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Abstract

Individuals who were born very preterm (VPT; ,33 gestational weeks) are at risk

of experiencing deficits in tasks involving executive function in childhood and

beyond. In addition, the type and severity of neonatal brain injury associated with

very preterm birth may exert differential effects on executive functioning by altering

its neuroanatomical substrates. Here we addressed this question by investigating

with functional magnetic resonance imaging (fMRI) the haemodynamic response

during executive-type processing using a phonological verbal fluency and a

working memory task in VPT-born young adults who had experienced differing

degrees of neonatal brain injury. 12 VPT individuals with a history of

periventricular haemorrhage and ventricular dilatation (PVH+VD), 17 VPT

individuals with a history of uncomplicated periventricular haemorrhage (UPVH),

13 VPT individuals with no history of neonatal brain injury and 17 controls received

an MRI scan whilst completing a verbal fluency task with two cognitive loads

(‘easy’ and ‘hard’ letters). Two groups of VPT individuals (PVH+VD; n510, UPVH;

n58) performed an n-back task with three cognitive loads (1-, 2-, 3-back). Results

demonstrated that VPT individuals displayed hyperactivation in frontal, temporal,

and parietal cortices and in caudate nucleus, insula and thalamus compared to

controls, as demands of the verbal fluency task increased, regardless of type of

neonatal brain injury. On the other hand, during the n-back task and as working

memory load increased, the PVH+VD group showed less engagement of the

frontal cortex than the UPVH group. In conclusion, this study suggests that the

functional neuroanatomy of different executive-type processes is altered following

VPT birth and that neural activation associated with specific aspects of executive
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function (i.e., working memory) may be particularly sensitive to the extent of

neonatal brain injury.

Introduction

‘Executive function’ in the neuropsychological literature refers to a variety of

cognitive operations that permit the adaptive balance of maintenance and shifting

of cognitive and behavioural responses to environmental demands, allowing the

control of action and long-term goal-directed behavior [1]. These include

inhibitory control, attention allocation, task initiation, working memory, mental

flexibility, planning and problem-solving [2]. Individuals who were born very

preterm (VPT; ,33 gestational weeks) are at increased risk of experiencing

impairments in executive function [3], especially those with a history of neonatal

brain injury [4, 5].

Periventricular haemorrhage (PVH) is well-recognized on cranial neonatal

ultrasounds and occurs in up to a quarter of VPT infants [6]. It originates in the

subependymal germinal matrix, a transient metabolically-rich structure of the

developing brain proliferating neuronal and glial precursor cells, that disappears

by term. Anatomically, the germinal matrix lies predominantly adjacent to the

head of the caudate nucleus during the last trimester of gestation [7]. PVH has

been associated with impaired cortical growth in VPT infants [8], as well as with

structural and functional alterations in caudate nucleus in VPT individuals in

adolescence [9, 10]. Therefore, PVH may lead to alterations in areas subserving

the cognitive operations involved in executive function processing by disrupting

the development of fronto-striatal circuits [11] and specifically the connections

between the caudate nucleus, the hippocampus and the frontal and parietal

association cortices [12, 13].

PVH may occur either in isolation (i.e., uncomplicated periventricular

haemorrhage-UPVH) or may be associated with ventricular dilatation (VD;

PVH+VD) following extension of the haemorrhage in the lateral ventricles

[14, 15]. PVH+VD is likely to cause the greatest alterations in grey and white

matter volumes in VPT individuals [16], with increased ventricular volume being

associated with regional volume loss in brain areas in key nodes of the ‘executive’

network, i.e., hippocampus, caudate nucleus and frontal and parietal cortices [17].

In terms of long-term functional brain alterations following neonatal brain

injury, we recently demonstrated that frontal and parietal blood-oxygen-level

dependent (BOLD) signal linearly decreased with increasing neonatal ultrasound

abnormalities in VPT young adults during completion of a verbal paired

associates learning task [18]. To the best of our knowledge, the effect of differing

degrees of neonatal brain injury on the functional neuroanatomy of executive

function among VPT individuals has not been previously studied.
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In this paper we focus on two cognitive tasks, which tap different aspects of

executive processing. The first is phonological verbal fluency, which involves

processes such as attention allocation, response initiation, response monitoring

and working memory [19, 20] and is mainly subserved by frontal and striatal brain

regions [21, 22]. Individuals who were born VPT typically score approximately

half a standard deviation below controls’ scores on this type of task [23]. We

previously studied the functional neuroanatomy of phonological verbal fluency in

a VPT-born adult heterogeneous sample (with no history of neonatal PVH+VD),

using an fMRI task with differing cognitive loads (‘easy’, ‘hard’ letters) [24]. In

our previous study, we reported differential patterns of brain activation in a

fronto-striatal neural network between VPT individuals and controls. In the

current study, we investigate the haemodynamic response to the same verbal

fluency task in three groups of VPT young adults with the following neonatal

ultrasound classifications: 1) PVH+VD 2) UPVH and 3) normal ultrasographic

findings, and a group of term-born controls.

The second task is an n-back task, which assesses working memory. N-back

paradigms typically engage neural networks that subserve processes of executive

control of verbal encoding and retrieval and active maintenance processes i.e.,

frontal and parietal brain regions, respectively [25, 26]. At the behavioural level,

significant group differences of typically 0.4 standard deviation are observed in

VPT samples in favour of term-born controls [23]. Only a few fMRI studies of

working memory with VPT samples have been conducted to date and have

reported significant neuroanatomical differences between VPT individuals and

controls. A pioneering study of spatial working memory by Curtis and co-workers

(2006) [27] showed decreased activation in the caudate nucleus of early

adolescents who were born very preterm compared to controls. Furthermore, a

recent investigation by Griffiths and colleagues (2013) [28], employing a selective

attention/working memory task, demonstrated decreased activation in a working

memory network comprising fronto-parietal cortices, as well as in occipital areas,

in children born extremely preterm (,28 gestational weeks) compared to

controls. Here, we used a verbal n-back task with differential working memory

loads (1-, 2-, 3-back) in two groups of VPT individuals: 1) PVH+VD and 2)

UPVH.

We hypothesise that there would be differential activation in VPT individuals

with differing degrees of neonatal brain injury [18] in selective components of the

‘executive’ network, specifically, in caudate, dorsolateral prefrontal cortex,

superior frontal and medial parietal brain regions, especially as the cognitive load

of the tasks increased [29–31].

Materials and Methods

Participants

VPT participants were drawn from a cohort of 368 individuals who were born

before 33 gestational weeks in 1979–1984. All individuals were admitted to the
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Neonatal Unit at the University College London Hospital, where they received

neonatal ultrasound scans daily for the first 4 days of life, at 1 week, and weekly

until they were discharged from hospital [14]. These infants were all enrolled for

participation in longitudinal follow-up studies [32–34]. At 14–15 years, 269

individuals of the original cohort agreed to be assessed. Results of the adolescent

assessment have been previously published [35–37]. At 19–20 years, 94 individuals

of those assessed in adolescence underwent further neuropsychological assessment

[38]. Out of 94 individuals, 87 agreed to receive structural MRI scan as well [39].

A sub-sample of these individuals participated in a series of fMRI studies [24, 40–

42]. The current study included 42 VPT individuals; 22 VPT individuals who had

previously participated in fMRI studies (mean age at assessment: 20.28 years)

[24, 40–42] and 20 newly-recruited VPT individuals i.e., they had not been

involved in the fMRI studies (mean age at assessment: 25.2 years), who had been

part of the original cohort. The VPT individuals who participated in previous

fMRI studies did not significantly differ from those VPT individuals who did not

participate in these studies (but were assessed at 19–20 years) in full-scale

intelligence quotient (IQ), as measured with Wechsler Abbreviated Scale of

Intelligence (WASI) [43] (z521.09, p50.28). All participants were chosen on the

basis of their neonatal ultrasonographic findings i.e., normal results (normal VPT,

n513; 11 previously studied, 2 newly-recruited), UPVH (n517; 9 previously

studied, 8 newly-recruited), and PVH+VD (n512; 2 previously studied, 10 newly-

recruited) [18, 36]. All VPT individuals performed a phonological verbal fluency

task, while only newly-recruited VPT individuals (UPVH, n58; PVH+VD, n510)

completed a working memory n-back task. Exclusion criteria were: severe head

injury, stroke, epilepsy, multiple sclerosis, severe eyesight impairment, hearing

and/or motor impairment, and pregnancy for female participants. Researchers

were not blind to neonatal ultrasonographic findings at time of assessment. All

data analyses were performed blind to group membership up until group level

statistics.

Term-born control data (37–42 gestational weeks, n517, mean age at

assessment: 20.75 years) were available for the verbal fluency task [24]. Exclusion

criteria, other than those common to the VPT participants, were: birth

complications (e.g., low birth weight defined as ,2500 grams, endotracheal

mechanical ventilation) and history of psychiatric illness.

Ethical approval was granted by the local ethical committee i.e., the Institute of

Psychiatry Research Ethics Committee (reference number: 149/02) and King’s

College London Ethics Committee (reference number: 06/Q0703/97). Written

informed consent was acquired by all participants, who were adults with capacity

to provide informed consent. Consent documentation procedure was approved by

the above ethical committees.

All participants were dextral, English native speakers.
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Neonatal, socio-demographic and neuropsychological data

Neonatal data i.e., birth weight (grams) and gestational age at birth (weeks) were

collected for VPT study participants only. Information about sex, age at

assessment, and socio-economic status (SES) [44] was available for all study

participants.

Four subtests from theWASI [43] (vocabulary, block design, similarities and

matrix reasoning) were used to estimate verbal, performance and full-scale IQ.

A measure of executive function, the Stockings of Cambridge test (SoC), from

the Cambridge Neuropsychological Test Automated Battery (CANTAB)

(CANTABeclipse version, 2003), focusing on problem solving, was administered

on VPT individuals who performed the n-back task.

fMRI Tasks

Verbal Fluency

All participants completed a phonological verbal fluency task, which we have

previously used [24]. They were instructed to overtly generate a word beginning

with the letter presented on the screen, avoiding proper names and repetitions and

grammatical variations of a previous word [45]. On failure to generate a word,

participants were asked to articulate the word ‘pass’.

The task was made up of two conditions (‘hard’, ‘easy’) and a baseline (‘rest’),

which were presented in a total of 15, 35-second blocks. Each block consisted of 7

consecutive presentations of a given letter-stimulus (task conditions) or the word

‘rest’ (baseline) with a 5 s inter-stimulus interval (ISI). Each condition and the

baseline were repeated five times. The ‘hard’ and the ‘easy’ conditions involved the

following set of letters, respectively: I, F, O, N, E and C, P, S, T, L. Letter selection

was made on the basis of sufficient power provided by this number of stimuli for

detecting regional brain activation [46, 47]. Stimuli were divided into ‘easy’ and

‘hard’ letters [24], according to the frequency of English words beginning with

those letters [48]. High frequency letters (‘easy’) evoke a larger number of

automated responses compared to low frequency letters (‘difficult’) and are

therefore more discriminative in group comparisons [48].

The order of letter presentation was reversed for alternate participants. During

baseline, participants were asked to read the word ‘rest’ aloud. Verbal responses

were recorded using an MRI-compatible microphone using Cool Edit 2000

(Syntrillium Software Corporation).

N-back

We used an n-back task with three conditions (1-, 2- 3-back) and a baseline (0-

back). These were presented in a total of 18, 28-second blocks, each consisting of

14 consecutive presentations of letters [49]. Each condition was alternated with

the baseline, which was always presented first (3 and 9 repetitions, respectively).

Participants were presented with a series of letters, one at a time, at the centre of

the screen, with a 2 s ISI, and were asked to press a button whenever the presented

letter matched the one presented ‘n’ trials before (1-, 2-, and 3-back). In the
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baseline (0-back), participants were instructed to press a button whenever they

saw the letter ‘X’ on the screen.

Task performance was recorded on-line and individual scores were calculated

using a signal detection (d9 prime) measure, which takes into account correct

responses and false alarms [50]. d9 prime is calculated as: Z(hit rate) - Z(false

alarm rate). Reaction times were also recorded on-line.

Image acquisition

Scans were performed using a 1.5 Tesla GE MR Signa System at the Maudsley

Hospital, London. T2*-weighted functional volumes were acquired (repetition

time-TR52000 ms, echo-time-TE540 ms, flip angle590o, in-plane resolu-

tion53.752) in 22 axial slices (slice thickness55 mm, gap50.5 mm) for the verbal

fluency task (109 volumes) and, in 16 axial slices (slice thickness57 mm,

gap50.7 mm) for the n-back task (270 volumes). A 43-slice high-resolution

gradient echo structural image was also collected (slice thickness53 mm,

gap50.3 mm, TR53000 ms, TE540 ms, flip angle5900, in-plane resolu-

tion51.882) and was used to normalize the individual functional data into

standard space.

fMRI data analysis

The data were analysed using the XBAM (version 4.1) software, developed at

King’s College London, Institute of Psychiatry, which uses a non-parametric

approach based on permutation strategies (for a full description and references see

http://www.brainmap.co.uk). Following motion correction and smoothing with a

Gaussian filter (FWHM 8.8 mm), single subject analyses in native space were

performed.

The estimated BOLD effect was modelled using two Gamma variate functions

and the sum of squares (SSQ) ratio, a goodness-of-fit statistic, was computed at

each voxel. The data were then permuted and individual brain activation maps for

each task condition were created [51]. To reduce the possible confounding effects

of differential task performance on BOLD signal, only activations related to

correct responses were considered for both verbal fluency and n-back tasks.

Individual brain activation maps were then transformed into a standard

Talairach space [52]. Group brain activation maps were then computed for each

task condition using the median of the SSQ ratio over all individuals at each voxel

and comparing them to those obtained from repeating the process with the

permuted (null) data. The analysis was then extended from the voxel to the 3D

cluster level.

Comparisons of responses across groups and task conditions were conducted

by fitting the data at each intracerebral voxel at which all individuals had non-zero

data. The null distribution was computed by permuting data across groups/

conditions numerous times, under the assumption of no condition or group

effect, followed by refitting of the above model.
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For the verbal fluency task, we used a monotonic trend to compare the four

groups (PVH+VD, UPVH, normal VPT, controls) across conditions (‘easy’,

‘hard’). This was a 4 (group) x 2 (task condition) factorial analysis of variance

(ANOVA). Age at assessment was used as a covariate in the analyses as

participants’ age statistically differed between the groups (see Table 1).

For the n-back task, we explored the interaction of group (PVH+VD, UPVH)

and task condition (working memory load) using 2 (group) x 3 (task condition)

factorial ANOVA. Given that there were no significant BOLD signal differences

between the 2- and 3-back conditions within each group, a 2 (group) x 2 (task

condition; 1-, 3-back) factorial ANOVA was performed.

For both tasks, resulting maps were statistically thresholded in such a way as to

yield less than 1 false positive 3D cluster per map. SSQ values were extracted from

cluster mean where significant interaction effects were observed, in order to be

used for graphical representation of the data in the results section.

Statistical analysis of non-imaging data

Statistical analyses were carried out with SPSS v20.0 (Chigago, USA). To explore

possible between-group differences in sex and SES [44] distribution, a Chi-square

test for independence (x2) was used. Between-group comparisons in terms of age

Table 1. Neonatal, socio-demographic, neuropsychological and on-line behavioural data of the study groups performing a verbal fluency task.

Variable+ PVH+VD (n512) UPVH (n517)
Normal VPT
(n513) Controls (n517) Statistics

Neonatal/socio-demographic characteristics

N Birth-weight (grams) 1122.33 (395.6) 1274.47 (396.7) 1347.38 (404.15) n/a ++ F(2,39)51.03, p50.37

N Gestation at birth (weeks) 28.42 (2.64) 28.76 (2.14) 29.38 (2.29) n/a F(2,39)50.56, p50.58

N Males/Females (number) 7/5 8/9 6/7 8/9 x2(3)50.51, p50.92

N Age (yrs) at assessment * 24.58 (2.48) 22.65 (2.57) 20.80 (1.8) 20.75 (1.37) F(3,55)59.99,
p,0.001

N SES at assessment (number) a x2(6)56.21, p50.4

I–II 6 10 4 7

III 6 5 7 5

IV–V 0 2 2 4

Neuropsychological performance (WASI) b

N Full-scale IQ 105.92 (6.97) 106.47 (9.77) 96.46 (12.43) 107.71 (13.93) F(3,51)52.53, p50.07

N Verbal IQ 104.75 (10.07) 102.06 (9.62) 94.15 (11.79) 105.29 (12.12) F(3,51)52.5, p50.07

N Performance IQ 106.08 (11.41) 109.06 (10.63) 99.23 (12.89) 108.43 (15) F(3,51)51.61, p50.2

On-line task performance: Accuracy (% correct
responses) c

N Easy Condition 83.37 (12.17) 90.09 (9.49) 84.83 (12.27) 91.09 (7.89) F(3, 54)51.89, p50.14

N Hard Condition 70.66 (14.29) 75.11 (14.63) 66.4 (15.77) 78.31 (10.17) F(3, 54)51.79, p50.16

+Mean and standard deviation (SD) are presented, unless otherwise stated ++ n/a5non-applicable; neonatal data were not available for controls *p,0.001,
Post-hoc comparisons with a Games-Howell test showed that the PVH+VD group was significantly older than the normal VPT [Mean difference; MD53.78,
p,0.005] and the control groups [MD53.83, p,0.005] a For controls n51 missing data b For controls n53 missing data; age at assessment was used as a
covariate c For PVH+VD, n511; 1 participant was excluded from fMRI data analysis due to problems with scan acquisition.

doi:10.1371/journal.pone.0113975.t001

Executive Function and Neonatal Brain Injury in Ex-Preterm Adults

PLOS ONE | DOI:10.1371/journal.pone.0113975 December 1, 2014 7 / 17



at assessment, neonatal, neuropsychological [43] and on-line behavioural data

were performed using one-way univariate ANOVA for comparison of 3 or more

groups, or a student’s t test or a Mann-Whitney test, according to data

distribution, for comparisons of 2 groups.

To explore the link between task performance and fMRI data, correlation

analysis was performed between SSQ values extracted from brain regions where

significant interaction effects were observed and measures of task performance.

Results

Sample characteristics

Table 1 summarises neonatal, socio-demographic and neuropsychological data

for groups of participants that performed the verbal fluency task. Groups

significantly differed in age at assessment. There were no significant between-

group differences in IQ.

Study groups that performed the n-back task did not significantly differ in

neonatal, socio-demographic and neuropsychological data (Table 2).

On-line task performance

There were no significant between-group differences in the mean number of

correct responses given during the ‘easy’ and the ‘hard’ condition of the verbal

fluency task (Table 1).

There were significant differences in the d9 prime measure of on-line task

performance between the PVH+VD and the UPVH groups during the 2- and 3-

back conditions of the working memory task, but no significant differences in the

mean reaction time during the n-back task (Table 2).

fMRI results

Table 3 shows the between-group fMRI results.

Verbal fluency task

There was a significant effect of group (i.e., VPT study groups.controls) as

cognitive demands increased (‘hard’.‘easy’) in a cluster with local maxima in the

right caudate nucleus. No significant effects of brain injury on BOLD signal were

observed (Figure 1a).

N-back task

There were significant between-group differences (PVH+VD,UPVH) in the

haemodynamic response to an increasing working memory load (3-back.1-back)

in a cluster with local maxima in the left inferior frontal gyrus (Brodmann area-

BA9) (Figure 1b).

To explore the relationship between the d9 prime measure of on-line task

performance, where between-group differences were observed during the 3-back
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condition, and SSQ values where significant interaction effects were noted,

correlation analysis was carried out. Results showed that SSQ values in the left

inferior frontal gyrus were not significantly associated with task performance

(r50.43, p50.07).

Discussion

Verbal fluency

Our findings demonstrated that VPT-born young adults, regardless of extent of

neonatal brain injury, exhibited a pattern of increased haemodynamic response to

a phonological verbal fluency task as its cognitive demands increased (‘hard’.

Table 2. Neonatal, socio-demographic, neuropsychological and on-line behavioural data of the PVH+VD and UPVH groups performing an n-back task.

Variable+ PVH+VD (n510) (n513) UPVH (n58) Statistics

Neonatal/socio-demographic characteristics

N Birth-weight (grams) 1150.6 (380.86) 1208 (322.75) F(16)50.35, p50.74

N Gestation at birth (weeks) 28.7 (2.45) 28.75 (2.44) F(16)50.003, p50.97

N Males/Females (number) 6/4 2/6 x2(1)51.02, p50.31

N Age (yrs) at assessment 25.4 (1.71) 25.13 (1.25) F (16)51.2, p50.71

N SES at assessment (number) x2(2)52.61, p50.27

I–II 6 6

III 4 1

IV–V 0 1

Neuropsychological performance

N WASI

Full-scale IQ 106.7 (7.42) 104.25 (11.34) F(16)51.52, p50.59

Verbal IQ 105 (10.81) 100 (9.75) F(16)50.002, p50.32

Performance IQ 107.3 (12.07) 107.25 (11.7) F(16)50.06, p50.99

N CANTAB – Stockings of Cambridge

Planning time (ms) a 14084.8 (10912.79) 10135.16 (7703.62) F(16)52.01, p50.4

Execution time (ms) b 1366.25 (2169.7) 2074.28 (2134.27) F(16)50.008, p50.5

Perfect solutions (number) c 9.2 (2.74) 9.13 (1.13) F(16)54.81, p50.94

On-line task performance

N d9 prime

1-back 3.12 (1.07) 3.5 (0.47) Z533.5, p50.57

2-back 2.68 (1.28) 3.67 (0.17) F(16)52.18, p50.02

3-back 2.02 (0.83) 2.89 (0.83) Z514, p50.02

N Reaction time (milliseconds)

1-back 682.13 (258.98) 550.03 (154.43) Z51.78, p50.83

2-back 625.99 (173.75) 570.26 (107.55) F(16)50.63, p50.44

3-back 707.53 (206.69) 659.11 (141.3) F(16)50.35, p50.58

+Mean and standard deviation (SD) are presented, unless otherwise stated a The time taken to initiate the problems b The time taken to complete the
problems c The number of problems solved in minimum moves a,b The planning and execution times were calculated at the highest level of difficulty (5
moves) to minimize possible ceiling effects.

doi:10.1371/journal.pone.0113975.t002
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Table 3. Between-group differences in regional brain activation with inreasing task difficulty during a verbal fluency and an n-back task.

Brain Region (Brodmann area)
Peak Talairach Coordinates
(x, y, z) Cluster size Cluster p value

Verbal fluency task (‘hard’>‘easy’): VPT groups> controls

R caudate nucleus extending to: 21, 230, 17 203 0.00027

N Laterally - R insula (13) and superior temporal gyrus (BA 41)

N Inferiorly - L caudate body and bilaterally to thalamus

N Superiorly - R posterior cingulate gyrus (31), R precuneus (31), R superior
temporal gyrus (39), R precentral gyrus (6) and R postcentral gyrus (2)

N-back task (3-back>1-back): PVH+VD #UPVH

L Inferior frontal gyrus (9) extends: 240, 4, 26 192 0.00039

N Anteriorly - L middle frontal gyrus (9) and L superior frontal gyrus (9)

N Inferiorly - L middle frontal gyrus (46)

N Superiorly - L precentral gyrus (6) and L middle frontal gyrus (8/6)

R5 right; L5left.

doi:10.1371/journal.pone.0113975.t003

Figure 1. Between-group differences in regional brain activation as cognitive load increased during fMRI tasks. The numbers at the top of each row
of slices represents the z coordinate in Talairach space. The right side of the brain corresponds to the right side of each slice.

doi:10.1371/journal.pone.0113975.g001
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‘easy’) compared to term-born controls, in a large cluster that included the

caudate nucleus, thalamus, insula, frontal, temporal and parietal cortices.

These results may partly be explained by structural alterations in the same brain

regions that often accompany VPT birth [36, 53, 54], which are likely to exert

some influence on activation patterns [41]. The lack of significant differences in

caudate/thalamic activation between the three VPT samples grouped according to

neonatal ultrasound classification is somewhat surprising, as alterations to these

regions have been associated with cerebral haemorrhage [36, 55, 56]. Increasing

cognitive load on a phonological verbal fluency task may have exceeded the

capacities of the existing neural resources in the VPT group, resulting in the

functional recruitment of additional neural resources [57]. Results from a

previous fMRI investigation from our group using the same task, reported

increased activation during ‘hard’ letters in the anterior cingulate gyrus and

decreased activation during ‘easy’ letters in the same brain region in VPT young

adults compared to controls [24]. Although different analyses methods were used

in our previous study, these findings support the idea of increased recruitment of

task-related brain regions with increased cognitive load. As task performance was

similar in the four study groups, the between-group differences in BOLD signal

that we observed here may not simply reflect differential task performance [58],

although the strategies used by the four groups to complete the on-line task were

not recorded and may indeed have differed.

Evidence from fMRI studies suggests that activation of the caudate nucleus,

thalamus, insula and precentral and postcentral gyri is associated with articulatory

demands [59–62] and that the superior temporal gyrus forms a part of the verbal

fluency network sub-serving phonological aspects of the task [63–66]. Therefore,

the greater engagement of these regions in the VPT groups seen here may have

been necessary to achieve satisfactory on-line task performance. Increased

activation of the caudate nucleus, precentral and postcental gyri has also been

linked to increased cognitive demand, possibly relating to executive components

of the verbal fluency task (15).

Furthermore, caudate nucleus has been involved in the suppression of

irrelevant words, as well as of the activation of brain regions that may interfere

with goal-oriented language production [67–69]. Therefore, the increased

activation of the caudate nucleus in the VPT groups, as the cognitive demands of

the task increased, may also reflect an increasing effort to maintain attention on

task-related procedures and to suppress the generation of irrelevant words.

Differential activation across the study groups with increasing cognitive load

was also observed in the right posterior cingulate gyrus (BA31) and right

precuneus (BA31). Neuroimaging data have shown that the posterior cingulate

and precuneus may play an important role in executive-type processes, such as

response evaluation and monitoring, which are core cognitive components of

verbal fluency processing [19, 20, 70]. Thus, the observed increased activation of

the posterior cingulate and precuneus in the VPT groups may reflect a greater

effort to avoid erroneous responses.
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Taken together, the finding of altered activation in the VPT group during

increasing cognitive load associated with phonological verbal fluency processing

demonstrate long- term effects of preterm birth on the cortico-striatal-thalamo-

cortical circuitry. These findings extend our previous research, which demon-

strated altered activation in fronto-striatal pathways using the same task but

considering ‘easy’ and ‘hard’ letter trials separately [24]. Alterations in the cortico-

striatal-thalamo-cortical circuitry are likely to underlie the risk for specific motor,

executive-type and emotional problems, which are part of the long-term sequelae

of very preterm birth [71–73].

Working memory

Our results showed that VPT young adults who sustained severe neonatal brain

injury displayed decreased brain activation compared to VPT young adults with

less-severe neonatal brain injury (UPVH) in left frontal brain regions in response

to increasing working memory load of an n-back task (3-back.1-back). The

cluster in which this significant interaction was observed was centred in the

inferior/middle/superior frontal gyri (BA9), extending to the dorsolateral

prefrontal cortex (DLPFC), which is a brain area thought to be centrally involved

in working memory processing [74]. Hypoactivity in the DLPFC has been

described in developmentally delayed populations, such as individuals with

attention deficit hyperactivity disorder during executive-type tasks [75, 76]. A

load-dependent role of the DLPFC in working memory maintenance has also been

reported (15).

Between-group differences (PVH+VD,UPVH) that were linked to increasing

task difficulty were also evident in the left precentral gyrus (BA6), and left middle

frontal gyrus (BA6/8) i.e., supplementary motor cortex. Results from neuroima-

ging studies have shown that the precentral gyrus (BA6) and supplementary

motor cortex may be involved in a sub-vocal rehearsal system of the phonological

loop of working memory [29, 62], whereby maintenance of verbal information is

achieved.

At a behavioural level, the PVH+VD group had lower d9 scores than the UPVH

group during the 3-back condition of the task, which is the most difficult,

although there were no significant between-group differences in reaction time.

The lack of significant association between d9 scores achieved during the 3-back

condition and functional data suggests that our fMRI results may not be solely

attributable to on-line performance differences, and may instead reflect the long-

term effects of neonatal brain injury.

Taken as a whole, decreased activation of frontal brain regions in the VPT

group that suffered the most severe form of neonatal brain injury (PVH+VD), as

task demand increased, may reflect limitations in neural resources [40, 57].

Executive Function and Neonatal Brain Injury in Ex-Preterm Adults

PLOS ONE | DOI:10.1371/journal.pone.0113975 December 1, 2014 12 / 17



Limitations

The fMRI data reported here may not generalise to VPT populations at large, as

VPT individuals with compromised cognitive function were not studied. A further

limitation of this study relating to the interpretation of on-line behavioural data

arises from the fact that the study groups are relatively small for behavioural data

analysis [77]. Finally, the population who undertook n-back task was small and

included neither healthy controls nor VPT individuals with normal neonatal

ultrasound results, which may prompt a caveat in the interpretation of the results.

Conclusions

The results of the current study show that neonatal brain injury may exert

differential effects on the functional neuroanatomy of various executive-type

processes. Functional activation of cortico-striatal-thalamo-cortical circuitry

associated with phonological verbal fluency appears to be increased following VPT

birth, regardless of the extent of neonatal brain damage. This finding is in line

with the results of other studies in VPT samples, which have documented the

existence of functional neuroplastic adaptation in relation to language processing,

reflected by the recruitment of additional task-related neural resources [24, 78].

On the other hand, the presence of severe neonatal brain injury may be associated

with decreased engagement of the frontal cortex during verbal working memory

processes, possibly because of its limited resource capacities due to maturational

delays [28, 57, 79]. These data increase our understanding of the long-term

consequences of early brain injury in ex-preterm individuals and may aid the

development of neuro-protective treatments designed to improve long-term

sequelae.
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