer/probe sets were used: Nfkbia, Hs00153283_m1; Rela,

Hs00153294_m1; Il1b, Hs01555413_m1; Il6, Hs00985641_m1;

Il8, Hs00174103_m1; Cxcl2, Hs00601975_m1; Ptgs2, Hs00-

153133_m1; and Actb, 4333762F. Quantitative RT-PCR was

performed on a 7300 Real-Time PCR System (Applied Biosystems,

Foster City, CA) using recommended cycling conditions and

associated SDS software, and subsequent analysis with the

comparative CT method [36] was conducted using Microsoft Excel.

Plots were constructed and statistical analysis was completed using

GraphPad Prism software (La Jolla, CA). Statistical analyses were

performed using the Kruskal-Wallis statistical test with post-hoc

testing using Dunn’s multiple comparison test when appropriate,

after it was determined that gene amplification data exhibited a

non-Gaussian distribution.

Results

Temporal transcription profiling of cytokine-stimulated
amnion mesenchymal cells in vitro

Interleukins-1a and -1b (IL-1a and IL-1b) are encoded by

separate genes, but share nearly identical biological activities. The

pro-inflammatory response to either is elicited upon activation of a

common interleukin-1 receptor (IL-1R), a heterodimeric complex

comprised of the IL1R1 and Interleukin-1 receptor accessory

protein (IL1RAP) gene products [37,38]. The constituent IL-1

receptor proteins are themselves members of the IL-1R/Toll-like

receptor (TLR) superfamily [37,38]. As a result of conserved

intracellular domains among these receptors, the signaling

cascades elicited by IL-1a or IL-1b are generally similar to those

activated by TLR ligation by viral and bacterial pathogens, with

some exceptions [38,39]. Therefore, the genes upregulated in

response to IL-1b have broad implications in the context of innate

host defense and, importantly, can mimic the initial response to

bacterial pathogens in a microbe-free environment [40].

In the current experiments amnion mesenchymal cells (AMCs)

were chosen as a relevant in vitro model system in which to study

the inflammatory component of labor. We have previously

A Systems Approach to Modeling Human Parturition
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reported that basal release of PGE2 in AMCs is 5-fold higher than

induced release of PGE2 from amnion epithelial cells [12]. Our

laboratory previously used this model to examine the induction of

selected gene targets, such as prostaglandin E synthase (Ptges, also

known as microsomal prostaglandin E synthase-1, mPGES-1) and

prostaglandin-endoperoxide synthase 2 (Ptgs2), in response to

IL-1b [12]. In addition, AMCs are a non-transformed cell model,

which eliminates from consideration the strong affect of oncogenes

and other factors that might influence the global transcriptional

response [41,42]. It was also reported that the epithelial-to-

mesenchymal cell ratio was 4.3 to 1 at preterm (15 cases at 23 – 36

weeks) and 7.8 to 1 at term (27 cases) [43], suggesting a higher

population of mesenchymal cells in the setting of preterm labor.

To expand upon the prior published results [12], we analyzed

the expression of 14,500 genes in AMCs in three biological

replicates at 1 and 8 h following IL-1b challenge (10 ng/ml) using

transcriptional profiling. After background correction, normaliza-

tion, and filtering of genes with low expression, a 2-fold or greater

increase (p,0.05) in transcripts was observed for 137 probe sets

(representing 108 unique genes) in AMCs after 1 h of IL-1b
stimulation, while 153 probe sets (representing 125 unique genes)

were up-regulated by 2-fold or greater after 8 h of cytokine

exposure, as summarized in the volcano plots shown in Figure1A.

Compared with the 1 h time point, 48 probe sets (representing 38

unique genes) were significantly (p,0.05) upregulated at 8 h, while

48 probe sets (representing 39 unique genes) were downregulated.

The full list of 190 unique probe sets with their average log2

expression values at each time point is presented in Table S1.

The normalized AMC microarray data have been deposited in

NCBI’s Gene Expression Omnibus [27] and are accessible

through GEO Series accession number GSE26315 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE26315).

The 190 unique genes with statistical significance (p,0.05), $2

fold-changes in at least one of the pairs of time point comparisons

were subjected to hierarchical clustering (Figure 1B). There were

three major groups into which the genes clustered, each with

subgroups bearing differing temporal expression profiles. Genes

that exhibited the most dramatic levels of induction following

IL-1b challenge included those encoding several cytokines (Il1a,

Il6, Tnf, and Csf2) and chemokines (Cxcl1, Cxcl2, Cxcl3, Ccl2, and

Il8), the adhesion molecule Vcam1, transcription regulatory

proteins (Irf1, TnfaipP3, Nfkbia, and Zc3h12a), the prostaglandin

synthesizing enzyme Ptgs2, a stress-activated protein kinase

(Nuak2), and an apoptotic suppressor protein that interacts with

the TNFR2-TRAF signaling complex (Birc3). The basal levels of

expression (represented as the log2 in Figure 1B) varied widely,

with some genes exhibiting low levels of basal expression

(including Bcl2a1, Birc3, Ccl5, Csf2, Cxcl3, Icam4, Tnf, and Vcam1),

and others exhibiting relatively high levels of basal expression (e.g.,

Cebpd, Cxcl6, Ier3, Il8, Nfkbia, Plau, and Rgs2).

Due to dramatic differences in the absolute expression

intensities, hierarchical cluster analysis per se was insufficient to

group co-expressed (and presumably, co-regulated) genes based

upon relative levels of induction. To evaluate subgroups of genes

with similar temporal expression patterns, the 190 unique genes

selected above were subjected to clustering using the Short Time-

series Expression Miner (STEM) software [31]. Of the 80% of

genes that were mapped to temporal expression profiles, five major

patterns were discerned (Figure 1C): genes that were induced at

1 h for which expression remained elevated (Group A); genes that

were induced at 1 h then gradually repressed (Group B); genes for

which expression steadily increased throughout treatment (Group

C); genes exhibiting delayed induction (Group D); and genes that

were rapidly induced, then repressed quickly (Group E). A

complete list of the genes mapping to these profiles is provided

in Table S2.

The genes that fit the Group A expression profile were

significantly enriched for gene ontology (GO) terms such as

‘‘leukocyte chemotaxis/migration’’ and ‘‘inflammatory response’’.

Among these genes were a number of highly-upregulated

cytokines and chemokines (Ccl2, Ccl20, Csf1, Cxcl1, Cxcl2, Cxcl3,

Cxcr7, Il1a, Il1b, Il6, and Il8), as well as genes involved in NF-kB

activation and its regulation (Nfkb1, Nfkbie, Tnfaip2, Tnfaip3,

Tnfaip8, Tnfrsf9, and Traf1). The Group B profile was enriched

for the GO term ‘‘regulation of gene expression’’, and included

several genes encoding transcriptional regulators (Ets1, Fosl1, Jun,

Maff, Nfkbia, Nr4a2, Phlda1, Rel, Twist1, and Zfp36l1). Numerous

transcription factors (Bhlhb2, Egr1, Egr2, Egr3, Fos, Fosb, Ier2, Junb,

and Klf6) were also present among the genes of Group E, for which

the GO term ‘‘regulation of RNA metabolic processes’’ was

overrepresented. The Group C profile was enriched for GO terms

including ‘‘cell adhesion’’ and ‘‘integral to plasma membrane’’,

and encoded proteins involved in cell adhesion (Icam4, Cldn1),

integral membrane receptor proteins (Dram1, Nrp2, Olr1, Rarres1),

and membrane transport proteins (Slc12a7, Slc2a6, Pdpn). For

Group D genes, the most highly-ranked GO term was ‘‘response

to virus’’; interestingly, several interferon (IFN)-inducible genes

were present in this profile (such as myxovirus resistance genes

[Mx1, Mx2], the gene encoding guanylate binding protein (Gbp1),

the single-stranded RNA exonuclease Isg20, a retinoic acid-

inducible gene I [Rig-I]-like receptor involved in the host detection

of double-stranded RNA viruses [Ifih1], and genes of unknown

function [Ifi35, Ifi44, Ifit3]), in addition to some cytokines/

chemokines exhibiting delayed induction (Ccl5, Cxcl5, Cxcl6, and

Tnfsf18). Insofar as the expression of IFN genes (Ifna isoforms,

Ifnb1, Ifng, and Ifnw1) themselves remained very low throughout

the course of treatment (average log2 expression values between

2.3 and 4.1, data not shown), it was unexpected that IFN-regulated

genes would be upregulated in response to the inciting stimulus of

IL-1b [44,45]. Moreover, it was interesting to note that in addition

to the Mx pathway, components of other IFN-induced antiviral

proteins (e.g., OAS3, of 29-59-oligoadenylate synthetase system)

also had statistically significant induction, but fell short of the

chosen fold-change threshold [46–48].

To verify the results of the microarray analysis, we next

examined the expression of seven transcripts (Rela, Nfkbia, Cxcl2,

Il1b, Il6, Il8, and Ptgs2) by qRT-PCR using total RNA collected

from replicate experiments using IL-1b treatment conditions

identical to those used for the transcription profiling studies. This

select mRNA subset was chosen for the frequent high expression of

these genes and their cognate proteins in in vitro models of

inflammation-mediated preterm labor (including the model used

in this work) and in vivo in biological fluids or tissue specimens

collected from women in preterm labor. Consistent with the

STEM profile analysis, we found that Nfkbia exhibited maximal

induction following 1 h of stimulation, with decreased expression

thereafter (Figure 2A). Of four genes that mapped to the Group A

STEM profile (i.e., genes with elevated expression at both 1 and

8 h), only one (Cxcl2) followed the predicted temporal course when

analyzed using qRT-PCR (Figure 2B); the remainder (Il1b, Il6,

Il8, and Ptgs2) exhibited modest upregulation at 1 h, followed by

markedly elevated expression at 8 h (Figure 2, C–F). These

results suggest that, as has been noted in prior studies, microarray

analysis tends to underestimate true fold changes in transcript

expression [49]. In keeping with this observation, we found that

Rela expression was moderately increased at 8 h following cytokine

challenge by qRT-PCR (Figure 2G), but no change was detected

by transcriptional profiling.

A Systems Approach to Modeling Human Parturition
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Collectively, these results confirm that signaling through the

IL-1 receptor is biased toward an innate immune response in

cultured AMCs. While the inflammatory response became

heterogeneous over time due to upregulation of several auto-

crine/paracrine factors and their receptors, we observed that none

of the TLRs surveyed by the microarray platform (Tlr1 through

Tlr8) exhibited pronounced levels of expression (average log2

expression values between 2.6 and 5.0, data not shown), and

therefore were less likely to have contributed substantively to the

observed transcriptional response, even under non-sterile condi-

tions. Nevertheless, the IL-1b-induced gene expression changes in

AMCs bore some striking similarities to the transcriptional

Figure 1. Amnion mesenchymal cell (AMC) microarray data. (A) Volcano plot showing the criteria (62.0 no-log fold change, ,0.05 p-value)
for the filtered (blue points) and unfiltered (black points) AMC microarray data. (B) Hierarchical clustering heatmap of discriminant genes from
analysis of AMC microarray data (a complete list of the discriminant genes is found in Table S1). (C) Top significant profiles from temporal expression
analysis of the AMC data; the bottom graph shows the average fold change for each profile. Details of the genes that mapped to each temporal
profile are found in Table S2.
doi:10.1371/journal.pone.0020560.g001
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programs resulting from activation of TLR receptors in macro-

phages [50] and dendritic cells [51]; notably, up to 35% of the

IL-1b-responsive genes could also be induced through TLR4.

Despite differences in cell type, some degree of overlap in

transcriptional response may be expected, inasmuch as TLRs and

IL-1Rs both signal via myeloid differentiation factor 88 (MyD88)-

dependent pathways, which utilize a common pool of intercessor

proteins (such as the IRAKs [IL-1 receptor-associated kinases]) as

well as common downstream cascades (e.g., NF-kB, p38 and c-Jun

N-terminal kinases [JNKs]) to regulate programs of inflammatory

gene expression [38,52]. Even with these commonalities, TLR and

IL-1R signaling diverge in characteristic ways, as is highlighted by

the MyD88-independent induction of IFN genes by TLR3 and

TLR4 [37,52,53]. Consistently, interferon induction was conspic-

uously absent in our model, despite upregulation of certain

IFN-inducible genes (e.g., Mx1, Ifih1 [Mda5]).

Analysis of IL-1b mediated gene expression patterns in
AMCs reveals enrichment for inflammatory transcription
factor binding motifs

The acute and delayed responses to IL-1b challenge in AMCs are

governed by multiple transcription factors with dynamic and

combinatorial interactions. The most dominant among these

signaling pathways is the NF-kB system [54], the activation of

which we have previously characterized in AMCs in response to

IL-1b [12,55]. While NF-kB is a critical regulator of immunomod-

ulatory gene expression, IL-1b expression can, directly or indirectly,

influence the activation of a number of pro-inflammatory signaling

cascades in parallel, including Janus kinase (JAK), signal transducer

and activator of transcription (STAT), and mitogen-activated

protein kinase (MAPK) pathways. For example, in WISH cells,

which bear many of the same molecular responses to cytokine

stimulation as AMCs, we found that IL-1b challenge acutely

activates both the NF-kB and MAPK cascades, the latter including

pathways employing extracellular signal-regulated kinases (ERKs),

c-Jun N-terminal kinases (JNKs), and p38 isoforms [56].

To begin to decipher the full spectrum of potential transcrip-

tional regulatory networks governing IL-1b-induced gene expres-

sion in AMCs, we used the Pscan software tool [33], which

performs in silico computational analysis of overrepresented

cis-regulatory elements within the 59-promoter regions of coordi-

nately regulated genes. When Pscan was applied to all 169 genes

significantly upregulated in response to IL-1b at either 1 h or 8 h,

consensus DNA sequences for NF-kB transcription factors, as well

as those for TATA binding protein (TBP) and specificity protein 1

(SP1), were significantly enriched (Table S3). Similar results were

obtained when the genes were subdivided into subsets based on

timing of induction (i.e., those upregulated following 1 h of

stimulation, and those for which transcription was induced at the

8 h time point) (Table S3). Since many of the IL-1b-induced

genes were known to contain NF-kB response elements (kBREs),

we next sought to explore conserved regulatory motifs among

those genes not known to be regulated by NF-kB. To this end, we

compared IL-1b-induced genes in our dataset to a list of 306

known or predicted NF-kB responsive genes compiled from

several sources [32,33,50,57,58] (accessed April 2010). We found

that 62/190 (33%) of the induced genes were expected to be NF-

kB responsive, suggesting that as much as two-thirds of the

Figure 2. Microarray data verification using qRT-PCR. Fold change of the mRNA expression levels of Nfkbia, Cxcl2, Il1b, Il6, Il8, Ptgs2, and Rela in
AMC cells treated with 10 ng/ml of IL-1b for 1 h and 8 h and control cells with no IL-1b treatment. Error bars represent standard deviation across at
least three independent samples (n = 3 for Rela and Nfkbia, n = 5 for Cxcl2, Il1b, Il6, Il8, and Ptgs2).
doi:10.1371/journal.pone.0020560.g002
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remaining genes might be regulated by parallel, IL-1b-activated,

but NF-kB independent signaling pathways. When the predicted

NF-kB-responsive genes were excluded from consideration, the

remaining promoters were most highly enriched for SP1, serum

response factor (SRF), TBP, and CCCTC-binding factor (CTCF)

binding motifs (Table S4). Sixty nine of these genes had perfect or

near-perfect binding sequences for SP1, whereas only a few (Dusp5,

Egr1, Egr2, Egr3, and Fosl1) had motifs similar to the consensus

sequence for SRF. In addition, some of these remaining genes

were enriched for kBRE-like motifs, and further analysis of these

latter sequences revealed an additional 26 candidate target genes

for NF-kB (Bdkrb2, Bhlhe40, Btg2, Ccnl1, Cxcr7, Dram1, Dusp2, Egr1,

Egr2, Gfpt2, Hes1, IFIH1, ISG20, Jun, Klf6, Nab1, Ninj1, Nr4a2,

Ppp1r15a, Ptger4, Ripk2, Rrad, Sat1, Slc12a7, Socs3, and Zfp36).

Despite the transactivation of numerous NF-kB responsive

genes, it remained that only 20% of the 306 genes predicted to be

NF-kB responsive [32,33,50,57,58] (accessed April 2010) were

significantly induced in AMCs following IL-1b challenge. Among

potential reasons for limited induction of the regulation in this

model, we considered that transrepression by nuclear receptors,

which are known to inhibit overlapping but distinct subsets of

NF-kB responsive genes [59], might have contributed. Surpris-

ingly, upon review of the normalized, unfiltered microarray data,

we found that cultured AMCs exhibited relatively low levels of

expression of transcripts for numerous nuclear receptors, including

progesterone and estrogen receptor isoforms, and several isoforms

of the peroxisome proliferator-activated receptor (PPAR) family

(Table S5). Of 48 nuclear receptors surveyed, only eleven

exhibited relatively high (log2 expression $6) transcript abun-

dance: Retinoic acid receptor alpha (Rara), nuclear receptor

subfamily 2, group F, member 6 (Nr2f6), estrogen-related receptor

alpha (Esrra), retinoid X receptor alpha and beta (Rxra, Rxrb),

Rev-ErbA alpha and beta (Nr1d1, Nr1d2), liver X receptor beta

(Nr1h2), COUP 1 and 2 transcription factors (Nr2f1, Nr2f2), and

the glucocorticoid receptor (Nr3c1). At the protein level, we

confirmed that progesterone receptors and PPAR-Y exhibited low

expression levels in AMCs using immunoblotting (data not shown).

Although Nr4a2 (nuclear receptor subfamily 4, group A, member

2, also known as Nurr1) was significantly upregulated following

IL-1b stimulation, this transcript exhibited relatively low transcript

levels following induction. These data suggest that the potential for

nuclear receptor cross-talk in AMCs may be significantly more

restricted in comparison with other cell types comprising the fetal

membranes.

To confirm the role of NF-kB in the transactivation of a subset

of inflammatory genes, we utilized the 26 S proteasome inhibitor

MG-132 (N-acetyl leucinyl-leucinyl-leucinal), which prevents

translocation of NF-kB from the cytoplasm to the nucleus

[12,56]. When AMCs were preincubated with MG-132 (30 mM)

before IL-1b stimulation for 1 h, the expression of transcripts

encoding Cxcl2, Il1b, Il6, and Il8 were significantly diminished

(Figure S1). Marked attenuation of the mRNAs encoding these

cytokines and chemokines was noted at 8 h. The effect of MG-132

in IL-1b-induced Ptgs2 expression was almost identical to that we

have previously characterized in a prior report [12], in that

MG-132 only partially inhibited cytokine-induced upregulation.

Collectively, these results support a role for NF-kB as a master

regulator of both acute and delayed responses in this subset of

genes.

To further delineate conserved transcription factor binding

motifs among coordinately regulated genes, we next subdivided

the genes based on the temporal expression clusters revealed by

STEM analysis (Table S2). In general, these could be divided into

genes for which expression was rapidly induced (Groups A, B, and

E), and genes exhibiting delayed induction (Groups C and D).

When considered together, the genes acutely responsive to IL-1b
(Groups A, B, and E) were highly enriched for potential SP1 and

NF-kB response elements. The genes of Group C were also

enriched for NF-kB binding motifs, in addition to those for

activator protein 1 (AP1). By contrast, the response elements most

highly enriched in the promoter regions of Group D genes were

interferon-stimulated responsive elements (ISREs), specifically,

interferon regulatory factors 1 and 2 (IRF1, IRF2). To refine this

model, we next examined the specificity of the match between

each motif (represented as a position specific weight matrix) and

target sequences within individual gene promoters (Figure 3). In

so doing, we found that certain overrepresented motifs did not

have well-matched oligonucleotide sequences within any promoter

(defined by a score of $0.95 based on a relative scale from 0 to 1,

in which ‘‘1’’ corresponds to a sequence having the best match

when compared to a given position specific weight matrix [33]),

and such motifs were omitted from further consideration. Of the

motifs with at least one well-matched predicted binding sequence,

four (SP1, NF-kappaB, RELA, and NFKB1) remained commonly

represented in the acute response genes (Groups A, B, E), and the

three NF-kB binding motifs (NF-kappaB, RELA, and NFKB1)

were also found in the promoters of Group C genes (Figure 3). In

addition, we observed that Groups B-E exhibited some mutually-

exclusive patterns of motif enrichment (note the staggered

arrangement of enriched motifs in Figure 3), including Group

D for which all putative regulatory sequences were discrete from

the remaining profiles.

By combining the expression data (clustered by relative

temporal expression pattern) with the results of the motif

enrichment analysis, we next constructed a potential gene

regulatory network for IL-1b-stimulated AMCs (Figure 4A and

Figure S2). Although the Pscan data suggested interactions

between specific transcription factors and target genes, in reality,

the DNA sequences giving rise to such predictions may be bound

by multiple proteins, which are typically members of a

homologous protein family [60]. For instance, the SP1 regulatory

element (GC box) may be used by several members of the Sp/

Krüppel-like factor (KLF) transcription factor family and as such,

enrichment alone does not necessarily specify which factors may

be utilized [61]; indeed, some Sp/KLF factors bind to identical

motifs (e.g., SP1 may compete with SP3, KLF4, KLF9, and/or

KLF13 in the context of certain promoters). To account for such

redundancies, transcription factors in our model were cast as

categorical nodes (tan circles in Figure 4A and Figure S2) based

on homologous binding activity to specific regulatory elements,

with direct connections to target genes predicted by promoter

scanning (these nodes and edges were color-coded based on the

STEM expression profiles depicted in Figure 1C). As an example

of such consolidation, promoter scanning revealed that two

domains of myeloid zinc finger gene 1 (Mzf1, consisting of zinc

fingers 1 to 4 and 5 to 13), were overrepresented in certain

promoters; however, since these regulatory elements were highly

similar to kBREs [62], the two MZF1 motifs were modeled only as

NF-kB motifs, which were more relevant given the chosen

perturbation. From the network model, it was apparent that the

late-response genes (Groups C and D, represented as blue and

black nodes/edges, respectively) clustered together, and exhibited

a high degree of connectivity with transcriptional regulators

distinct from those during the acute response to IL-1b challenge

(Figure 4A and Figure S2).

Although not unequivocal, the results of this in silico analysis

offer important clues to potential regulatory networks activated

through the IL-1 receptor. From a global perspective, many of the
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genes examined, particularly those which displayed superactiva-

tion between the 1 and 8 h time points (e.g., genes in the Group A

STEM profile), could be considered as multi-input regulatory

motifs (Figure 4D) [63], in which several transcription factors

contribute in a combinatorial manner to the observed transcrip-

tional response. Of the genes significantly upregulated following to

IL-1b challenge, kBRE cis-acting elements were present in about

half (89/188) of the genes, with co-enrichment for SP1, TFAP2A

(transcription factor activating enhancer protein-2 alpha), SOX

(Sry-related HMG box), and STAT response sequences. The

promoters for the remaining 99 genes without apparent kBREs (at

least within the upstream regulatory regions) were enriched for

Figure 3. Patterns of transcription factor binding motif enrichments within promoters of genes from each temporal expression
profile of the AMC data. Each column in the matrix represents a temporal expression profile, and each row represents a transcription factor
binding element. Each profile (column) corresponds to those in Figure 1C, and each colored block in the matrix indicates a pair of motif and temporal
expression profile for which a fraction (indicated in the blocks) of the genes in the profile is enriched for the motif (Pscan score of $0.95). The color of
the blocks corresponds to the fraction of genes in the profile enriched for each transcription factor motif, and corresponds with the color scale shown
on the right.
doi:10.1371/journal.pone.0020560.g003
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Sp/KLF, Forkhead box (FOX), and IRF transcription factor

binding motifs, among others. Some inferences about the

transcriptional control of late-response genes could also be made.

For example, since several AP1 family members (Fos, Fosb, Jun,

Junb and Atf3) were significantly induced during the acute response

to IL-1b, these transcription factors could have contributed to the

delayed transcriptional response, especially among the genes of

Group C (Figure 3 and Figure S2). As well, although IFN genes

were not induced, that for IRF1 (interferon regulatory factor 1)

was rapidly upregulated in response to IL-1b. As such, the delayed

induction of certain components of the IFN-response circuit

(enriched in the Group D STEM profile) could have been

regulated indirectly through IRF1 [46] as part of a regulator chain

subnetwork (in which an initiating factor promotes the expression

of a second factor, which in turn regulates a subset of genes,

Figure 4B) [63]. In addition, the gene for the early growth

response-1 protein (Egr1) was transiently induced at 1 h, which

could have contributed to the induction of several late-response

genes, such as Ptges [64,65], in conjunction with NF-kB [12]. Such

a subnetwork is reminiscent of a feedforward regulatory loop, in

which a single factor promotes the expression of both a target and

an enhancer of that target (Figure 4C) [63]. Finally, both Klf6 and

Klf9 were significantly upregulated during the acute response to

IL-1b, which could have contributed to the regulation of certain

genes (e.g., Icam4 and Sod2) exhibiting delayed activation. Other

transcription factor motifs of note included TFAP2A (AP-2a) [66],

which has a significant number of well-matched elements among

the promoters of genes in STEM profiles B and E (Figure 3).

AP-2a is transcription factor with context-dependent activator and

repressor functions, and is important in cellular morphogenesis

[67–69] by binding to variations of the GC-rich sequence

59-(GCCN)3GGC-39 [68]. The top represented motifs for STEM

profile C were helicase-like transcription factor (HLTF) and

nuclear factor (erythroid-derived 2)-like 1 (NFE2L1). Helicase-like

transcription factor is a member of the SWItch/Sucrose

NonFermentable (SWI/SNF) family of chromatin remodeling

enzymes, and may play a role in error-free DNA replication

[70,71]. The NFE2L1 motif represents the binding motif of

heterodimer transcription factor 11 (TCF11) with the small MafG

protein: 59-TGCTgaGTCAT-39, so named because the binding-

site is identical to the NF-E2-site. Aside from interacting with

MafG proteins, TCF11 binds to a subclass AP1 sites [72].

Transcriptional regulatory networks in full-thickness fetal
membranes in the setting of term labor

Having established a paradigm to decipher potential transcrip-

tional regulatory networks in a dynamic in vitro system, we next

applied this strategy to clinical specimens. For this, data were

abstracted from a transcriptional profiling study [19] conducted

using samples of full-thickness fetal membranes (amniochorion and

maternal decidua) from patients delivered at term in the absence

or presence of spontaneous labor (N = 12 per group). In this cross-

sectional study, all specimens were subjected to pathological

Figure 4. Gene regulatory network of AMC dataset inferred from transcription factor binding motif results. (A) Overview of gene
regulatory network. Double circles represent binding motifs and ovals represent genes. Lines between motifs and genes represent inferred regulation
based on Pscan motif analysis. The genes and respective connecting lines are colored based on the STEM profile groups depicted in Figure 1D (group
A = red, group B = green, group C = blue, group D = black, group E = purple). (B–D) Types of regulatory subnetworks represented.
doi:10.1371/journal.pone.0020560.g004
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examination, and no specimens with histologic chorioamnionitis

were included in the analysis. The dataset included 224 discrete

probe sets corresponding to 197 unique transcripts which were

queried using the HG-U133A and HG-U133B arrays (Affymetrix).

To assess how faithfully our simplified in vitro model recapitu-

lated the tissue-level data, we compared the gene expression

profile in IL-1b-stimulated AMCs with that of Haddad et al. [19].

There were 41 unique probe sets (35 genes) in common (Figure 5),

and of these, 34 genes were upregulated in both datasets, whereas

no common downregulated genes were identified. The genes in

common included several cytokines and chemokines that were

identified previously as part of the ‘‘acute inflammation gene

expression signature’’ following spontaneous labor onset [19]. One

gene, type II iodothyronine deiodinase (Dio2), was divergent

between the two datasets in that it was downregulated in Haddad

et al. while upregulated in AMC. To further compare the AMC

and Haddad et al. datasets, both were subjected to pathway

analysis using Ingenuity Pathway Analysis Software (IPA,

Ingenuity Systems, www.ingenuity.com) under identical conditions

of log2-fold change cutoff of 1.0 (corresponding to a fold change of

2), and averaging of multiple probesets that correspond to the

same gene. In congruence with the other analyses , an infla-

mmatory signature featuring NF-kB was prominent in the top

ranking interaction networks at both 1 h and 8 h following

IL-1b treatment in the AMCs when compared with the vehicle

control (Figure 6, A and B, with scores of 44 and 41,

respectively). The two top scoring interaction networks (scores of

35 and 33, respectively) from the Haddad et al. dataset are shown

in Figure 6, C and D. Not surprisingly, the common molecules

among the top networks from the AMC dataset and the second-

ranked network from the Haddad et al. dataset were molecules

related to inflammation (i.e., chemokines, pro-inflammatory

cytokines, leukotriene synthesizing enzymes, members of the

NF-kB family, Tlr2, etc.). Interestingly, the top ranking interaction

network from the Haddad et al. dataset contained hormones

(follicle-stimulating hormone [FSH], luteinizing hormone [LH],

human chorionic gonadotropin [hCG]) and growth factors

(epidermal growth factor receptor ligands amphiregulin [AREG]

and epiregulin [EREG], platelet-derived growth factor [PDGF],

and vascular endothelial growth factor [VEGF]). While the

specific relevance of these molecules within the fetal membranes

may be limited at this time, that such a network was so highly-

ranked in the clinical specimens, but was not present in the IL-1b-

stimulated AMCs, suggests that the level of complexity among

interactions in vivo (i.e., multiple cell type interactions) was far

greater than in the simplified in vitro model. A list of all the

networks from the AMC and fetal membranes [19] along with

their scores and molecules is found in Tables S6, S7, and S8.

Pathway and biological function analysis using IPA provided

further support for an inflammatory signature, as interleukin and

immune cell signaling pathways were among the top ten

statistically significant canonical pathways, while inflammatory

response was the second most significant biological function. Plots

of the top ten canonical pathways and biological functions for the

AMC and Haddad et al. datasets and their Benjamini Hochberg

p-values are found in Figure S3.

Of the genes upregulated in fetal membranes in the setting of

labor, 33% were also induced following IL-1b treatment in AMCs

(Figure 5). To further examine putative regulatory pathways

activated in the fetal membrane specimens, motif enrichment

analysis for differentially expressed genes was performed using

Pscan [33]. For this, genes were subdivided into three groups:

those which were upregulated in both fetal membranes and AMCs

(the ‘‘core inflammatory’’ subset), those which were upregulated in

fetal membranes only, and those which were downregulated in

fetal membranes (Figure 7). This information was then used to

construct a gene regulatory network model (Figure 8). As

anticipated, the promoters of core inflammatory genes were

enriched for kBREs as well as Sp/KLF binding motifs. The

remaining transcription factor binding motifs enriched in this

subset were present in both the tissue samples and the cytokine-

stimulated AMCs, with the exception of that for insulinoma-

associated protein 1 (INSM1). SOX consensus sequences (SOX9

and SOX10) were more highly enriched among the core

inflammatory subcluster than in IL-1b-induced genes in AMCs.

While the relevance of this finding in vitro is uncertain, it is

plausible that mechanical signals, such as those produced in active

term labor (e.g., uterine stretch, cervical dilatation), might induce

the expression of Sox transcription factors in vivo. An association

between mechanotransduction and Sox gene expression has been

demonstrated in chondrocyte models [73]. Although Sox tran-

scription factors were not differentially regulated in following labor

in the fetal membrane dataset, it is interesting to note that the

expression of Sox18 was identified among a group of labor-

associated genes in term myometrium [74]. Of motifs enriched

among the promoters of genes upregulated solely in the fetal

membrane dataset, those for Sp/KLF, TFAP2, paired box (PAX),

AP1, hypoxia-inducible factor (HIF), and zinc finger X-chromo-

somal protein (Zfx) had the greatest number of well-matched

predicted binding sequences. A small portion (13%) of genes in this

subset also contained NF-kB response elements.

Despite divergent gene expression profiles, the predicted gene

regulatory network in fetal membranes exhibited a great degree of

overlap in motif enrichment (Figures 7, 8) with the AMC network

(Figure 3 and Figure S2), suggesting the use of common global

transcriptional networks. It is noteworthy that 39% of the genes

upregulated solely in the Haddad et al. dataset had promoters with

Figure 5. Venn diagram of comparing the genes of the AMC
and Haddad et al datasets. The Venn diagrams depict differentially
expressed genes from the Haddad et al. data obtained from fetal
membranes following term labor, and the genes significantly expressed
in AMCs at 1 h and 8 h post IL-1b treatment when compared to control.
The diagrams depict the amount of overlap of all the genes, just the
upregulated, and the downregulated genes (top to bottom). The inset
box lists the 34 genes that are common and upregulated in both the
fetal membranes and AMC data. An additional gene, type II
iodothyronine deiodinase (Dio2), was common but divergent between
the two datasets in that it was downregulated in the fetal membranes
while upregulated in AMCs.
doi:10.1371/journal.pone.0020560.g005

A Systems Approach to Modeling Human Parturition

PLoS ONE | www.plosone.org 10 June 2011 | Volume 6 | Issue 6 | e20560



Figure 6. Top networks for each time point (1 h and 8 h) in the AMC microarray data and for the Haddad et al. TIL versus TNL
microarray data. (A) The top network of 1h IL-1b treatment of ACC with a score of 44, showing a prominence of TNF and NF-kB family. (B) The top
network of 8 h post IL-1b-treatment of ACC with a score of 41. This network shows high connectivity of the relevant genes with the NF-kB family.
(C) The top network of the Haddad dataset with a score of 35, showing hormones (FSH, LH, hCG) and growth factors (AREG, EREG, PDGF, VEGF). (D)
The second ranking network of the Haddad dataset with a score of 33, showing an inflammatory signature. In the networks, molecules are
represented as nodes, and the biological relationship between two nodes is represented as an edge (line). The intensity of the node color indicates
the degree of up- (red) or down- (green) regulation. Nodes are displayed using various shapes that represent the functional class of the gene product,
as explained in the legend.
doi:10.1371/journal.pone.0020560.g006
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HIF response elements, which is relevant given that uterine

contractions during labor cause intermittent utero-placental

hypoperfusion [75,76]. Indeed, a recent study by Cindrova-Davies

and colleagues found that term labor was associated with

stabilization of hypoxia-inducible factor-1a and changes in the

expression of transcripts and proteins associated with oxidative

stress and angiogenic regulation in placental tissue [77]. Aside from

genes potentially regulated by HIF isoforms, hypoxia-reoxygenation

may also be reflected in inflammatory gene induction following

labor, since oxidative stress itself is associated the activation of

several inflammatory signaling cascades (e.g., Mapk and NF-kB)

[78,79]. Collectively, in addition to inflammation, these results

suggest that fetal membranes exposed to labor possess global gene

expression changes associated with hypoxia-reperfusion.

Discussion

This study describes a computational approach based on

transcriptional profiling for predicting global gene regulatory

networks (GRNs) invoked in the propagation of inflammatory

responses. As with prior work [45,50,57,80–82], the methodology

outlined here strategically combines methods for identifying

clusters of coexpressed genes with an analysis of transcriptional

regulatory elements enriched in the promoters of these genes.

Figure 7. Patterns of transcription factor motif enrichments within promoters of genes from the Haddad et al. dataset. Each column
in the matrix represents three clusters of genes: the common upregulated genes between the Haddad et al. and AMC datasets, and the genes
uniquely upregulated and downregulated in the Haddad dataset. Each row represents a transcription factor binding element. Each profile (column)
corresponds to those in Figure 1C, and each colored block in the matrix indicates a pair of motif and gene cluster for which a fraction (indicated in the
blocks) of the genes in the profile is enriched for the motif (Pscan score of $0.95). The color of the blocks correspond to the fraction of genes in the
profile enriched for each transcription factor binding motif, and corresponds with the color scale shown on the right.
doi:10.1371/journal.pone.0020560.g007
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While the present analysis is by no means exhaustive, it offers

proof-of-principle for the application of GRN modeling to the

study of human parturition. Importantly, this approach comple-

ments the pathway and gene-interaction networks analyses

commonly employed in the analysis of high-dimensional datasets,

and offers further insight into the transcriptional control of labor.

Clearly, more comprehensive, reductionist, and mechanistic

approaches are required to demonstrate the rigorous authenticity

of these global gene expression observations.

Many of the previous transcriptional profiling studies using

intrauterine tissues [19,20,74,83–87] have relied on pathway

analysis to discern overrepresented functional classifications that

identify potential gene-interaction networks. While these methods

are informative, analysis of enriched or impacted pathways has

several inherent limitations. These include: (1) ambiguity in

pathway classification (non-standardized categorization of biologi-

cal pathways leads to groupings that are subjectively defined); (2)

software-dependent differences in the generation of specific

interaction networks, depending upon how gene-gene (intermodal)

relationships are defined, and what resources are used to define such

interactions [88]; (3) overrepresentation of well-studied pathways, to

the exclusion of potentially important genes for which little

experimental data is available; and (4) bias toward interaction

networks having larger numbers of genes [89]. Furthermore, in

addition to coexpressed genes, groups of randomly selected genes

will also result in significantly overrepresented interaction networks

[89]. Finally, interaction networks are theoretically based, and

may have little physiological relevance within a given biological

system [88].

In light of these considerations, we focused on deciphering

potential transcriptional regulatory programs that may account for

specific gene expression signatures that differentiate labored from

unlabored intrauterine tissues. Many bioinformatic approaches

currently exist to aid in the reconstruction of GRNs [90–93].

Generally speaking, GRNs are reverse-engineered from transcrip-

tional profiling data, based on the assumption that coordinately

expressed genes are likely to be controlled by a common group of

transcription factors [94–97]. In most instances, genes from

transcriptional profiling experiments must first be grouped into

units of coexpressed genes. Numerous computational algorithms

have been developed to partition such coexpression clusters

[91,98]. These approaches utilize differing theoretical frameworks

for data partitioning, including clustering algorithms (e.g.,

hierarchical or partitional clustering), probabilistic graphical

models [99,100], matrix decomposition approaches [101–105],

and algorithms that incorporate multiple lines of experimental

evidence [106,107]. The specific usefulness of such algorithms

depends upon the intended use, as well as the benefits and

limitations of these methods are reviewed elsewhere [90,93,98].

In developing the GRN models presented here, we first utilized

AMCs as simplified in vitro model system, for which temporal gene

expression data could be generated. This approach enabled

Figure 8. Gene regulatory network of the Haddad et al. dataset inferred from transcription factor binding motif results. Double
circles represent binding motifs and ovals represent genes. Lines between motifs and genes represent inferred regulation based on Pscan motif
analysis. The genes and respective connecting lines are colored based on the grouping in Figure 7: common genes with AMC dataset (red),
upregulated genes (green), and downregulated genes (blue).
doi:10.1371/journal.pone.0020560.g008
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comparison of different methods for partitioning the microarray

data prior to motif enrichment analysis. We found that clustering

based upon relative transcript expression (STEM analysis [31])

was more informative than hierarchical clustering, inasmuch as

that the latter was biased toward segregation based on absolute

expression values. Using hierarchical clustering, we found that

many genes exhibiting similar patterns of temporal activation

remained ungrouped (Figure 1B), which confounded the

accurate determination of common gene regulatory mechanisms

during subsequent analysis. By considering longitudinal relative

expression patterns, we distinguished regulatory mechanisms

governing genes with rapid transcriptional activation from those

controlling genes for which expression was delayed. These

alterations in transcriptional regulatory mechanisms likely reflect

the cumulative influence of cytokines, chemokines, eicosanoids,

and other signaling molecules which develop over time. This

analysis revealed dynamic interplay between network elements, as

illustrated in the topology models (Figure 4). For example, early

upregulation of genes encoding key transcription factors (such as

Irf1 and Egr1) could be linked plausibly to the regulation of genes

exhibiting delayed induction. Although such inferences require

that transcript abundance be correlated with regulatory activity

[97], this analysis suggests network structure that can now be

tested experimentally.

Once genes are partitioned into suitable modules, the core

promoters of coexpressed genes (typically, regulatory regions

within 21000 to +50 bp relative to the transcriptional start site)

may be evaluated for overrepresented cis-regulatory elements [96].

Of the two ranges available in Pscan that are closest to this region

of interest (2950 to 50 and 21000 to 0), the 2950 to +50 bp

range was selected for the analyses. A host of computational

algorithms for motif enrichment analysis currently exist (reviewed

in [96,108–111]), including OTFBS [112], YMF [113], CLOVER

[114], CARRIE [94], oPOSSUM [115], MAPPER [116],

CORE_TF [117], TFM-Explorer [118], PAP [119],and PASTAA

[120], among others. The Pscan algorithm [33] applied here

utilizes computational identification of known transcription factor

binding sites using position specific weight matrices; however, the

identification of enriched short DNA sequences without bias (ab

initio prediction) is also possible [80,109,121,122]. The utility of

these algorithms varies, depending upon the model organism

under investigation (performance is typically best when applied to

lower organisms with a more limited repertoire of transcription

factors [111]). In addition, the specific means used for identifying

sequences (e.g., position weight matrices, Markov models,

Bayesian trees, and variable order models [123]), and the statistical

methods used to determine the degree to which identified

sequences are overrepresented [109] also influences the usefulness

of these in silico methods. While several of the web-based

computational algorithms for motif enrichment analysis were

surveyed in the current study (data not shown), we chose not to

perform an exhaustive comparison of these tools in this work,

particularly given the rapid rate at which novel programs become

available; rather, we chose to focus on the general approach as

proof-of-principle, which can be modified and adapted using

existing datasets.

An advantage of motif enrichment analysis is that it facilitates the

distinction between primary and secondary targets of a given

transcription factor, since primary targets are more likely to contain

cis-regulatory elements for that factor [90,124]. However, compu-

tational analysis of transcription factors in isolation may be

insufficient to elucidate combinatorial interactions that may

ultimately govern the transcriptional response of a particular gene.

For example, our analysis of cytokine-stimulated AMCs revealed

candidate primary NF-kB response genes exhibiting dramatic

differences in activation kinetics, suggesting that target genes with

delayed activation (Ccl5, Ccl7, Cfb, Cxcl5, Cxcl6, Dram1, Gch1, Ifih1,

Il15ra, Il32, Isg20, Mx2, Nfkb2, and Tnip1) require regulatory

mechanisms distinct from those governing early-response genes.

Recent data now suggest that rapidly-activated NF-kB responsive

genes (e.g., Il6, Ccl20, and Icam1) respond in a graded (analog)

fashion, whereas certain late NF-kB response genes (e.g., Ccl5) are

upregulated only above a certain activation threshold (digital

transcriptional regulation) [125,126]. While the mechanistic basis

for such observations may depend on epigenetic modifications

affecting chromatin configuration, it is possible that cooperative

interplay between NF-kB and other transcription factors (as may

occur in ‘‘enhanceosome’’ complexes [127–129]) could be involved.

Computational algorithms more sophisticated than that used in the

current study would be required to identify combinatorial

transcription factor interactions. Such approaches in yeast have

been described [130,131], and if adapted to mammalian systems,

these computational tools will likely help delineate the relative

influence of synergistic transcription factor regulation.

While useful for predictive modeling, the construction of GRNs

based on motif enrichment analysis has some limitations that must

be considered when interpreting results. First, transcription factors

of the same family (or even those more distantly related) can bind

to homologous sites, leading to ambiguity in the modeling of the

activity of specific transcription factors [60]. While some

refinements of the model may be achieved by considering the

absolute expression levels of individual transcription factors (i.e., a

transcription factor with relatively abundant mRNA would be

expected to contribute more to the network than one exhibiting

low levels of transcription), these predictions must be validated

experimentally. A second shortcoming is that regulatory elements

outside the core promoter are not taken into account, nor is the

chromatin arrangement of a given promoter. The latter omission

might be reasonable, however, in light of genome wide studies of

nucleosome arrangement, which suggest that the promoters of

most genes reside in nucleosome-free regions (open chromatin

configuration), and are permissive to transcription factor binding

[63]. A third caveat is that motif enrichment analysis may be less

effective when genes sharing the same cis-regulatory elements are

not coexpressed, or when they are clustered incorrectly [90]. As

discussed previously, we favored STEM clustering for analysis of

our in vitro dataset, whereas the tissue-derived data (in which infor-

mation about longitudinal expression was lacking) were clustered

based upon overlap with the AMC data. Because we recognize

that refinements in clustering of the Haddad et al. dataset of could

influence the ultimate GRN model, our group is currently

examining the utility of other clustering algorithms in this and

other existing datasets. A fourth concern relates to the reliability of

the motif enrichment prediction algorithms, since the number of

predicted sites may exceed that of functional sites. In the present

work, a high level of confidence could only be assigned to those

transcription factors known to regulate target genes based on other

reports (e.g., NF-kB). Although an effort was made to prune from

our models those binding sites possessing a low degree of sequence

similarity with canonical motifs (see Figures 3 and 7), this is

limited to the single analytical method used. We recognize that

while other means of motif enrichment analysis exist, this does not

address the more fundamental issue that enrichment of binding

sequences provides no information about whether or not a

given motif is used. Finally, the construction of GRNs based on

mRNA expression assumes that transcript levels reflect only the

activity of transcription factors, and fails to consider important

post-transcriptional regulatory mechanisms that likely influence
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mRNA abundance, such as microRNAs (miRNAs). The regula-

tory role of miRNAs is considerable, given that they are predicted

to regulate more than one-third of all human genes, and could

target as many as 200 transcripts each [132]. The prediction and

modeling of post-transcriptional GRNs is an emerging area, and

while the methods for modeling interactions between transcription

factors, miRNAs, and genes are not as refined as those for

transcriptional GRNs [133], the incorporation of such data would

provide a more complete picture of the complex regulatory

networks that exist among transcription factors, miRNAs, and

genes. As we continue to extend our work, we intend to investigate

the contributions of miRNAs to GRN models.

When extrapolating this approach to the experimental data

obtained from the study of Haddad et al. [19], our primary goal

was to infer regulatory relationships that might explain the

observed transcriptional response to spontaneous term labor

within the intrauterine environment. The choice of our in vitro

model (sterile inflammation in primary amnion cells) was guided

by the well-established association between inflammation in the

fetal membranes and parturition [3]. While inflammation is

associated with the process of parturition itself, it is generally

accepted that pro-inflammatory biomolecules accumulate in the

amniotic compartment near term, prior to the onset of active labor

[134]. Currently, there is no consensus as to what the trigger(s)

initiate this inflammatory cascade. In recent years, receptors

responsive to pathogen-associated molecular patterns (PAMPs), in

particular the TLRs, have received considerable attention as

possible contributors to the labor-associated inflammatory re-

sponse [135]. Multiple lines of evidence support this postulate: (1)

microbial organisms, components of which activate TLRs, have

been isolated from the amniotic cavity in approximately 19% of

patients at term in labor with intact membranes [136]; (2) TLR

expression increases within myometrium [85,137] and fetal

membranes [19,138] with advancing gestation, and in term and

preterm labor; (3) TLR polymorphisms have been associated with

an increased risk of preterm labor [139,140]; and (4) TLR ligands

initiate labor in experimental animals [141,142]. Our present

work, however, suggests that TLR receptor activation, per se, could

be dispensable for the majority of cases of term labor, given that

our GRN model of labored fetal membranes (Figure 8) is

indistinguishable from that of a sterile inflammatory transcrip-

tional response [40]. Thus, it may be the case that our study

provides potentially compelling evidence of a molecular distinction

between normal, term parturition and infection-induced preterm

labor. Signaling through the TLR4 receptor, which is responsive

to Gram-negative lipopolysaccharide, may proceed through the

MyD88-dependent pathway (like the IL-1 receptor), or via

additional adapter proteins, such as TIR-domain-containing

adapter-inducing interferon-b (TRIF) [38]. Stimulation of AMCs

with IL-1b failed to evoke characteristic TRIF-regulated genes,

such as Ifnb1, Irg1, Ifit2, and Cxcl10 [81,143]. Importantly, these

genes were also absent from the datasets of Haddad et al. [19] and

Bollopragada et al. [84], suggesting that signaling through TLR3

and/or TLR4 is not prominent in intrauterine tissues following

term labor, at least among the cases selected for these studies

which showed no signs of chorioamnionitis. While one cannot

dismiss the potential for signaling through TLR2, TLR5, TLR7,

or TLR9 (all MyD88-dependent [52,144]) based on these results,

we find that it is not necessary to invoke TLRs to explain

transcriptional response following normal labor. We submit that

sterile intrauterine inflammation, which may be elicited as a

reaction to cellular debris [40], could contribute to the early

inflammatory events leading to parturition. Indeed, ultrastructural

analysis of the decidual component of full-thickness fetal

membranes collected prior to term labor has revealed regions of

cellular necrosis admixed with lipid-laden macrophages [145];

such areas could serve as foci for the production of pro-

inflammatory biomolecules. In addition, sterile intrauterine

inflammation may be amplified during active labor by oxidative

stress, a result of frequent hypoxia-reoxygenation events caused by

uterine contractions [75–78]. Fetal membrane hypoxia is sup-

ported by our finding that genes upregulated in response to labor

have promoters that are enriched for HIF response elements

(Figures 7 and 8).

The lack of an unambiguous TLR-mediated gene expression

signature in the present analysis may be limited by the nature of

the specimens queried. Certainly, biological variability among

patients could conceal evidence of TLR-mediated gene expression,

especially if such signaling is present only in a subset of cases. This

could be assessed by examining additional clinical cases employing

rigorous statistical analysis. The portions of the fetal membranes

evaluated could also influence the observed transcriptional

response. In the study of Haddad and colleagues [19], membranes

were collected remote from the site of rupture, and specimens with

histological evidence of chorioamnionitis were excluded. In a more

recent analysis that examined global gene expression in different

regions of term fetal membranes, 667 genes were found to be

differentially expressed in the choriodecidua at the site of rupture

relative to more distal regions [86]. While TRIF-dependent genes

were not present among these differentially expressed genes,

impact analysis revealed relative enrichment for the pathway of

‘‘pathogenic Escherichia coli infection’’ at the rupture site. Thus,

signaling through TLRs could be regional in the fetal membranes,

which is relevant given exposure of areas overlying the cervix (such

as the membrane rupture site) to the vaginal microflora. Finally, it

is also possible that marked leukocytic infiltration could lead to

regulatory network models differing than that described here.

Irrespective of the role of TLRs in term labor, however, there is

some evidence that TLR-mediated signatures are present among

the genes upregulated in the fetal membranes [2] and myometri-

um [74] following preterm labor, particularly when complicated

by chorioamnionitis. As such, the GRNs governing preterm labor

may differ from those involved in term labor. Deciphering the

GRNs involved in preterm labor is an important extension of the

current work, and ongoing studies by our group are directed at

modeling global transcriptional control in this context.

Deciphering the complex physiological phenomenon of human

parturition may be facilitated through incorporation of bioinfor-

matic tools. The process presented here provides a facile means to

infer transcriptional regulatory programs from high-dimensional

datasets, and can be applied to the ever-expanding compendium

of transcriptomic and proteomic information obtained from

intrauterine tissues [146–150]. The GRN derived from the gene

profiling study of Haddad and colleagues [19] suggests that term

human labor resembles a sterile inflammatory response, and

provides indirect evidence that components of the gene expression

signature are likely to be governed by several inflammatory

transcription factors, including NF-kB. The latter is relevant, given

that in prior studies of fetal membranes in labor, direct evidence

for NF-kB activation has been difficult to demonstrate conclusively

[55,151–153]. Importantly, this approach provides insight not

only into the progression of labor, but also the upstream events

that may govern labor’s onset. In subsequent studies, GRN

modeling may be helpful in elucidating among the proposed

pathways leading to preterm birth [3,154,155].

At this point in time, it is important to emphasize the general

approach, as one must appreciate that GRN construction is an

iterative problem, for which refinements are mandatory. It
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remains that the development of highly veracious, global models of

gene regulation is a formidable challenge in even relatively simple

model systems, let alone in complex clinical tissue samples [91].

This is particularly so given that in tissues, there exist complex

intercellular interactions that must be considered, along with

limitations of specimen types [156,157]. Thus, in vivo model

development is complemented by data obtained using in vitro

models, for which temporal expression data is available, and for

which system complexity can be scaled-up in a rationale manner.

Despite certain limitations in precision, GRN models based on

gene expression profiling, clustering, and the prediction of

cis-regulatory elements provide information that can be targeted

in future studies, such as potential gene targets for chromatin

immunoprecipitation (ChIP)-seq assays. Such models can then be

extended to include data from other high-dimensional surveys,

such as microRNA, ChIP-on-chip, and proteomics, providing

more refined insight into global gene regulation.

Supporting Information

Figure S1 Verification of NF-kB-mediated gene activa-
tion using qRT-PCR. Graphs showing the fold change of the

mRNA expression levels of Cxcl2, Il1b, Il6, Il8, and Ptgs2 in AMC

cells pretreated with or without 30 mM of MG-132 prior to

treatment with 10 ng/ml of IL-1b for 1 h (graphs A–E) and 8 h

(graphs F–J). Control cells (veh) did not receive IL-1b treatment.

(TIF)

Figure S2 Gene regulatory network of amnion mesen-
chymal cell dataset inferred from transcription factor
binding motif results, detail of panel A in Figure 4.
Double circles represent binding motifs and ovals represent genes.

Lines between motifs and genes represent inferred regulation

based on Pscan motif analysis. The genes and respective

connecting lines are colored based on the STEM profile groups

depicted in Figure 1D (group A = red, group B = green, group

C = blue, group D = black, group E = purple).

(TIF)

Figure S3 Canonical pathways and biological functional
analysis. The top ten most significant canonical pathways and

biological functions are listed for the fetal membrane data (black)

and for the AMC data at 1 h (gray) and 8 h (white) post IL-1b
treatment. The negative value of the log of the Benjamini

Hochberg p-value is plotted for each function.

(TIF)

Table S1 Target genes with microarray expression
data. This spreadsheet contains replicate-combined intensities

for the full list of 190 unique, differentially expressed genes (see

Materials and Methods, Microarray Analysis and Data Processing)

from the microarray data of the amnion mesenchymal cells

(AMCs). Column 1 indicates the HUGO gene symbol of the gene.

Column 2 indicates the NCBI Entrez Gene ID. Column 3

provides the description of the gene, as based on the Affymetrix

Human Genome GeneChip annotation file. Columns 4 through 6

indicate the average log2 intensity observed across three replicate

experiments of vehicle control samples (Column 4), and AMCs

treated with IL-1b for 1 h (Column 5) or 8 h (Column 6).

(XLS)

Table S2 The temporal transcriptional response of
amnion mesenchymal cells to cytokine challenge. The

significantly differentially expressed, unique genes (see Materials

and Methods, Microarray Analysis and Data Processing) sampled

at 0, 1, and 8 h following 10 ng/ml of IL-1b treatment were

separated into 5 significantly represented profiles using STEM.

The table is ordered by STEM profile (as illustrated in Figure 1C),

then alphabetically by HUGO gene symbol. The 39 genes that did

not fit into the top 5 profiles are listed as unassigned for their

profile status. Column 1 indicates the HUGO gene symbol of the

gene. Column 2 indicates the NCBI Entrez Gene ID. Column 3

contains the Affymetrix probeset(s) for the gene. Column 4 lists the

profile for the gene while column 5 shows the coloring of the

profile as shown in Figure 1C. Column 6 contains a description of

the profile. Column 7 is the profile ID as given by the STEM

software during analysis. Columns 8 through 10 indicates the

STEM adjusted values of level of expression at 0 (column 8), 1

(column 9), and 8 h (column 10) post IL-1b treatment.

(XLS)

Table S3 Transcription factor binding motif enrich-
ment analysis for the AMC dataset of genes upregulated
at 1 h or 8 h, as analyzed using Pscan. Column 1 contains

the names of JASPAR transcription factor matrices and column 2

contains the JASPAR matrix identification numbers. Column 3

contains the z-scores for each matrix as calculated with the z-test.

The matrices are ranked by their p-value (column 4) that reflects

the probability of having the same result by chance. Only matrices

with p-values of less than 0.05 were considered to be potentially

significant. Columns 5 through 8 contains the sample statistics for

the input reference sequence mRNA accession numbers for the

169 genes (see Materials and Methods, Transcription Factor

Binding Motif Enrichment Analysis) including average score in the

input set (column 5) compared to the background mean (column 6)

and standard deviation (column 7), along with input sample size

(column 8).

(XLS)

Table S4 Pscan results of transcription factor binding
motif enrichment analysis using predicted non-NF-kB
response genes from the AMC dataset. Column 1 contains

the names of JASPAR transcription factor matrices and column 2

contains the JASPAR matrix identification numbers. Column 3

contains the z-scores for each matrix as calculated with the z-test.

The matrices are ranked by their p-value (column 4) that reflects

the probability of having the same result by chance. Only matrices

with p-values of less than 0.05 were considered to be potentially

significant. Columns 5 through 8 contains the sample statistics for

the input reference sequence mRNA accession numbers for the

genes (see Materials and Methods, Transcription Factor Binding

Motif Enrichment Analysis) including average score in the input

set (column 5) compared to the background mean (column 6) and

standard deviation (column 7), along with input sample size

(column 8).

(XLS)

Table S5 Nuclear receptor expression in amnion mes-
enchymal cells. Column 1 indicates the HUGO gene symbol

for nuclear receptors with probe sets represented on the Affymetrix

GeneChip Human Genome U133A 2.0 Array used in this study.

Column 2 provides the description of the gene. Column 3

indicates the expression level of the nuclear receptor based on the

average log2 expression across all amnion mesenchymal cell

(AMC) samples and replicates used in this study (column 5).

Nuclear receptors with mean log2 expression values greater than

the noise cut off value of 6 (see Materials and Methods,

Microarray Analysis and Data Processing) were considered to be

above noise (detectable mRNA expression), those with expression

levels between 5.5 and 6 were considered to be borderline, and

those with values below 5.5 were considered to be indistinguish-

able from background noise. Column 4 lists the evidence for the

levels of expression of the nuclear receptors in AMCs. For
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peroxisome proliferator-activated receptor gamma and progester-

one receptor, immunoblotting data (not shown) confirmed that the

expression of these receptors was relatively deficient in AMCs

when compared to cell lysates (differentiated 3T3-L1 mouse

adipocytes and T47D human breast cancer cells, respectively)

exhibiting positive expression.

(XLS)

Table S6 Focus genes and top functions resulting from
the network analysis, per network, for genes upregu-
lated at 1 h post IL-1b treatment in AMCs.

(PDF)

Table S7 Focus genes and top functions resulting from
the network analysis, per network, for genes upregu-
lated at 8 h post IL-1b treatment in AMCs.

(PDF)

Table S8 Focus genes and top functions from the
network analysis, per network, for genes differentially
expressed in TIL versus TNL patients.
(PDF)
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