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Abstract
The ENCODE project revealed that ~70% of the human genome is transcribed. While only

1–2% of the RNAs encode for proteins, the rest are non-coding RNAs. Long non-coding

RNAs (lncRNAs) form a diverse class of non-coding RNAs that are longer than 200nt.

Emerging evidence indicates that lncRNAs play critical roles in various cellular processes

including regulation of gene expression. LncRNAs show low levels of gene expression and

sequence conservation, which make their computational identification in genomes difficult.

In this study, more than two billion Illumina sequence reads were mapped to the genome ref-

erence using the TopHat and Cufflinks software. Transcripts shorter than 200nt, with more

than 83–100 amino acids ORF, or with significant homologies to the NCBI nr-protein data-

base were removed. In addition, a computational pipeline was used to filter the remaining

transcripts based on a protein-coding-score test. Depending on the filtering stringency condi-

tions, between 31,195 and 54,503 lncRNAs were identified, with only 421 matching known

lncRNAs in other species. A digital gene expression atlas revealed 2,935 tissue-specific and

3,269 ubiquitously-expressed lncRNAs. This study annotates the lncRNA rainbow trout

genome and provides a valuable resource for functional genomics research in salmonids.

Introduction
Global gene expression data in different mammalian species have demonstrated that protein-
coding sequences occupy less than 2% of the genome, and the vast majority of the genome is
transcribed into non-coding RNAs [1–4]. These non-coding RNA molecules include small
nuclear RNA (snRNA), small nucleolar RNA (snoRNA), microRNA (miRNA), small interfer-
ing RNA (siRNA), piwi RNA (piRNA), signal recognition particle (SRP) RNA and lncRNA.
LncRNAs are defined as non-protein-coding RNAs greater than 200 nucleotides in length, dis-
tinguishing them from small non-coding RNAs [5, 6]. Based on their proximity to the protein-
coding genes in a genome, lncRNAs are subdivided as genic (intronic or exonic with sense,
antisense, and bidirectional orientation) or intergenic [7, 8]. Unlike small non-coding RNAs,
lncRNA sequences are less conserved and are expressed at relatively low levels, and these char-
acteristics make their computational identification and annotation difficult [9].
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Like protein-coding genes, lncRNAs are often transcribed by RNA polymerase II and can be
post transcriptionally modified by splicing, capping and polyadenylation [10–13]. In contrast
to protein-coding genes, a majority of lncRNA transcripts tend to have fewer exons [9] and a
shorter transcript size (average of 800 nucleotides) [14]. LncRNAs usually exhibit highly cell-
and tissue-specific expression patterns and sometimes they are uniquely localized to a specific
cellular compartment [15–18].

Even though a small number of lncRNAs have experimentally validated molecular func-
tions, a substantial number of lncRNAs have been functionally annotated. LncRNAs are con-
sidered important gene regulators due to, at least, three important molecular roles; these RNAs
serve as decoys, scaffolds or guides. Many lncRNAs serve as decoys that preclude access to
DNA by regulatory proteins; this role affects transcription of protein-coding genes [19, 20].
Some lncRNAs regulate genes by acting as scaffolds to bring two or more proteins into a dis-
crete complex [21–24]. Other lncRNAs regulate different developmental and cellular processes
by guiding a specific protein complexes to a specific promoter in response to certain molecular
signals [25–27]. LncRNA mediated guidance of chromatin modifying proteins affects expres-
sion of neighboring genes (cis) or distant genes (trans) and there is evidence that even cis acting
lncRNAs have ability to act in trans [28–30]. Beside transcriptional control, lncRNAs regulate
many molecular processes including alternative splicing [31, 32], other post transcriptional
processes [33], and mRNA transport [34].

Aquaculture of rainbow trout supplies a significant portion of aquatic food in the USA and
worldwide. In addition to its importance as a food species, rainbow trout is one of the most
widely used fish species as a model in biomedical research [35–42]. In order to improve aqua-
culture production and efficiency and facilitate biomedical research of involving rainbow trout,
a great deal of genetic information has been accumulated for this species that includes a
recently published initial draft of the genome [4] and several assemblies of the transcriptome
[43–45]. However, a complete understanding of the trout’s genome biology is still lacking.
Recent studies in mammalian and non-mammalian species have resolved some long-standing
mysteries in biology by functionally characterizing lncRNAs as important regulators of pro-
tein-coding genes [24, 46–50]. With growing interest in lncRNAs-mediated gene regulation,
these RNAs have been characterized, genome-wide, in limited animal and plant species in
recent years [15, 51]. And, our knowledge of lncRNAs in fish is still very limited [52]. There-
fore, the objective of this study was to identify and characterize lncRNAs in rainbow trout
genome and create a global gene expression atlas of lncRNAs in several vital tissues.

Materials and Methods

Ethics Statement
Institutional Animal Care and Use Committee of The United States Department of Agricul-
ture, National Center for Cool and Cold Water Aquaculture (Leetown, WV) specifically
reviewed and approved all husbandry practices used in this study (IACUC approval #056).

Data Source
To facilitate lncRNA discovery in rainbow trout, four high-throughput sequence datasets were
used in this study. 1) About 1.16 billion Illumina sequence reads as we previously described
[43]. Briefly, 13 tissues including brain, white muscle, red muscle, fat, gill, head kidney, kidney,
intestine, skin, spleen, stomach, liver and testis were sequenced from a single male-doubled
haploid rainbow trout. Sequencing libraries were constructed using poly-A selection technique
and cDNA libraries were sequenced using Illumina’s paired-end protocol. Data were generated
from a single doubled haploid individual to overcome the assembly bioinformatics challenges
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of the trout duplicated genome. 2) Similarly, about 0.75 billion Illumina single reads, used in
annotating the rainbow trout genome and sequenced from a doubled haploid female rainbow
trout, as previously described by Berthelot et al.[53]. Briefly, 13 vital tissues including (liver,
brain, heart, skin, ovary, white and red muscle, anterior and posterior kidney, pituitary gland,
stomach, gills) were sequenced. Sequencing libraries were constructed using poly-A selection
technique and cDNA libraries were sequenced using Illumina’s 101 base-lengths single read
protocol. 3) About 0.25 billion reads used in assembling the anadromous steelhead (Oncor-
hynchus mykiss) transcriptome by Fox et al. [45]. 4) About 89 million reads data set from red-
band trout (Oncorhynchus mykiss) by Narum et al. [54]. Data from Narum et al. were chosen
because Ribo-Zero RNA-Seq libraries were sequenced to capture both the polyadenylated and
the non- polyadenylated RNAs with information about transcript strand orientation.

Computational Prediction Pipeline
Sequencing reads were mapped to the genome reference [4] using the TopHat and Cufflinks
software packages [55]. An in house Perl script was written to filter the transcripts shorter than
200 nt. Several stages of filtration were performed to remove protein-coding transcripts and
small non-coding RNAs. First, transcripts were searched against NCBI nr protein database
(updated on 10/01/2014). All the transcripts which had an open reading frame more than 100
amino acids were removed. Next, protein-coding calculator (CPC) was used to remove any
remaining potential protein-coding transcripts (Index value<-0.5) [56]. To remove other clas-
ses of RNAs (tRNA, rRNA, snoRNA, miRNA, siRNA and other small non-coding RNAs) tran-
scripts were searched against multiple RNA databases including genomic tRNA database,
mirBase, LSU (large subunit ribosomal RNA) and SSU (Small subunit ribosomal RNA) data-
bases [57–60]. Any transcripts which showed sequence similarity with any of these classes of
RNAs with cut-off E value of� 0.0001 were removed. After these filtration steps, putative
lncRNA transcripts were searched against several noncoding-RNA databases to explore
sequence similarity of putative rainbow trout lncRNAs transcripts to previously characterized
lncRNAs in other species [52, 61–65]. All prediction steps were applied independently to the
four transcriptome datasets. All putative lncRNAs from all four datasets were blasted against
each other. LncRNA which were identified in at least 2 of the 4 datasets were chosen for further
analysis. Data set from Narum et al., is the only one with information about strand orientation
[54]. To ensure correct sense and antisense orientations of lncRNAs from the other three
sources, their strand orientation was assigned by matching to counterparts from Narum and
coworkers (based on sequence similarity match of more than 95% and same genomic location
coordinates). A total of 54,503 non-redundant lncRNAs were identified in this dataset.

For the extra filtration steps, more stringently selected lncRNAs, any putative lncRNA con-
taining ORF covering more 35% of its length or more than 83 amino acid were filtered out
[66]. In addition, the cut-off value for the CPC [56] was decreased from -0.5 to -1.0. Further, if
any lncRNA overlapped with more than 100 nt with another lncRNA from a different dataset,
we filtered out the shortest lncRNA. Furthermore, any lncRNA that overlapped with a protein-
coding gene in the sense orientation was removed. Lastly, any single-exon lncRNA that was
adjacent to a protein-coding gene within 500nt was removed.

Identification of Tissue Expression
For lncRNA tissue distribution, sequencing reads from 13 tissues were independently mapped
to all putative lncRNAs and gene expression level were measured in terms of RPKM. House-
keeping and tissue-specific genes were determined as we previously described [43].
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Gene Clustering
Sequencing reads from each tissue were mapped to combined reference consisting of the
lncRNAs and mRNAs from the rainbow trout genome reference [4]. Expression of lncRNAs
and protein-coding genes was determined in terms of RPKM. Expression value of each tran-
scripts in each tissue was normalized using a scaling method in CLC genomics workbench with
mean as the normalization value. Normalized expression values of transcripts in each of the 13
studied tissues were used to cluster protein-coding genes and lncRNAs using a clustering fea-
ture in Multi-experiment Viewer (MeV) program [67, 68]. The minimum correlation threshold
to generate clusters was 0.97.

Identification of Genomic Location of lncRNAs Relative to Neighboring
Protein-Coding Genes
LncRNAs were classified based on their intersection or relative location to protein-coding
genes using in-house Perl scripts using the rainbow trout genome data (downloaded from
http://www.genoscope.cns.fr/trout/data/).

Results and Discussion

Identification of Putative lncRNAs in Rainbow Trout
The main objective of this study was to identify a comprehensive list of putative lncRNA genes
in the rainbow trout genome. To accomplish this, we sequenced poly-A selected cDNA librar-
ies using total RNA isolated from 13 tissues. Recently, we used the same sequencing data to
identify protein-coding transcripts in the trout genome [43]. In this study, sequence data for
about 1.167 billion, paired-end reads (100 nt) were mapped against a reference rainbow trout
genome using the Cufflink and TopHat software [55, 69], resulting in 231,505 putative tran-
scripts. Several filtration steps were used to distinguish lncRNAs in the transcript list by remov-
ing the protein-coding transcripts, pseudogenes and other classes of non-coding RNAs
including rRNA, miRNA, tRNA, snRNA, snoRNA (Fig 1). First, all transcripts shorter than
200 nt were removed, and then transcripts with an open reading frame (ORF) longer than 100
amino acids were filtered out. Next, remaining transcripts were BLASTx searched against the
NCBI non-redundant protein database to eliminate transcripts with sequence similarity to
known proteins at a cut off E-value of� 0.0001. To further filter remaining protein-coding
transcripts, we used the Coding Potential Calculator (CPC) software that assesses quality and
completeness of query ORF to proteins in the NCBI database using six biologically meaningful
sequence features [56]. These filtration steps left 44,350 transcripts from this data set that had
very little or no evidence of protein-coding ability. Because most of the small non-coding
RNAs like miRNA and tRNA are shorter than 200 nt, the first filtration step should be enough
to remove most of the small non-coding RNAs. To confirm removal of any remaining small
non-coding RNAs (tRNA, rRNA, snoRNA, miRNA, siRNA and other small non-coding
RNAs), transcripts were searched against multiple RNA databases including genomic tRNA
database, mirBase, and LSU (large subunit ribosomal RNA) and SSU (Small subunit ribosomal
RNA) databases [57–60]. After application of the above filtration steps, we found 44,124 puta-
tive lncRNAs from our sequence data set (Salem et al., [43]). These lncRNAs exhibited little or
no evidence of coding potential or belonging to other non-coding classes of RNA.

Because some of the lncRNAs are thought to be due to expression noise [70], we conceptual-
ized that prediction of lncRNAs from different reliable data sources would be an important
step in removing false lncRNAs. To achieve this goal, the same lncRNAs prediction pipeline
was applied to discover putative lncRNAs from three other rainbow trout transcriptomic
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datasets that are available on NCBI (Fig 1). Those three sources were sequence data used by
Berthelot et al. [4] in annotating the rainbow trout genome, a data set used by Fox et al. [45] in
assembling the anadromous steelhead (Oncorhynchus mykiss) transcriptome and a data set
from redband trout (Oncorhynchus mykiss) that was reported by Narum et al. [54]. Data from
Narum et al. were particularly useful because Ribo-Zero RNA-Seq protocols were used which
allow sequencing both the polyadenylated and the non- polyadenylated RNAs. In addition, the
strand orientation sequence information was preserved. From these three sequence data
sources, a total of 0.75B reads, 89M reads, and 0.25B reads were used in the prediction pipeline
that yielded 51,882; 1,191; and 36,474 putative lncRNAs in the three datasets, respectively.
LncRNAs predicted in at least 2 of the 4 data sets were considered for the subsequent analyses.
After removal of redundant transcripts, we had a total of 54,503 putative lncRNAs. Fig 1 illus-
trates the bioinformatics pipeline used in prediction of lncRNAs in all four datasets, and

Fig 1. Bioinformatics pipeline used in prediction of rainbow trout lncRNAs. LncRNAs were predicted from four different transcriptomic datasets, then all
putative lncRNAs from all data were blasted against each other. A total of 54,503 non-redundant lncRNAs identified in at least 2 of the 4 data sets were
chosen for further analyses in order to increase the confidence of lncRNA prediction. Vertical arrows are pointing toward the subsequent prediction and
filtration steps of the workflow. First horizontal arrow pointing toward the right is referring to the number of initial transcripts predicted from the four datasets.
Middle six horizontal arrows indicate the number of transcripts filtered at each step and the final horizontal arrow points to the number of putative lncRNAs
with significant hits to noncoding-RNA databases from each dataset.

doi:10.1371/journal.pone.0148940.g001

Long Non-Coding RNAs in Rainbow Trout

PLOS ONE | DOI:10.1371/journal.pone.0148940 February 19, 2016 5 / 15



Table 1 and S1 table report the number of putative lncRNAs predicted in each dataset. FASTA
and gtf annotation files are available at http://www.animalgenome.org/repository/pub/
MTSU2015.1014/.

To look for evolutionarily conserved lncRNAs in rainbow trout, all putative lncRNA tran-
scripts (54,503) were searched against several noncoding-RNA databases (E� 0.0001) [52, 61–
65]. Of those 54,503 lncRNAs, only 421 had sequence homology to lncRNAs from other spe-
cies (S1 table). This low evolutionary conservation of lncRNAs is in agreement with previous
reports [9].

Characterization of lncRNAs
Studies on mouse, zebra fish and maize have suggested that lncRNAs are shorter than protein-
coding genes, have relatively fewer exons, and are expressed at a lower level [51, 52, 71]. Con-
sistent with previous reports, our study indicates that trout lncRNAs were shorter (0.821 kb)
than protein-coding genes (1.636 kb) (Fig 2). In addition, the average number of exons in
lncRNAs was 1.14 compared to 4.75 in protein-coding genes. Unlike the trout protein-coding

Table 1. Number of lncRNA predicted in at least 2 of the 4 datasets and final numbers after merging and removal of redundant sequences.

Source LncRNAs common between two data sources Putative non-redundant
lncRNA from each sources
after combining all four
sources

Salem et. al. Berthelot et. al. Narum et. al. Fox et. al. Source Number

Salem et. al. x 35,307 13,557 268 Salem et. al. 21,617

Berthelot et. al. 35,307 x 13,993 291 Berthelot et al. 22,568

Narum et. al 13,557 13,993 x 401 Narum et. al 10,097

Fox et. al. 268 291 401 x Fox et al. 221

Total 54,503

doi:10.1371/journal.pone.0148940.t001

Fig 2. Distribution of sequence length of LncRNAs compared to protein-coding transcripts in rainbow trout. LncRNAs were shorter than protein-
coding genes with (0.821 kb) and (1.636 kb) average length in each, respectively (Left). Distribution of number of exons in LncRNAs compared to that of
protein-coding genes. Most LncRNA transcripts (~90%) have only one exon whereas majority of the protein-coding transcripts tend to have two or more
exons (Right).

doi:10.1371/journal.pone.0148940.g002
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genes, ~90% of the trout lncRNAs had one exon. Fig 2 and Table 2 show distribution and num-
ber of exons in lncRNAs compared to protein-coding genes. Data regarding exon numbers in
lncRNAs from different species are inconsistent. Similar to our findings, some plant and ani-
mal studies reported one-exon bias for lncRNAs [51, 72]. Conversely, some human studies
showed a remarkable two-exon prevalence in the majority of lncRNAs [9]. Several reasons may
explain these discrepancies including tissue variation, developmental stages, sequencing tech-
niques and biases due to variations in number and length of genes in different species.

LncRNAs are classified, based on their intersection with protein-coding genes, as genic and
intergenic [9]. Some of the lncRNAs are located in transcriptionally-active regions and influ-
ence expression of neighboring genes [8, 73]. Therefore, the genomic position of lncRNAs rela-
tive to protein-coding genes can possibly provide important clues about lncRNA-mediated
regulation of protein-coding genes [74]. Our data indicate that 7,847 (14.4%) of the lncRNAs
intersected with protein-coding gene and thus are called genic (Fig 3). Of these lncRNAs 4,697
(8.6%), were intronic lncRNAs, existing in introns of protein-coding genes but do not intersect
with any exons, and 3,091 (5.6%) exonic, sharing at least part of a protein-coding exon. Among
those lncRNAs, 248 were sense and 1,488 were antisense; and 6,052 lncRNAs had an unknown
orientation. In addition, there were 59 lncRNAs that completely overlapped with a protein-
coding gene by containing this protein-coding gene within its intron. Fig 3 and S1 table show
classification and number of lncRNAs based on their intersection with protein-coding genes.
There were 46,656 (85.6%) intergenic lncRNAs in the trout genome that did not intersect but
were within 15 kb of the nearest protein-coding gene. Those intergenic lncRNAs were further
divided into 3,588 convergent (same sense) and 3,428 divergent (opposite sense). Consistent
with our study, previous reports in humans indicate that the majority of lncRNA transcripts do
not intersect with protein-coding genes [9].

Expression of lncRNA in Different Tissues
A comparison of lncRNA expression to protein-coding genes showed that transcript abun-
dance of lncRNAs is lower than that of protein coding genes. Average RPKM (Reads Per Mil-
lion per Kilo-base) of the most abundant 40,000 transcripts was 3.49 and 15.69 in LncRNAs
and protein-coding genes, respectively (Fig 4). Similar trends, showing lower lncRNAs expres-
sion in all human tissues compared to mRNAs, were reported [9].

Table 2. Number of exons and average length of lncRNAs in different data sets.

Salem et al. Berthelot et al. Narum et al. Fox et al. Common

# of
exon

LncRNA
%

Average
length

LncRNA
%

Average
length

LncRNA
%

Average
length

LncRNA
%

Average
length

LncRNA
%

Average
length

1 86.14 790 88.52 682 96.62 453 98.24 353 88.84 796

2 10.63 888 8.71 846 2.79 462 1.34 377 8.49 1007

3 2.37 973 2.07 893 0.43 480 0.42 359 1.91 1044

4 0.51 1090 0.47 1030 0.1 475 0 0 0.46 1225

5 0.15 1284 0.11 1217 0.02 792 0 0 0.13 1390

6 0.08 1289 0.04 1157 0.02 514 0 0 0.07 1206

7 0.05 1379 0.03 1076 0.01 477 0 0 0.03 1183

8 0.03 1322 0.01 1227 0 631 0 0 0.02 1364

9 0.01 1217 0.01 1394 0.01 620 0 0 0.01 1302

10 0.02 1167 0.01 1199 0 0 0 0 0.01 1181

doi:10.1371/journal.pone.0148940.t002
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Evidence is clear that lncRNAs exhibit strict cell/tissue specificity and play a significant role
in development and differentiation of tissues in plants and animals [15, 51]. Nonetheless, their
tissue specificity and potential role in tissue development are not well studied in fish. Lack of
sequence conservation of lncRNAs across diverse species demands study of their expression in
vital tissues as a method to identify lncRNAs with tissue-specific roles in rainbow trout. In this
study, lncRNA expression was studied in 13 vital tissues of rainbow trout. Out of 54,503 puta-
tive lncRNAs, 3,269 (~5.9%) exhibited expression across all tissues with a minimum RPKM
value of 1.0 (S2 table). On the other hand, 2,935 tissue-specific lncRNAs (5.4%) were identified
from 13 tissues (S3 table). In this report, transcripts were described as ‘tissue specific’ if their
expression in one tissue was 8-fold or higher compared to the maximum value for any of the
other 12 tissues with a minimum RPKM of 0.5 [43] (Fig 4). Previously, we reported 17.1% and
8.9%, respectively, for housekeeping and tissue-specific protein-coding genes [43]. To gain
insight into the expression and tissue specific differences between lncRNAs and protein-coding
genes, the number of each was examined in 13 different tissues (Fig 4). Testis expressed the
highest number of tissue-specific lncRNAs followed by brain, gill, and kidney. Conversely, liver
expressed the lowest number of tissue-specific lncRNAs followed by skin, white muscle then
spleen, in increasing order. We previously reported that the number of tissue-specific protein-
coding transcripts follows similar patterns in various tissues [43]. Similar to the protein-coding
genes, expression patterns of tissue-specific lncRNAs can be explained in terms of tissue com-
plexity [43].

Fig 3. Classification of lncRNAs based on their intersection with protein-coding genes and number of lncRNAs in each class.Diagram on the top is
a visual illustration of each class of lncRNAs relative to nearest protein-coding gene(s) based on genomic position and direction of transcripts. Bottom Fig in
tabular format presents number of different classes of lncRNAs from each class. Numbers inside brackets following data source references indicate total
number of that particular class of lncRNAs. Letters C, D, S, AS and U indicate number of convergent, divergent, sense, anti-sense and transcripts with
unknown directionality, respectively.

doi:10.1371/journal.pone.0148940.g003
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Previously, we showed that tissues are different in terms of the protein-coding transcrip-
tome composition and complexity. Brain and testis possess the most complex transcriptomes.
These tissues express large numbers of the genes; however, only a small part of the mRNA pool
is expressed by the most abundant genes [43]. On the other hand, white muscle and stomach
revealed simpler transcriptomes. These tissues express fewer genes and a greater proportion of
the transcriptome comes from the most highly expressed genes. Similarly and in this study,
complex tissues like brain and testis, expressed a larger number of lncRNAs with equal domi-
nance of many transcripts (Fig 5). Conversely, white muscle, fat and liver showed less complex
transcriptomes; a vast majority of the transcriptome included a few dominant lncRNAs. Simi-
lar expression patterns between protein-coding genes and lncRNAs may suggest common
mechanisms of gene expression regulation and important role of lncRNAs in regulating pro-
tein-coding RNAs. Regardless, these data suggest that lncRNAs may be significant in determin-
ing tissue complexity.

Correlation in Expression Patterns of lncRNA and Protein-Coding Genes
across Tissues
Very low sequence conservation of lncRNAs hinders their molecular annotation. In order to
look for possible functional significance of lncRNAs in regulating protein-coding genes, we
constructed an expression-based relevance network between protein-coding genes and
lncRNAs using a clustering algorithm in Multi-experiment Viewer software package (MeV)
[67, 68]. In this study, biological correlation in expression patterns were compared across 13
tissues representing vastly different cellular and functional complexities. After clustering, genes
of each cluster were ranked based on their entropies, and the top 20% of genes with the highest
entropy were retained to construct networks. This approach identified 15 clusters containing
protein-coding and lncRNA genes with strong correlation in their expression patterns (R2

>0.97) (S4 table). Examples of functionally important clusters include lncRNA
Omy100084431 that was highly, positively correlated with splicing factor 3B

Fig 4. RPKM comparison of protein-coding genes and lncRNAs. Transcript abundance of lncRNAs is lower than that of protein-coding genes. Average
RPKM of the most abundant 40,000 genes is 15.69 and 3.49 for protein coding genes and LncRNAs, respectively (Left). Number of tissue-specific lncRNAs
and protein-coding genes in various tissues. Expression of lncRNAs and protein-coding genes showed similar patterns among different tissues (Right).

doi:10.1371/journal.pone.0148940.g004
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(GSONMT00018324001) and transcription elongation factor SPT5 isoform X1
(GSONMT00067984001). In addition, expression of lncRNAs Omy200064145 and
Omy100138726 was positively correlated with NF-kappa B inhibitor-like protein
(GSONMT00082784001). Furthermore, a strong positive correlations in expression pattern
between lncRNAs Omy300110093 and mitogen activated protein kinase1-like
(GSONMT00053903001); Omy300072481 and thyroid hormone receptor alpha-like
(GSONMT00066016001); Omy200106644 and histone deacetylase 3-like
(GSONMT00058062001); and Omy300066671 and double-stranded RNA-specific adenosine
deaminase (GSONMT00000999001) were observed. Proteins listed in these clusters have
important functional roles in the cell including protein quality control (derlin-2) [75], RNA
editing (adenosine deaminase) [76], transcriptional control (histone deacetylase 3) [77], splic-
ing, and development. These findings nicely correlate with previously characterized molecular
functions of lncRNAs in different species [23, 31, 32]. In order to explore additional underlying
biological relationships between lncRNAs and protein-coding genes, more samples from differ-
ent individuals and developmental stages should be studied as lncRNAs may be specific to
developmental stages.

More Stringently Selected lncRNAs
The aforementioned 54,503 putative lncRNAs were identified using filtration steps with tradi-
tional cutoff values [52, 71]. To provide an optional more stringently selected list of lncRNAs,
we performed extra filtration as follows. First, we calculated the average amino acid length for
the shortest 10% of the rainbow trout protein-coding genes [42]; this calculation yielded 83

Fig 5. Distribution of lncRNA expression in various tissues. Proportion of the transcriptome that is
contributed by the most abundant lncRNAs is plotted in various tissues. In complex tissues like brain and
testis, larger number of lncRNAs were expressed with fairly equal dominance of many transcripts. On the
contrary, less complex tissues like white muscle, fat and liver showed that majority of transcriptome is
contributed by few dominant lncRNAs.

doi:10.1371/journal.pone.0148940.g005

Long Non-Coding RNAs in Rainbow Trout

PLOS ONE | DOI:10.1371/journal.pone.0148940 February 19, 2016 10 / 15



amino acids. Using 83 amino acids as the cut-off value of the lncRNA, 5,836 lncRNAs were fil-
tered out of 54,503. In addition, lncRNA containing ORF covering more 35% of its length were
filtered out [66]. Second, we decreased the cut-off value for the CPC [56] from -0.5 to -1.0,
which filtered out an extra 4,978 leaving 43,689 putative lncRNA. The next filtration step was
performed based on location of the lncRNAs in the genome predicted from a comparison of
different datasets. If any lncRNA overlapped fully or partially by more than 100 nt with another
lncRNA from a different dataset, we filtered out the shortest lncRNA; this step eliminated
5,945 putative lncRNAs. In addition, we filtered out any lncRNAs that overlapped with a pro-
tein-coding gene in the sense orientation and this filtration eliminated an additional 354
lncRNAs. The last filtration step removed any single-exonic lncRNA that was within 500 nt of
a protein-coding gene; as a result, 1,538 putative lncRNAs were removed. The final number of
putative lncRNAs was 31,195 (S1 table). FASTA and gtf annotation files are available at http://
www.animalgenome.org/repository/pub/MTSU2015.1014/. Because the criteria for distin-
guishing lncRNAs are still loosely defined [78], filters applied in this study (with traditional or
stringent cutoff values) should be considered arbitrary, hence, the identified lncRNAs may or
may not reflect biological functions. For example, some of the well characterized lncRNAs in
mammals contain more than 100 AA ORF. In this study, two sets of lncRNAs were obtained
with traditional or stringent cut off values. All above mentioned analyses were done using
lncRNAs from the traditional filtrations.
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