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Decisions regarding microbial risk assessment usually have to be carried out with

incomplete information. This is due to the large number of possible scenarios and the

lack of specific data for the problem considered. Consequently, risk assessment studies

are based on the information obtained with a small number of bacterial cells which are

considered the most heat resistant and/or more capable of multiplying during storage.

The identification of themost resistant strains is usually based on D and z-values, normally

estimated from isothermal experiments. This procedure omits the potential effect that the

shape of the dynamic thermal profile applied in industry has on the microbial inactivation.

One example of such effects is stress acclimation, which is related to a physiological

response of the cells during sub-lethal treatments that increases their resistance. In this

article, we use a recently published mathematical model to compare the development

of thermal resistance for Escherichia coli K12 MG1655 and E. coli CECT 515 using

inactivation data already published for these strains. Based only on the isothermal

experiments, E. coli K12 MG1655 would be identified as more resistant to the thermal

treatment than the CECT 515 strain in the 50–65◦C temperature range. However, we

conclude that stress acclimation is strain (and/or media)-dependent; the CECT 515

strain has a higher capacity for developing a stress acclimation than K12 MG1655

(300% increase of the D-value for CECT 515, 50% for K12 MG1655). It, thus, has the

potential to be more resistant to the thermal treatment than the K12 MG1655 strain for

some conditions allowing acclimation. A methodology is proposed to identify for which

conditions this may be the case. After calibrating the model parameters representing

acclimation using real experimental data, the applicability of the proposed approach

is demonstrated using numerical simulations, showing how the CECT 515 strain can

be more resistant for some heating profiles. Consequently, the most resistant bacterial

strain to a dynamic heating profile should not be identified based only on isothermal

experiments (D- and z-value). The relevance of stress acclimation for the treatment

studied should also be evaluated.
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INTRODUCTION

Microbiological risk assessment tries to estimate the probability
that the consumer of a food product contracts a sickness due
to the presence of a pathogen in the product above a critical
concentration (Allende et al., 2018). This is a complex task,
because of the high relevance of uncertainty and variability,
as well as the need to deal with incomplete data (Zwietering,
2009). The last years have witnessed a leap forward in the
methodologies used for microbiological risk assessment, going
from qualitative to quantitative methods (Coleman and Marks,
1999). Quantitative methodologies are based on a quantitative
description of the microbial response to the conditions that the
food product may encounter during its life cycle (e.g., storage
and processing) and usually provide a more accurate estimate
of the risk of exposure than qualitative methods (Koutsoumanis
et al., 2016). These quantitative methodologies are usually
based on predictive microbiology, which applies mathematical
modeling to describe the microbial response during conditions
that may allow its grow or result in microbial inactivation (Perez-
Rodriguez and Valero, 2012).

Nevertheless, mathematical models used in predictive
microbiology have a strong empirical nature, having some model
parameters that must be estimated based on experimental data
before its use for prediction. Several studies have pointed out
the variability in the bacterial response of different strains when
exposed to similar conditions, expressed by different values of
the model parameters characterizing the microbial response
(Nauta, 2000; Hassani et al., 2006; van Asselt and Zwietering,
2006; Bruschi et al., 2017). This is an issue for microbial risk
assessment, due to the large number of different microbial
strains that can potentially contaminate a good product. As
an illustrative example, ComBase (Baranyi and Tamplin, 2004)
includes inactivation and/or growth parameters for over 40
bacteria taxa, which can be further subdivided (e.g., Escherichia
coli has 180 different serogroups Stenutz et al., 2006). Therefore,
risk assessment cannot be performed for every potential strain
using the resources available nowadays. Instead, it is limited to
some bacterial strains identified as the most resistant ones and/or
the ones with the highest growth potential.

The most resistant bacterial strains are usually identified
based on the model parameters describing their response to the
processing conditions: the D and z-values. The D-value is the
time required to apply a constant thermal stress to inactivate a
90% of the bacterial population of a particular strain, whereas
the z-value is the temperature increase needed to cause a 10-
fold reduction of the D-value. These parameters cannot be known
beforehand and must be experimentally estimated (or are taken
from databases based on experimental data). Several review
articles (van Asselt and Zwietering, 2006; Cebrián et al., 2016;
Petruzzi et al., 2017) gather the model parameters of the most
relevant microorganism(s) for food safety in different conditions.
Nonetheless, the characterization of microbial inactivation is still
an active field of research due to the emergence of new processing
technologies (Knorr, 2018) and food products (Aertsens et al.,
2009; O’Shea et al., 2012; Bigliardi and Galati, 2013; Liu et al.,
2015; González-Tejedor et al., 2017; Klug et al., 2018). Once

the D and z-values are identified, the efficacy of a thermal
treatment is evaluated using the cumulative F-value (Stumbo,
1973). Nevertheless, during the last years several authors have
criticized this approach because it does not takes into account
non-linearities in the microbial response such as shoulder and
tail effects (Peleg, 2006).

The study of the microbial response has been commonly
undertaken using isothermal experiments. These results have,
then, been extrapolated to describe non-isothermal processes
applied in industrial conditions (such as retorts or heat
exchangers). However, several articles have highlighted the
problems associated to this approach (Hassani et al., 2005;
Valdramidis et al., 2006; Janssen et al., 2008; Stasiewicz et al.,
2008). A particular case is stress acclimation (also referred
to as stress adaptation or induced stress resistance). Thermal
treatments, such as those used for pasteurization, begin at sub-
lethal temperatures. If the heating rate of the food substrate is
not fast enough, physiological changes may occur in the bacterial
cells, increasing their resistance to posterior stresses (Hill et al.,
2002; Richter et al., 2010). As a consequence, a higher number of
bacterial cells will be able to survive the treatment with respect to
the one predicted based on isothermal experiments, even several
log-units higher than expected (Valdramidis et al., 2006; Hassani
et al., 2007). It is, thus, a potential food safety risk because a larger
number of pathogenic bacterial cells than expected may survive
the treatment.

Several models were proposed during the last 10 years
to describe the kinetics of stress acclimation (Dolan and
Mishra, 2013). Recently, Garre et al. (2018) proposed a novel
mathematical model, based on the Bigelow log-linear model, to
describe this phenomenon. One of the advantages of this model
with respect to the previous ones is that it makes an explicit
difference between “static” thermal resistance (the one due to
environmental conditions at each time point) and “dynamic”
resistance (stress acclimation). It does so by including a variable
describing a hypothetical physiological state of the microbial
cells, which quantifies the level of stress developed by the them.
Hence, it provides further insight on how the stress acclimation
could be developed during a non-isothermal treatment. In this
article, we illustrate how the formulation of this model allows
a comparison of the ability of two different strains of E. coli
to increase their resistance to thermal stresses. Furthermore, we
explore how stress acclimation may be relevant for microbial risk
assessment, studying how it can influence the choice of the most
resistant bacterial strain to a particular thermal treatment.

MATERIALS AND METHODS

Microbiological Data
The data on microbial inactivation of E. coli K12 MG1655
reported by Valdramidis et al. (2006) and of E. coli CECT
515 reported by Garre et al. (2018) were used in this study.
Valdramidis et al. (2006) characterized the isothermal and
non-isothermal bacterial inactivation experiments using Brain
Heart Infusion (BHI) broth as heating medium. The isothermal
experiments were performed using capillary tubes immersed in a
circulating water bath (GR150-S12, Grant) at 49.5, 52, 54, 54.6,
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55, 56.6, 58.6, and 60.6◦C. The non-isothermal experiments were
performed in a similar fashion. Using the Labwise© program,
six different dynamic profiles were programmed. All of them
were biphasic with an initial heating phase with varying intensity
(0.15, 0.20, 0.40, 0.55, 0.82, and 1.64◦C/min) and a holding phase
at 55◦C (see solid line in Figure 1). For further details on the
experimental procedure please refer to the original article by
Valdramidis et al. (2006). The experimental results were made
available to us by the authors as text files.

Garre et al. (2018) used E. coli CECT 515 supplied by
the Spanish Type Culture Collection. These authors performed
isothermal and non-isothermal experiments using Peptone water
(PW) as heating medium in a Mastia thermoresistometer
(Conesa et al., 2009). Isothermal experiments were carried out at
52.5, 55, 57.5, and 60◦C, whereas two families of non-isothermal
profiles were tested: monophasic profiles with a constant heating,
and biphasic profiles similar to the ones tested by Valdramidis
et al. (2006). Different heating rates were used, ranging from 1
to 40◦C/min. Garre et al. (2018) analyzed their data using the
same model that has been used in this study. Hence, the model
parameters reported by them have been reused here.

Mathematical Modeling of Microbial
Inactivation
The inactivation of E. coli during the non-isothermal treatments
was described using the mathematical model proposed by Garre
et al. (2018). This model is based on the classical first order
kinetics model Equation (1), which considers that the thermal
resistance of the microbial cells is homogeneous within the
population. As a consequence, the time that single cells can resist
a constant stress are independent identically distributed random
variables and the first derivative of the microbial density (N) at
time t is proportional to itself. The proportionality constant is
given by the inactivation rate (k(T)).

dN

dt
= −k(T) · N (1)

In predictive microbiology, the D-value (D (T) = ln 10/k (T)) is
commonly used instead of the inactivation rate, k. This parameter
defines the time that is required to keep a constant stress to reduce
the microbial density a 90%. The D-value is usually considered
to have an exponential relationship with temperature (Bigelow,
1921), as shown in Equation (2). The parameter z (usually
called z-value) describes the temperature increment required to
reduce the D-value a 90%. This model makes use of a reference
temperature (Tref ) without any biological meaning, but with an
impact on model identifiability (Dolan and Mishra, 2013). Note
how the relationship between the D-value and temperature does
not take into consideration the heating history of the microbial
population and, thus, is not able to describe the induced stress
resistance.

D (T) = D
(
Tref

)
· 10−

T−Tref
z (2)

The model proposed by Garre et al. (2018) modifies the
inactivation rate defined in Equation (1) in order to reflect the

heating history. It considers that the inactivation rate (a function
of both time and temperature) equals the product of two terms,
as shown in Equation (3). The first one (k1) describes the thermal
resistance due to the environmental conditions at each time
point, i.e. without any consideration for the heating history of
the bacterial cells. In this model, this term is equivalent to the
one defined by Bigelow. The heating history of the bacterial cells,
which results in an acclimation, is modeled by the second term
(k2), whose algebraic form is defined in Equation (3). It uses
one variable, p(t), and one model parameter (c). The variable
p(t) describes a hypothetical physiological state of the cells with
respect to the acclimation. When p (t) = 0 bacterial cells have
not developed any acclimation. In that case, k2 (t) = 1 and the
model predicts the same inactivation rate that would be predicted
by the Bigelow model (i.e., the value of k1 (T)). In the model
by Garre et al. (2018), the variable p(t) has an upper bound
of one. The case when p (t) = 1 assumes that the cell has
developed its maximum acclimation. In this case, the inactivation
rate predicted by the model is k (t,T) = k1/(1 + c). In other
words, the D-value predicted by the Bigelow model is increased
by a factor equal to (1 + c). Consequently, the model parameter
c describes the effect that the bacterial acclimation has on the
inactivation rate. For instance, if c = 1, the bacterial acclimation
can potentially increase the D-value predicted by k1 (T) by a
factor of two; i.e. it can double the D-value. Note that p(t) is a
continuous variable. Therefore, the bacterial acclimation in the
model by Garre et al. (2018) is not a discrete phenomenon, and
therefore it canmodel intermediate levels of adaptation when p(t)
takes values between zero and one. According to this, a value of
p (t) = 0.5 would mean that the bacteria has reached a 50% of its
maximum capacity to develop an stress acclimation.

dN

dt
= k (t,T)N(t) = k1 (T) · k2 (t)N(t)

=
ln 10

D
(
Tref

)
· 10−

T−Tref
z

·
1

1+ c · p (t)
N(t) (3)

This model considers that variable p(t) describing the adaptation
only increases its value when the bacterial cells are stressed.
That is, when the temperature of the treatment is above a
stress inducing temperature (Tsi). If this is the case, this variable
increases exponentially with temperature until p (t) = 1 when its
value remains constant, as shown in Equation (4). Themagnitude
of the first derivative of p(t) with respect to time depends on the
values of the model parameters a and E. Figure 1 illustrates how
changes in those parameters affect the inactivation rate when the
remaining parameters are kept constant. For temperatures much

higher than Tsi, the exponential term tends to one and
dp
dt

equals
themodel parameter a (for low p(t) values). Themodel parameter
E quantifies how fast the transition between both regimes; lower
values of E imply a faster transition.

dp

dt
=

{
0, T < Tsi

a · e
−

E
T−Tsi (1− p(t)), T ≥ Tsi

(4)
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FIGURE 1 | Representation of the effect that changes on the model parameters a and E have on Equation (4). (A) Effect of the parameter a when the remaining

parameters are kept constant (p(t) = 0, E = 0.5◦C, Tsi =45
◦C). (B) Effect of the parameter E when the remaining parameters are kept constant (p(t) = 0, a = 1

min−1, Tsi =45
◦C).

Model Fitting of Non-isothermal
Experiments and Numerical Predictions
The model fitting was performed following the two-step
procedure suggested by Garre et al. (2018). In a first step,
the D- and z-values are estimated using data generated under
isothermal experiments. Next, the model parameters describing
the development of a stress acclimation (a, c and E) are estimated
using one non-isothermal experiment, except the stress inducing
temperature (Tsi) which was fixed to the maximum temperature
for growth of E. coli (45◦C). This procedure has several
advantages with respect to a procedure where the five model
parameters are fitted in one step. Firstly, potential structural
identifiability issues due to parameter correlations are avoided
(Vilas et al., 2018). Secondly, this allows to reuse D and z-
values that have already been published in the literature based
on isothermal experiments, reducing the experimental effort
required to fit the model. Consequently, the D and z-values
were not estimated. Instead, the ones reported by Valdramidis
et al. (2006) for isothermal experiments using the same strain
and heating media than the ones used for dynamic experiment
(D56.3 = 5.67min

(
sd = 0.61

)
, z = 4.11oC (sd = 0.16)) were

used. The three remaining parameters were estimated from the
experimental data obtained from a single dynamic experiment
using the Adaptive Monte Carlo algorithm by Haario et al.
(2006), implemented in the FME package (Soetaert and Petzoldt,
2010). The remaining non-isothermal profiles were set aside for
model validation. The convergence of the fitted parameters was
evaluated following the guidelines by Brooks et al. (2011). A
trace and running mean plot was used to evaluate the quality of
the mixing and the stability of the solution, whereas the lack of
correlation was checked using an autocorrelation plot. Moreover,
the test by Heidelberger and Welch (1983) was used to ensure
the stationarity of the solution. A total of 8000 iterations of
the MCMC chain, with a burninglength of 1000 iterations, were
required to achieve convergence. Garre et al. (2018) already fitted

this mathematical model to their data, so the model parameters
reported in this study were used.

The non-isothermal microbial inactivation predicted by the
Bigelow model based on isothermal experiments was calculated
using the bioinactivation package for R (Garre et al., 2017). For
the acclimation model by Garre et al. (2018), the differential
equation was solved using lsoda algorithm (Hindmarsh, 1983),
implemented in deSolve package for R (Soetaert et al., 2010).

The goodness of fit was evaluated using the Mean Error
(ME) and Root Mean Squared Error (RMSE) commonly used in
statistics literature. The ME Equation (5) is the mean difference
between the model predictions (log10 N̂) and the n experimental
observations (log10 N). Hence, values of ME greater than zero
indicate that the model systematically underpredicts the response
(i.e., overpredicts microbial inactivation), with greater values of
theME indicating a larger bias. Values smaller than zero indicate
the opposite (i.e., underpredicts the microbial inactivation),
whereas an ME equal to zero indicates the absence of bias. The
RMSE (Equation (6)) indicates the dispersion of experimental
observations with respect to model predictions. When the RMSE
equals zero, the model predicts the experimental observations
without any error, whereas higher values imply a lower precision.

ME =
1

n

∑

i

(
log10 N̂i − log10 Ni

)
(5)

RMSE =

√
1

n

∑

i

(
log10 N̂i − log10 Ni

)2
(6)

Moreover, the Accuracy factor (Af ) and Bias factor (Bf ),
commonly used in predictive microbiology were calculated.
These indexes were first defined by Ross (1996) and later refined
by Baranyi et al. (1999). The Accuracy factor Equation (7) has
a similar interpretation as the RMSE, indicating the precision of
the model predictions. However, it is defined between one and

Frontiers in Microbiology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 1663

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Garre et al. Stress Aclimation in Risk Asessment

plus infinite, with values equal to one being identified with a
perfect fit, whereas higher values indicate lower precision. The
Bias factor Equation (8) is analogous to the ME, assessing the
bias of the model predictions. Values of this index between zero
and one indicate that the model systematically underpredicts the
microbial density, whereas values between one and plus infinite
mean the opposite. The absence of bias results in a bias factor
equal to one.

Af = 10

√
1
n

∑
i(log10 N̂i−log10 Ni)

2

(7)

Bf = 10
1
n

∑
i(log10 N̂i−log10 Ni) (8)

Generation of Induced Thermal Resistance
Diagram
Garre et al. (2018) suggested the use of a two-dimensional
diagram to visualize how the development of a stress tolerance
varies with the thermal inactivation profile. This diagram
represents the D-value (Dh) predicted (considering the
adaptation) after a heating phase with heating rate (HR)
constant, until a temperature (T) is reached. This is calculated
as shown in Equation (9), where ph is the value of p(t) predicted
by the model at the end of the heating phase. The repetition
of this calculation for different values of T and HR results
in three-dimensional surface which describes how the stress
acclimation is developed. This surface can be visualized in a
2-dimensional plane, joining with solid lines combinations of
both factors (HR and T) resulting in the same D-value, allowing
the visualization of how the ability of the bacterial cells to develop
a stress resistance is affected by the duration of the heating phase
and the maximum temperature.

Dh =

(
D(Tref ) · 10

−
T−Tref

z

)
(1+ c · ph) (9)

RESULTS AND DISCUSSION

Data from Valdramidis et al. (2006) and from our group were
analyzed using a recently published model (Garre et al., 2018)
in order to estimate the adaptation capacity of two strains of
E. coli when exposed to non-isothermal heat treatments that
included sublethal temperatures. To fit the model, a D-value
of 5.67min (sd = 0.61) at 56.3◦C and a z-value of 4.11◦C
(sd = 0.16) for E. coli K12 MG1655 on isothermal experiments
using BHI as heating medium were considered as reported by
Valdramidis et al. (2006). Garre et al. (2018) propose to fit the
parameters D

(
Tref

)
, Tref and z of their model Equation (3)

to those estimated using isothermal experiments because under
isothermal conditions bacterial cells are inoculated at the target
temperature. Therefore, inactivation takes place before they can
develop an acclimation. Valdramidis et al. (2006) used capillary
tubes for applying the thermal stress. They reported a come-
up time of 30 s using this technique. Hence, the heating rate
was of ∼60◦C/min. Garre et al. (2018) observed for dynamic
heating profiles with a heating rate higher than 15◦C/min stress
acclimation was irrelevant for E. coli CECT 515. Furthermore,

van Zuijlen et al. (2010) compared microbial inactivation
observed using capillary tubes and a Mastia thermoresistometer,
obtaining similar results. We, thus, hypothesize that the heating
rates applied by Valdramidis et al. (2006) are high enough to
inactivate the cells before they are able to develop an acclimation,
and that both technologies are comparable. Consequently, the
parametersD

(
Tref

)
, Tref and z of the model by Garre et al. (2018)

were fixed to the D and z-values estimated from isothermal
experiments. The remaining model parameters (a, c, and E) were
estimated using the data reported by Valdramidis et al. (2006)
for a biphasic heating profile with a heating rate of 1.64◦C/min,
resulting in estimated values of 0.49 min−1 (0.02), 0.037◦C
(0.001) and 0.46 (0.01) for the parameters a, E, and c, respectively.
The rest of the dynamic experiments reported by Valdramidis
et al. (2006) were not involved in the fitting process and were used
for model validation.

Figure 2 compares the dynamic inactivation data reported by
Valdramidis et al. (2006) for E. coli for six different dynamic
profiles against the model predictions of the model by Garre et al.
(2018) (dotted lines). The information provided by Figure 2 is
complemented by Table 1, where the ME, RMSE, Af , and Bf for
each prediction are reported.

As already reported by Valdramidis et al. (2006), the
E. coli strain used for the experiments was able to develop
a stress resistance during the early, sub-lethal, stages of
the treatment. Consequently, the Bigelow model overpredicts
microbial inactivation for every dynamic temperature profile,
with a mean error ranging between−0.97 and−1.54 log CFU/ml
(Table 1). On the other hand, the model by Garre et al. (2018)
fitted to the data by Valdramidis et al. (2006) is successful at
describing the microbial response of every inactivation treatment
(even those that were not used for model fitting). For the six
temperature profiles tested, the model is able to predict the slope
of the curve during the holding phase, with ME lower than 0.6
log CFU/ml and RMSE lower than 0.9 log CFU/ml for every
profile (Table 1). Note, however, that the model overpredicts
(fail-dangerous) the microbial inactivation at the beginning of
the holding phase for every temperature profile tested (Figure 2).
This is especially evident for the experimental data obtained
at 0.20◦C/min. This deviation is also observed in the study by
Corradini and Peleg (2009), who analyzed the same data set.
The reason for this might be the presence of a shoulder effect
at the beginning of the holding phase which is not considered
by the model used. Indeed, Valdramidis et al. (2006) observed
a short shoulder for isothermal experiments, estimating a value
of logCc (0) = 0.82 for the initial value of the variable
describing the physiological state of bacterial cells in the Geeraerd
model (Geeraerd et al., 2000). Despite this small deviation at
the beginning of the holding phase, the model is successful at
characterizing the overall microbial response taking into account
the induced thermal resistance.

Variability of heat resistance among different microbial strains
to the same treatment has been previously studied (den Besten
et al., 2017). Traditionally, this comparison is performed by
fitting a microbial inactivation model to experimental data and
assessing statistical differences between the estimated model
parameters. For instance, Hassani et al. (2006) performed

Frontiers in Microbiology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 1663

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Garre et al. Stress Aclimation in Risk Asessment

FIGURE 2 | Comparison between the model predictions and the microbial counts of E. coli K12 MG1655 (Valdramidis et al., 2006) observed during the dynamic

inactivation in BHI with a heating rate of (A) 1.64◦C/min, (B) 0.82◦C/min, (C) 0.55◦C/min, (D) 0.40◦C/min, (E) 0.20◦C/min and (F) 0.15◦C/min. ( ) prediction of the

Bigelow model using isothermal model parameters. (··) prediction of the model by Garre et al. (2018) fitted to the data reported by Valdramidis et al. (2006). (−)

temperature profile.

non-isothermal inactivation experiments on different strains
of Staphylococcus aureus, fitted the Mafart model (Mafart
et al., 2002), and observed that the δ-value (time required to
cause the first log-reduction) was dependent on the bacterial
strain. This approach provides an overall understanding of
the stress resistance of the bacterial population during the

whole treatment. However, it does not allow to understand
how the stress adaptation is developed, and how it affects
the inactivation rate at each time point of the experiment.
Several studies (Janssen et al., 2008; Dolan et al., 2013) have
shown that the bacterial resistance during a thermal treatment
does not depend only on the instantaneous temperature, but

Frontiers in Microbiology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 1663

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Garre et al. Stress Aclimation in Risk Asessment

TABLE 1 | Indexes assessing the goodness of the model predictions for each model to the data of inactivation of E. coli K12 MG1655 on BHI reported by Valdramidis

et al. (2006).

ME (log CFU/ml) RMSE (log CFU/ml) Af Bf

Heating rate (◦C/min) Bigelow Stress acclimation Bigelow Stress acclimation Bigelow Stress acclimation Bigelow Stress acclimation

1.64 −1.00 −0.10 1.22 0.35 16.60 2.22 0.10 0.80

0.82 −1.12 −0.25 1.47 0.45 29.70 2.84 0.08 0.57

0.55 −1.01 −0.09 1.35 0.44 22.40 2.77 0.10 0.81

0.40 −0.97 −0.43 1.34 0.58 21.70 3.83 0.107 0.37

0.20 −1.54 −0.58 2.18 0.82 150 6.63 0.03 0.26

0.15 −1.48 −0.37 2.23 0.68 169.00 4.79 0.03 0.42

TABLE 2 | Comparison of the stress acclimation model parameter values and

standard deviations estimated from the data of inactivation of E. coli K12 MG1655

on BHI reported by Valdramidis et al. (2006) against those estimated by Garre

et al. (2018) for the inactivation of E. coli CECT 515.

E. coli K12 MG1655 E. coli CECT 515

D-value (min) 5.67 (0.61) at 56.3◦C 12.12 (0.52) at 52.5◦C

z-value (◦C) 4.11 (0.16) 5.12 (0.11)

a (min−1) 0.49 (0.002) 0.122 (0.002)

E (◦C) 0.037 (0.001) 0.072 (0.001)

c (·) 0.46 (0.003) 1.98 (0.01)

may be affected by the thermal profile. The development
of stress acclimation (Hassani et al., 2006; Stasiewicz et al.,
2008; Corradini and Peleg, 2009) is an example of such a
situation. We believe that, in order to better understand the
microbial response to the treatment, it is necessary to be able
to discriminate between the thermal resistance due to the
instantaneous environmental conditions (“static resistance”), and
the effect of dynamic conditions, such as the development of a
stress acclimation. The model proposed by Garre et al. (2018)
specifies model parameters to describe the stress acclimation,
providing further insight on its development and its impact on
thermal resistance.

Table 2 compares the stress acclimation model parameters
estimated here for strain K12 MG1655 against those reported by
Garre et al. (2018) also using biphasic temperature profiles, but
a different strain of E. coli (CECT 515) and PW media rather
than BHI. Despite the fact that the temperature profiles used
in both studies were different, the model by Garre et al. (2018)
was in both cases able to describe the microbial inactivation
experiments. Hence, the estimated model parameters are
expected to be valid within the experimental range tested in
both works. The model parameters estimated here for E. coli
K12 MG1655 are significantly different to those reported for
E. coli CECT 515. The value of a estimated for the K12 MG1655
strain is four times higher than the one estimated for the CECT
515 strain, whereas the value of E is a 6% lower. This implies
that the transition between the two regimes shown in Figure 1

is faster for the CECT 515 strain. Once the temperature is
high enough to enter the second phase, the rate of production
of p(t) is higher for the K12 MG1655 strain. For E. coli K12

MG1655 in BHI a value of 0.47 (sd = 0.003) was estimated
for c, whereas 1.98 (sd = 0.01) was estimated for E. coli
CECT 515 in PW. Previous research works have shown that
the microbial response to thermal treatments can vary between
strains and/or heating media (Aryani et al., 2015; Aspridou and
Koutsoumanis, 2015; Ros-Chumillas et al., 2017). Therefore, it
is reasonable to consider that stress acclimation may also be
dependent of these factors. Nevertheless, the aim of the present
work was to describe differences in stress acclimation rather
than to evaluate its impact depending on strain or heating
medium. The impact of acclimation described exists and is only
dependent on the experimental data evaluated, although it is
reasonable to consider that some differences may be due not
only to the strain, but also to the heating medium used for
the experiments. Hence, although there is some uncertainty
associated to the factors behind acclimation in both studies,
they are out of the scope of this study and were not analyzed
further.

The model parameter c describes the maximum level
of acclimation that the microbial population may develop.
According to Equation (3), the D-value predicted by the Bigelow
model is increased due to acclimation by a factor of (1+ c· (t)).
Taking into account that the variable p(t) is bounded in the
(0, 1) range, the maximum D-value is achieved when p=1. In
that case, the D-value is increased by a factor of (1+ c). Hence,
according to this model, E. coli CECT 515 may develop a stress
acclimation increasing its stress resistance (estimated D value)
almost a 300%, whereas for K12MG1655, the increase in D-value
is limited to 50%. In order to illustrate the impact that this effect
may have for risk assessment, Figure 3 illustrates the D-values
calculated in the 50-65◦C range (typical inactivation temperature
range for E. coli) for both strains taking into consideration
or not the potential stress acclimation. In Figure 3A, D-
values calculated only from isothermal experiments (static
conditions) are illustrated. Based only on this information, strain
K12 MG1655 would be considered more resistant to thermal
treatment than CECT 515 for the whole temperature range and,
thus, would be chosen as target for risk assessment calculations.
Figure 3B has been constructed multiplying D-values (estimated
using isothermal experiments) by the acclimation factor (1+ c),
which represents the potential maximum increase in thermal
resistance. At temperatures lower than 58◦C, strain K12MG1655
is more resistant to the thermal stress than CECT 515. However,
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for higher temperatures, the fact that CECT 515 strain has a
higher c-value than K12 MG1655 results in the first strain being
more resistant. Consequently, if processing conditions allow
bacterial adaptation, CECT 515 strain may be more resistant to
the thermal treatment than K12 MG1655, despite the greater
resistance of the latter under static conditions.

Figure 4 shows the stress acclimation diagram constructed for
both E. coli strains according to the methodology described in
section Generation of Induced Thermal Resistance Diagram and
the model parameters reported in Table 2. The curvature of the

colored lines is higher for CECT 515 strain, indicating that the
D-value of this strain at the end of the heating phase is strongly
dependent on the heating rate because of its higher potential for
stress acclimation (high c). By comparing the diagrams obtained
for both strains, the strain with the higher D-value (taking into
account stress acclimation) at the end of the heating phase can
be identified for various combinations of R and Th. As already
reported in Figure 3, for temperatures lower than 58◦C, the D-
value of the K12 MG1655 strain is higher than the one of CECT
515, regardless of the duration of the sub-lethal phase. However,

FIGURE 3 | Comparison between the D-value predicted at different temperatures for E. coli K12 MG1655 ( ) and E. coli CECT 515 (−) based on isothermal

experiments (A) and taking into account the maximum stress resistance that the bacterial strain may develop (B).

FIGURE 4 | Comparison of the induced thermal resistance diagram obtained for E. coli CECT 515 in PW and E. coli K12 MG1655 in BHI. The black dashed lines

represent the threshold heating rate at which strain CECT 515 becomes more resistant than the K12 MG16655 strain (see text).
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for higher temperatures CECT 515 strain can be more resistant
if the profile allows the development of stress acclimation. As
shown by the dashed black line, at 62◦C theD-value calculated for
CECT 515 strain is higher than the one for K12 MG1655 strain
if the heating rate is lower than 1.8◦C/min. Higher heating rates
do not allow the development of a stress acclimation, resulting in
the strain K12 MG1655 being the one with the highest thermal
resistance.

The information provided by this diagram can help
identifying the most resistant microorganism depending on
processing conditions. However, the number of bacterial cells
surviving the thermal treatment also depends on the prevalence
data of the different strains, as well as the fraction of the
population killed during the sub-lethal phase of the treatment.
Hence, the results drawn from Figure 4 have to be complemented
with numerical simulations or empirical data where themicrobial
response to the whole thermal treatment is studied. Figure 5
reports four different numerical simulations, showing the
predicted microbial inactivation for both E. coli strains according
to the models fitted assuming the same initial concentration for
both. In Figure 5A, the temperature remains below 58◦C for the
whole treatment. Consequently, K12MG1655 strain (blue, dotted
line) would be the critical one (assuming the same prevalence
for both strains), with higher D values than CECT 515 (red,
dashed line) during the whole treatment. The profile simulated
in Figure 5B reaches a holding temperature of 65◦C (above the
threshold temperature of 58◦C). However, the heating phase of

this treatment is very short, with a heating rate of 20◦C/min,
so bacterial cells are not able to develop a significant stress
acclimation. Therefore, K12 MG1655 strain remains the most
resistant one. This is not the case for the temperature profiles
in Figure 5C,D, where the treatment reaches temperatures above
the threshold temperature of 58◦C and the heating phase is
long enough for the bacterial cells to develop an adaptation.
In consequence, during the first stages of the treatments, K12
MG1655 strain would have higher survival rates due to its higher
static thermal resistance. However, at the end of the experiment
strain CECT 515 has developed a higher stress acclimation and

thus higher number of survivors at the end of the experiment.

Hence, under these conditions this strain would be the most

resistant one to these two treatments, despite having a lower

resistance under isothermal conditions than strain K12 MG1655.
Therefore, the methodology followed in this work allows to

evaluate whether stress acclimation can be relevant for a given

thermal profile, and to identify the most resistant bacterial strain

accordingly. This methodology can be used for risk assessment

studies, where calculations are usually limited to the most

resistant bacterial strain for the temperature profile studied. It

can be summarized in the following steps:

1. Estimate D and z-values using isothermal experiments.
2. Estimate the model parameters of the model by Garre et al.

(2018) describing stress acclimation (a, E and c) using non-
isothermal experiments.

FIGURE 5 | Predicted microbial density for E. coli CECT 515 ( ) and K12 MG1655 (··) for four different dynamic thermal treatments (−). (A) Low temperature profile,

(B) fast heating profile, (C,D) profiles with high temperature and slow heating.
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3. Plot the D-values calculated considering the stress acclimation
and without considering it for the relevant temperature range
(Figure 3).

a. If the D-value of bacterial strain “A” is higher than for strain
“B” in the whole temperature range in both situations,
strain “A” is more resistant to thermal treatments. In this
case, no further investigation is required.

b. Otherwise, stress acclimation is relevant and further
investigation is needed (continue with step 4).

4. Build the stress acclimation diagram for both bacterial strains.
Compare them to identify combinations of temperature and
heating rates where stress acclimation may be relevant.

5. Use numerical simulations or experimental data to validate the
conclusions drawn in step 4.

CONCLUSIONS

In this work, the relevance of stress adaptation for risk assessment
has been evaluated. The microbial inactivation model of (Garre
et al., 2018), which was validated on E. coli CECT 515, has
been able to successfully describe the inactivation of E. coli
K12 MG1655 according to the data published by Valdramidis
et al. (2006). This model includes parameters and a variable
to specifically describe the development of stress adaptation.
Therefore, it has been used to compare the ability of both
bacterial strains to develop a stress acclimation, concluding that
it is strain dependent although other factors such as the heating
medium can also have an impact. In spite of the K12 MG1655
strain having a higher resistance to thermal treatments where
the heating is fast enough to inactivate the bacterial cells, the
CECT 515 strain has a higher potential for stress acclimation. As a
consequence, for treatment temperatures above 58◦C, the CECT
515 strain may be more resistant if the thermal profiles allow for
stress acclimation.

The mathematical calculations required to develop a
quantitative microbial risk assessment are time demanding. For

this reason, they are limited to a handful of bacterial strains
considered the most resistant to the treatment (and/or better
adapted for growth during storage). In every study published
in the literature so far, this selection is always made taking into
consideration only the static resistance of the bacteria according
to isothermal treatments (D and z-values). The results obtained
in this work demonstrate that stress acclimation can be relevant
for some thermal profiles. Therefore, it must be considered when
identifying the most resistant bacterial strain.
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