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ABSTRACT: Natural products are a bountiful source of bioactive molecules.
Unfortunately, discovery of novel bioactive natural products is challenging due to cryptic
biosynthetic gene clusters, low titers, and arduous purifications. Herein, we describe SNaPP
(Synthetic Natural Product Inspired Cyclic Peptides), a method for identifying NP-inspired
bioactive peptides. SNaPP expedites bioactive molecule discovery by combining
bioinformatics predictions of nonribosomal peptide synthetases with chemical synthesis
of the predicted natural products (pNPs). SNaPP utilizes a recently discovered cyclase, the
penicillin binding protein-like cyclase, as the lynchpin for the development of a library of
head-to-tail cyclic peptide pNPs. Analysis of 500 biosynthetic gene clusters allowed for
identification of 131 novel pNPs. Fifty-one diverse pNPs were synthesized using solid phase
peptide synthesis and solution-phase cyclization. Antibacterial testing revealed 14 pNPs
with antibiotic activity, including activity against multidrug-resistant Gram-negative bacteria.
Overall, SNaPP demonstrates the power of combining bioinformatics predictions with
chemical synthesis to accelerate the discovery of bioactive molecules.

Natural products (NPs) have been a bountiful source of
medicines, including antimicrobials, anticancer agents,

antiparasitics, immunosuppressants, as well as many others.1

Historically, bacteria have been one of nature’s most prolific
producers of biologically active NPs.2 One important class of
biologically active bacterial NPs are nonribosomal peptides
(NRPs). These peptides are synthesized by modular enzyme
complexes known as nonribosomal peptide synthetases
(NRPS) and comprise a rich set of structurally diverse NPs,
including many clinically used antibiotics such as daptomycin,
bacitracin, polymyxin B, and colistin.3 Cyclic peptides are an
especially important class of NRPs, possessing many favorable
pharmacological properties over their linear counterparts.4−6

Their relatively large size and structural rigidity allow them to
engage challenging targets, including protein−protein inter-
actions.4,7−9 Cyclic NRPs are also generally more cell
permeable and resistant to proteases compared to linear
peptides.5,10,11 For these reasons, there is great interest in the
discovery of additional cyclic NRPs as biological tools and drug
leads.
Traditionally, novel NRPs have been discovered by a

classical fermentation approach12 whereby crude bacterial
extracts are screened for biological activity. While this
approach has been extremely successful, it is very time-
consuming. The process of going from a bioactive extract to a
completely elucidated structure takes minimally several months
and oftentimes over a year. Additionally, each new NP requires
optimization of fermentation conditions and purification
sequences, thus preventing easy automation of the process.
Rediscovery of known NPs is also a major limitation.13 Recent

advances in whole-genome sequencing and bioinformatics have
revealed a vast number of NRPS biosynthetic gene clusters
(BGCs) for which no known NP can be attributed.14

Harnessing the full biosynthetic potential of these organisms
is complicated by the fact that a small fraction (∼2%) of
bacteria are culturable in the laboratory,2,15 and many BGCs
are transcriptionally inactive (cryptic) under standard labo-
ratory conditions.14 Access to the NPs produced via these
BGCs often requires heterologous expression or promoter
optimization, both of which are very time-consuming and
frequently unsuccessful.
We hypothesized that we could overcome these difficulties

by developing SNaPP (Synthetic Natural Product Inspired
Cyclic Peptides, Figure 1), a method that combines
bioinformatics with chemical synthesis. Specifically, the
method utilizes (1) bioinformatics tools such as antiSMASH16

and PRISM17 to predict peptide products formed by NRPS
BGCs identified in bacterial genomes and (2) chemical
synthesis to access the predicted peptides. This synthesis-first
approach has many advantages over traditional fermentation
approaches: (1) This approach skips bacterial culture and the
need for fermentation optimization, (2) it avoids rediscovery of
known NPs by comparison with known BGCs, (3) products
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from cryptic BGCs or currently unculturable bacteria can easily
be accessed, and (4) each part of SNaPP from the
identification of the BGCs to NP predictions to chemical
synthesis is scalable and easily automated, greatly expediting
the process.
Others have previously prepared predicted NRPs by solid-

phase peptide synthesis and were successful in the discovery of
several biologically active compounds.18−22 However, few of
these reports have explored the synthesis of predicted cyclic
NRPs,22,23 despite the fact that nearly 67% of known NRPs
possess a cyclic motif.24,25 One reason for this observation may
be the limited ability of bioinformatics programs to predict
how NRPs cyclize. The thioesterase (TE) domain is typically
the terminal module of an NRPS and is often responsible for
peptide cyclization.26 However, TE domains catalyze the
production of multiple cyclic motifs including lactams and
lactones in head-to-tail or side chain-to-tail form.27,28 Others
have overcome this by synthesizing all the potential cyclic
structures.22,23 This comprehensive approach is impressive and
resulted in a very good antibiotic hit rate (15/157, ∼10%).23
However, it requires synthesis of multiple compounds per
BGC, greatly increasing the time and reagents necessary make
these molecules. Additionally, the approach significantly
increases the number of compounds needed to be screened.
One of the major advantages of prioritizing NRPs is their
increased likelihood of having bioactivity compared to a
random cyclic peptide.29 It is highly unlikely that the
incorrectly cyclized structures will have activity due to the
large effect the cyclization site has on three-dimensional shape
of molecules. Therefore, a strategy that does not prioritize the
correct cyclization site is hypothesized to be less efficient than
one that targets only the molecules with the natural cyclization
site.
Interestingly, numerous NRPS BGCs do not contain a

thioesterase domain and instead are thought to be released
from the NRPS via stand-alone enzymes. Recently, the
penicillin binding protein (PBP)-like cyclases have been
identified as a novel class of stand-alone NRPS cyclases.30−32

PBP-like cyclases have thus far only been found to catalyze
cyclization of the C-terminus with the N-terminus to furnish
head-to-tail cyclic lactams. Herein, we describe a new method
SNaPP, which expedites discovery of novel bioactive cyclic
peptides via the synthesis of predicted NPs (pNPs). SNaPP
prioritizes head-to-tail cyclic peptides by focusing on NRPS
BGCs containing PBP-like cyclases. While these peptides are
not intended to be the true NPs, we expect to bias ourselves
toward head-to-tail cyclic peptides with very similar structures
and bioactivities to the true NPs.

■ RESULTS AND DISCUSSION

Identification of pNPs. SurE, the PBP-like cyclase that
catalyzes the cyclization of the surugamides, is one of the most
well studied PBP-like cyclases.30−33 surE along with the genes
encoding the PBP-like cyclases for the head-to-tail cyclized
peptide NPs ulleungmycin (ulm16), desotamide B (dsaJ), the
mannopeptimycins (mppK), the pentaminomycins (penA), the
noursamycins (nsm16), and the curacomycins (KUM80512.1)
are all found in close proximity to the NRPS that produces the
peptide NP.31,34−36 This colocalization suggests that the genes
for these cyclases could be used as a genetic handle for
identifying other cyclic head-to-tail NRPs. Our strategy is
outlined in Figure 1. We have chosen to focus exclusively on
head-to-tail cyclic peptides because all PBP-cyclase containing
BGCs analyzed to date encode for the production of head-to-
tail cyclic peptides. However, a limitation of this strategy is that
the PBP-like cyclases are a relatively new class of enzymes. It is
possible that some PBP-like cyclases perform alternative
cyclizations (e.g. side chain-to-head) and remain undiscovered
at this time.
First, a BlastP37 search for SurE was performed, and the top

500 hits were analyzed further. The genetic neighborhood for
these hits was identified using RODEO.38 Three hundred and
ninety-six (79%) of the BGCs had NRPS genes 10 genes or
less away. Clusters at the end of a contig or with incomplete
records in NCBI (80, ∼20%) were removed prior to further
analysis. The remaining 316 NRPS containing BGCs were then
analyzed using bioinformatics softwares including PRISM 417

and antiSMASH 5.016 to predict the structure of the NRPs
(Supplementary Excel File). Generally, predictions between
the two programs agreed well. Tanimoto analysis of the
predictions from PRISM 4 or antiSMASH 5.0 for the 5 known
molecules within our data set compared to their actual
structures suggested similar accuracies (Figure S1A). Addi-
tionally, their predictions for uncharacterized BGCs also was
similar (Figure S1B). We ultimately chose to use the PRISM
predictions as the basis for our studies for two major reasons.
First, and most importantly, other studies have found that
PRISM is better at predicting known NPs compared to
antiSMASH when the data set is larger than the knowns that
we have in our data set.39 Specifically, the structures predicted
by PRISM 4 and antiSMASH 5.0 for 753 BGCs that encoded
known NPs were previously analyzed for their similarity to the
known structure. PRISM 4 significantly outperformed
antiSMASH 5.0.39 Second, PRISM is more likely to give a
structural prediction.39 When 3759 bacterial genomes were
analyzed, PRISM was able to predict structures for 3078
NRPS, while antiSMASH 5.0 was able to predict structures for
2779 NRPS.39 Using PRISM, 140 unique cyclic peptides were
identified. Nine of the peptides were previously known NRPs
(mannopeptimycin, desotamide B, ulleungmycin, and 6 copies
of the surugamide cluster), leaving 131 unique and novel cyclic
peptides of varying sizes to explore further (Figure 2A and
Supplementary Excel File).
Previously, Jacques and coworkers found that NRPs vary in

size between 2 and 23 amino acids with the most frequent sizes
of NRPs being between 7 and 9 amino acids.40 While we see
many peptides with 7 and 9 amino acids, we see very few with
8 amino acids and instead see a large number of 6 and 10.
Additionally, the unnatural amino acid ornithine is predicted
much more often than expected. Based on the number of
occurrences in the Norine database,24 we would expect ∼8% of

Figure 1. Outline of the SNaPP method.
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NRPs to contain ornithine. We found that ∼70% of our pNPs
contain ornithine. It is unclear whether this is due to the
prediction software or if ornithine is truly overrepresented in
this set of peptides. Interestingly, antiSMASH often predicted
glutamine when PRISM predicted ornithine. Another common
difference was that antiSMASH would often predict tyrosine
when PRISM predicted tryptophan. Given the structural

similarity of these amino acids, we were not surprised by
these differences.

Diversity of pNPs. Because the structures of molecules
determine their functions, structural diversity is essential for
any compound library that will be used for bioactivity
screening.41 To assess the diversity of the pNPs and determine
the best molecules to synthesize for testing, we first used

Figure 2. Diversity of pNPs. (A) pNPs distribution with total number of cyclic peptides noted in light blue, and the number of unique and novel
cyclic peptides noted in dark blue. (B) Tanimoto similarity data represented in tree form. Details of strains and molecules synthesized can be found
in Figure S2A. (C) Sequence similarity network for PBP-like cyclases. The size (number of amino acids) of the predicted cyclic peptide product is
indicated by the color of the nodes. (D) BiG-SCAPE network of PBP-like cyclase and NRPS containing BGCs. Each circle represents a family
(closely related) of BGCs. Branches to other circles indicate clans (more distantly related BGCs). The size (number of amino acids) of the
predicted cyclic peptide product is indicated by the color.
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ChemMine Tools42 to calculate the Tanimoto coefficients for
the novel molecules identified. The Tanimoto coefficients were
then used to generate both a heat map (Supplementary Excel
File) as well as a tree (Figure 2B and Figure S2A). Peptides of
the same size generally cluster together while still having
noticeable structural differences.
Bioinformatics methods were also employed to analyze the

diversity of the library. A sequence similarity network (SSN)43

of the PBP-like cyclases was generated. The PBP-like cyclases
tend to cluster based on the size of their corresponding NRPs,
suggesting that PBP-like cyclases might be specific for certain
ring sizes (Figure 2C and Figure S3). Interestingly, occasion-
ally different sizes are predicted within the same cluster,
suggesting that either these cyclases are more flexible or
potentially that the NRPS next to the aberrant cyclase may act
in an iterative fashion. We also performed BiGSCAPE
analysis44 on the BGCs containing the PBP-like cyclases and
NRPS genes (Figure 2D and Figure S4). This analysis revealed
86 NRPS families with an average of 4 BGCs per family. These
data, in agreement with the Tanimoto data, confirmed a varied
set of structures and helped us to design a diverse library.
Synthesis of a Diverse pNP Library. Fifty-one chemically

diverse pNPs were chosen for synthesis (see Figures S2−4 and
Table S1). Specifically, molecules from distinct branches on
the Tanimoto tree were chosen. These were further narrowed
down by selecting molecules for synthesis from a variety SSN
clusters and BigSCAPE families with a particular emphasis on
molecules not from clusters or families with previously known
NPs. Challenging to access amino acids such as protected
enduracididine and hydroxyphenylglycine were replaced with
the structurally similar amino acids arginine and phenylglycine,
respectively. Linear sequences were prepared using standard
solid-phase peptide synthesis (SPPS) followed by solution-
phase cyclization, deprotection, and purification (Figure
S5).45,46 The entire sequence from pNP prediction through
purification can be completed in seven days and is
straightforward enough to be completed by an undergraduate.
Additionally, all steps except HPLC purification can easily be
accomplished in parallel. Growth of a NP-producing organism
often takes longer than this, with fermentation optimization,

purification, and structure validation regularly exceeding a year.
Thus, the SNaPP process significantly expedites the process
compared to traditional fermentation.

Bioactivity Testing. Initial compounds were tested for
activity against antibiotic sensitive and antibiotic resistant
ESKAPE pathogens at concentrations varying between 0.5 and
32 μg mL−1 using the CLSI microbroth dilution assay.47 Any
well with greater than 90% death was considered a hit. Overall,
14 hits (MIC ≤ 32 μg mL−1) were observed with 4 against
Gram-negative organisms (Figure 3), 9 of them being against
Gram-positive organisms (Figure S6), and 1 hit against both.
This is a very promising hit rate (∼30%), particularly when
compared to other antibiotic discovery programs, which have
struggled to find any hits, especially against Gram-negative
organisms.48,49 It also is approximately 3-fold more efficient
compared to previous syn-BNP approaches that did not
prioritize correctly cyclized structures.23 An Alamar blue
viability assay revealed that these molecules are nontoxic to
the A549 nonsmall cell lung cancer cell line, suggesting they
likely have good selectivity for bacterial cells over mammalian
cells. (Figure 3 and S6) Additionally, hemolysis assays with
human red blood cells revealed that many also had no
hemolytic effects at concentrations up to 53 μg mL−1 (Figure 3
and S6), providing strong evidence that they are promising
antibiotic leads.

Derivative Development and Mechanism of Action
Studies. Based on the results described above, we chose to
explore derivatives of pNP-43, a compound with activity
against several Gram-negative bacteria and no observed
hemolytic activity or mammalian cell toxicity. pNP-43 is
predicted to be produced by Lechevalieria fradiae CGMCC
4.3506, a strain originally isolated from the Wutaishan
Mountain in the Shanxi province of China. In addition to
the PBP-like cyclase and NRPS genes, the BGC contains genes
with high similarity to the enduracididine biosynthetic genes,
providing strong support that enduracididine is incorporated
into this cyclic peptide (Figure 4 and Table S2). Structure
predictions by PRISM further support this with adenylation
domain 6 predicted to load enduracididine. Due to challenges
in obtaining enduracididine, we chose to substitute endur-

Figure 3. Structures of pNPs that hit against Gram-negative bacteria. Gram-negative antibiotic peptides and a table describing their activities. The
strains analyzed are described in the Materials and Methods section. Potencies of hits are given in μg mL−1 and in parentheses are the potency in
μM. WT: wild type; R: antibiotic resistant; Cipro: ciprofloxacin; WT E. coli: ATCC 25922; R E. coli: ATCC BAA-2469; WT K. pneumoniae: ATCC
27736; R K. pneumoniae: ATCC BAA-21469; WT A. baumannii: ATCC 19606; R A. baumannii: KB349; WT P. aeruginosa: PAO1; R P. aeruginosa:
PA1000. Hemolysis of human red blood cells and toxicity to the human cancer cell line A549 are also reported. ND = not determined.
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acididine for the next highest prediction, arginine. While
enduracididine is often important for the bioactivity of natural
products (e.g. teixobactin), others have shown that replace-
ment of enduracididine with arginine often results in a
molecule that retains bioactivity.50−52 However, at least in the
case of teixobactin, this substitution does result in an
approximate 10-fold decrease in potency. When developing
derivatives, the arginine was exchanged with amino acids
having similar chemical structures including lysine, ornithine,
and 2,4-diaminobutyric acid (pNP-43a−c, Figure S7).
However, the parent molecule was the most active (Figure
S7). After further examination of the predictions by
antiSMASH16 and PRISM17 (Table S3), we chose to develop
other derivatives by modifying the amino acid at position 4.
While ornithine is the number one prediction for amino acid 4,
arginine and lysine also scored well thus we chose to
incorporate these residues into our derivatives (pNP-43d, e
in Figure S7). Substituting lysine in place of ornithine at
position 4 (pNP-43d) resulted in biological activity that was
twofold more potent against antibiotic resistant A. baumannii
compared to the initial molecule. We then performed an
alanine scan on pNP-43d to determine the amino acids that
were necessary for activity. Substitution of each amino acid
except for threonine resulted in inactive molecules, suggesting

that all amino acids except amino acid 5 are essential for
activity. Finally, we explored other substitutions at position 6.
Derivatives that substituted this position with histidine,
tryptophan, asparagine, or glutamine were all inactive,
suggesting that amino acid position 6 must be a basic amino
acid. Further derivatives helped us to establish a structure
activity relationship (Figure 5A and S7). Additionally, the
linear version of pNP-43d (pNP-43r) was completely inactive
(MIC > 128 μg mL−1), confirming the importance of cyclizing
the peptides.

Due to the improved activity of pNP-43d against the
antibiotic resistant A. baumannii, we chose to study its
mechanism of action. Many cyclic peptides are known to
cause bacterial cell lysis. This is particularly true of cationic
peptides such as the polymixins.53 Specifically, colistin (i.e.
polymixin E) is known to interact with Lipid A via its five
positively charged amino acids, displace divalent cations, and
weaken the bacterial outer membrane of Gram-negative
bacteria.54 This ultimately allows the peptide to enter the
cell, where its additional activities have been postulated to
cause cell death. The success of cationic peptides as Gram-
negative antibiotics is so well precedented that others have
even used it as a strategy to find novel antibiotics such as NRPs
asbrevicidine and laterocidine, each of which has three basic
residues.53 Because pNP-43 requires basic amino acids at
positions 4 and 6 for activity and because they only show
activity against Gram-negative bacteria, it is possible that it acts
similarly to colisitin and other cationic peptides. Specifically, it
may utilize its positively charged amino acids to interact with
the outer membrane and then induce bacterial cell lysis.
Colistin-resistant bacteria are also resistant to pNP-43 and

Figure 4. BGC for pNP-43. (A) NRPS BGC including the PBP-like
cyclase SDG84710.1. (B) NRPS modules and amino acid predictions
by PRISM. AA# refer to the amino acid position of pNP-43.

Figure 5. Mechanism of action studies. (A) Chemical structure of
pNP-43d with basic residues indicated in red. (B) Representative data
from Sytox Green lysis assay with A. baumannii 19606. Error bars are
standard deviation from three technical replicates. N = 3
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pNP-43d (Table S4). The fact that these molecules are active
against antibiotic resistant strains that are sensitive to colistin
but not those that are colistin-resistant suggests that it may be
acting similarly. To further explore this hypothesis, we tested
pNP-43d for its ability to lyse bacterial cells using a previously
reported Sytox green assay.55 pNP-43d clearly resulted in
bacterial cell lysis at concentrations varying from 2 to 16 times
the MIC for both wild type and antibiotic resistant A.
baumannii (Figure 5B and Figure S8). Based on these
combined results, pNP-43d appears to have a similar
mechanism of action to colistin.

■ CONCLUSIONS
Described herein is the development of SNaPP, a method to
greatly expedite the discovery of bioactive molecules inspired
by NPs. Cyclic peptides were chosen as an initial target due to
their history as important sources of medicines along with the
established bioinformatics approaches for predicting the
peptide sequences. Head-to-tail peptides were targeted by
identifying NRPS BGCs that co-occur with genes from a
recently discovered family of stand-alone cyclases, the PBP-like
cyclases. To date, PBP-like cyclases have only been found in
BGCs that produce head-to-tail cyclic peptides. This approach
allowed for identification of 131 unique and novel cyclic
peptides. Fifty-one diverse pNPs were chemically synthesized
and tested for antibiotic activity. Approximately 30% of pNPs
had activity with several showing very promising activity
against difficult-to-treat Gram-negative bacteria. As prediction
software for NP BGCs improves, this strategy will only increase
in its utility. Overall, SNaPP is a powerful method for the rapid
identification of biologically inspired lead molecules.

■ MATERIALS AND METHODS
General Information. Solvents were purchased from Fisher

Scientific and used without further purification. Fmoc-protected
amino acids and coupling reagents were purchased from Chem-Impex
International. 2-CTC resin was purchased from ChemPep Incorpo-
rated. All other reagents were purchased from commercially available
sources (Sigma-Aldrich, Acros Organics, Oakwood Chemical, TCI
Chemicals) and used without further purification.
Bacterial Strains. All strains used in this study except the Bacillus

strain and the colistin resistant E. coli strains were obtained from P.J.
Hergenrother (UIUC). The Bacillus strain was obtained from W.W.
Metcalf (UIUC). The colistin resistant E. coli strains (AR Bank
Number 0346, 0349, and 0350) were obtained from the CDC AR
Isolate bank. E. coli ATCC 25922 (wild type, WT) BAA-2469
(resistant, R), colistin resistant E. coli, K. pneumonia ATCC 27736
(WT) and BAA-2146 (R), A. baumannii ATCC 19606 (WT) and
KB349 (R), and P. aeruginosa PAO1 (WT) and PA1000 (R) were
grown on Mueller Hinton Broth 2 (Sigma-Aldrich). S. aureus ATCC
29213 (WT) and NRS3 (R), Enterococcus species ATCC 19433
(WT) and S235 (R), and B. subtilis 6633 (WT) were maintained on
Bacto Brain Heart Infusion.
Prediction of Cyclic Peptide Structure. The accession numbers

for the top 500 hits from the SurE BlastP were downloaded and used
as the input for RODEO.38 Biosynthetic gene clusters were then
manually analyzed for the presence of nonribosomal peptide
synthetase (NRPS) genes. If an NRPS was at the end of a contig,
the cluster was not considered further. If the NRPS was not at the end
of the contig, the FASTA file for the cluster was then analyzed using
both PRISM 4.017 and antiSMASH 5.0.16 Generally, both programs
agreed well. Initial structures were assigned based on the PRISM
results (see Supplementary Excel Document). Derivatives were
designed based on results from both programs.
Tanimoto Similarity Analysis. Tanimoto similarity analysis was

accomplished with ChemMine Tools56 using the following parame-

ters for hierarchical clustering: Display values: Z-scores; Linkage
method: single; Heat map: distance matrix.

Sequence Similarity Analysis. Sequence similarity analysis of
the PBP-like cyclases was accomplished using the EFI-Enzyme
Similarity Tool43 and visualized using Cytoscape 3.6.1.57 An
alignment score of 120 was used for generating the networks in this
paper.

BiG-SCAPE Analysis. BiG-SCAPE analysis44 was performed on
the 316 BGCs containing both a PBP-like cyclase and an NRPS. The
antiSMASH outputs from the prediction of the cyclic peptide
structure were used an inputs for BiG-SCAPE. The output was
visualized using Cytoscape 3.6.1.

Mass Spectrometry. Mass spectra (MS) were recorded on an
Advion Expression CMS single quadrupole mass spectrometer using
electrospray ionization (ESI).

Antibacterial Activity Analysis. Antibacterial activity analysis
for all bacteria was performed using the microdilution broth method
as outlined by the Clinical and Laboratory Standards Institute
(CLSI).47 Mueller Hinton Broth 2 (MH, Sigma-Aldrich, 90922) was
used for all testing. Testing was performed as previously described.58

Turbidity (OD600) of the wells was determined using a SpectraMax
iD3 platereader (Molecular Devices). For the compounds that hit
during initial screens, minimum inhibitory concentrations were
determined. A minimum of three biological replicates were
performed. Ciprofloxacin was used as a control in these assays.
Colistin was also used as a control in the colistin resistant strains.
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